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Executive summary 

 

Introduction and Rationale 

Educational attainment and achievement are key predictors of outcomes in later life, 

including financial security and social mobility, as well as physical and mental health. 

Across societies, children with less educated parents often face significant 

challenges in reaching levels of academic success compared to their peers whose 

parents have higher education. Research consistently shows that parental education 

is a primary predictor of children’s educational attainment, with evidence of 

substantial genetic and environmental contributions. 

Sstudies typically fail to consider that parents influence their children’s educational 

attainment and achievements both environmentally, via their behaviour and 

resources, and through the transmission of their genes. Not considering these 

factors could potentially lead to biased conclusions. 

Mothers and fathers each pass on half of their genetic material to their children 

(genetic transmission). We also know that parents’ traits and behaviours can 

shape the child’s rearing environment, which is called nurture (for example, reading 

habits or access to better resources). However, the non-transmitted genes influence 

the parents’ traits and can influence the traits in their children through the parent’s 

trait. In other words, parental genetics can shape the environment they provide 

for their offspring, which, in turn, nurtures children’s outcomes. This concept 

is called genetic nurture.   

Recent advances in genetic epidemiology research have made it possible to 

integrate measured DNA with observed behaviour to understand complex gene-

environment interplay. One such complex gene-environment interplay is the fact 

that biological parents provide both their genetic predisposition and – in most cases 

– a rearing environment to their children.  

This project thus responds to the need for more nuanced insights into the 

relationship between genetics and environment in the intergenerational transmission 

of educational outcomes. By jointly accounting for genetic transmission and genetic 

nurture, we aimed to provide a broader understanding of the pathways through 
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which parental characteristics – including education, socioeconomic position, and 

health-related behaviours – influence their children’s outcomes. 

 

Project Questions 

This project sought to answer the following questions: 

1. What is genetic nurture and why does it matter for education? 

The concept of genetic nurture has gained considerable traction in research, 

highlighting how parental genetics influence a child’s environment and 

development. This specific case of gene-environment interplay is likely to be 

relevant for researchers working in the field of education and other social 

scientists. In this first section, we introduce the concept of genetic nurture, 

and the methods we can use to estimate it. 

2. Are there robust genetic nurture effects in educational outcomes? 

We wanted to establish whether there are robust genetic nurture effects for 

educational outcomes. For this purpose, we conducted a meta-analysis 

evaluating available evidence to date that used a trio design (mother–father–

child genotyped data) to estimate the magnitude of genetic nurture versus 

genetic transmission. 

3. How can we explain genetic nurture effects for educational outcomes? 

Recognising that parental education itself is intertwined with other traits, we 

examined additional parental characteristics – such as cognitive performance, 

lifestyle factors, non-cognitive components of educational attainment (for 

example: communication skills, self-regulation), and mental health – to identify 

new avenues for future research into transmission mechanisms and possible 

intervention targets to address underachievement. 

4. When does genetic nurture manifest in development? 

We investigated how genetic and environmental influences unfold across 

different developmental stages, from early primary education through to late 

adolescence. Understanding when genetic transmission and environmentally 

mediated parental influences have greater impact in children’s behaviour can 
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help to design more targeted research questions and therefore more effective 

interventions down the road.  

 

Approach and Methodology 

We adopted a combination of approaches designed to separate genetic transmission 

from environmental effects: 

• Systematic Review and Meta-Analysis 

We identified and analysed all available published studies of genetic nurture 

in educational outcomes. This produced combined estimates of both genetic 

transmission and genetic nurture, enabling more robust conclusions about 

their relative influence. 

• Longitudinal and Trio Designs 

Using polygenic scores for parents and children within the same families, we 

evaluated genetic transmission and genetic nurture effects on educational 

achievement at multiple developmental stages in large UK birth cohort 

studies.  

The polygenic scores capture an individual’s genetic propensity for various 

traits (such as educational attainment or smoking behaviour), allowing us to 

model how parents’ and children’s genetic predispositions independently 

influence educational achievement measures and mental health. 

 

It is necessary to stress that polygenic scores capture genetic predispositions 

rather than actual behaviour and should not be considered a replacement for 

observed survey data. An advantage of polygenic scores however is that they 

provide a standardised metric that proxy parental traits and removes some of the 

biases associated with self-reports and heterogeneity of measurements so common 

in developmental studies.  

See Appendix for detailed information about the methodology.  
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Key Findings 

1. Robust evidence of genetic nurture 

Across studies, we found that genetic nurture plays a clear role in children’s 

educational outcomes. This means that parental genetics likely influence the 

home or broader family environment, which in turn affects the child’s 

academic achievement. These findings still hold when we account for the 

substantial genetic transmission that is occurring.  

 

2. Socioeconomic position 

When we accounted for family socioeconomic position and parental 

education, genetic nurture effects dropped considerably – approximately by 

three quarters – implying that a substantial portion of genetic nurture operates 

via socioeconomic resources and opportunities.  

 

3. Contribution of other parental traits 

Beyond educational attainment, we identified multiple parental genetic 

predispositions that influence offspring educational outcomes, including 

personality, mental health, and reproductive behaviours. For these traits, 

environmental effects (genetic nurture) often surpassed genetic transmission, 

underscoring the significance of parental behaviours and the home 

environment. 

 

4. Timing of effects 

Overall, genetic nurture effects are stronger in earlier childhood (around ages 

7–11), whereas genetic transmission becomes more pronounced in 

adolescence. This pattern suggests that environmental factors in early life are 

especially important for children’s initial academic success, while individual 

factors become more important as the child grows. 

 

5. Maternal and paternal influences 

For most traits, we found similar magnitudes of genetic nurture in mothers and 

fathers. However, for certain variables – such as age at first birth, number of 
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children ever born, and smoking behaviour – maternal and paternal influences 

may differ.  

 

Future Research and Recommendations 

1. Multi-agent, multi-stage approach 

Our results suggest that interventions need to be tailored to  developmental 

stages. Interventions focusing on the parents might be more effective earlier, 

while child-focused interventions might be more useful in adolescence. 

Researchers should consider the use of longitudinal designs with repeated 

measures to pinpoint the developmental windows when these interventions 

are most beneficial.  

2. Continued use of genetically informed approaches 

Given the evidence of genetic influences in the intergenerational transmission 

of educational achievement, the use of genetically informed methods in 

developmental and educational research is warranted (e.g., use of polygenic 

scores in longitudinal trio designs). Such methods can shed light into the 

causal pathways between genetic predispositions, environment, and 

children’s developmental trajectories. 

3. Socioeconomic pathways 

Because our findings underscore the importance of family socioeconomic 

position in shaping children’s rearing environments even after accounting for 

genetic transmission, research exploring which specific resource-based 

disparities drive educational underachievement is relevant and necessary.  

4. Maternal and paternal contributions 

Maternal and paternal influences may operate through distinct mechanisms. 

Additional research is needed to identify where this is the case and better 

understand how maternal and paternal influences intersect, particularly in 

contexts that vary by culture, family structure, or parental involvement. 
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Conclusion 

By jointly considering genetic transmission and genetic nurture, this project provides 

robust evidence that the environments parents create – shaped by their own 

genetics – play a significant role in the cycle of underachievement.  

This project emphasises the need for a comprehensive approach that integrates 

genetic and environmental perspectives to educational research. By addressing the 

complex interplay of genetic influences and early childhood environments, future 

research and, in due course, intervention programmes, we may be better positioned 

to provide equitable educational opportunities for all children and foster social 

mobility. 

We emphasise that genetic studies, including ours, cannot directly inform policy 

decisions due to the complexity of the causal chain from genes to behaviour and the 

many intervening factors that separate biological influences from policy-relevant 

outcomes. Ultimately, genetic nurture research highlights that nature and 

nurture are not mutually exclusive but rather deeply entwined processes that 

affect children’s learning and development. Embracing this perspective in policy and 

practice may foster a more equitable educational landscape and help break the cycle 

of disadvantage across generations. 

Depending on the target, no single intervention is likely to be effective across all 

developmental stages. Interventions focusing on the parents might be more effective 

earlier, while child-focused interventions might be more useful in adolescence. 
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PRIMARY REPORT 
 

What is genetic nurture and why does it matter for 

education? 

 

Educational attainment and achievement (see Glossary, page 31) are linked to major 

economic, social, physical and mental health milestones throughout life (Islam & 

Jaffee, 2023). Parental education is consistently the strongest predictor of 

children’s educational attainment and achievement across all modern 

societies and positively influences their children’s educational achievement 

(Björklund & Salvanes, 2011; Haveman & Wolfe, 1995; Hertz et al., 2008). 

Educational underachievement hinders social mobility, leading to an 

intergenerational cycle of social inequalities. To break this cycle, we must 

understand how parental education influences their children's achievement. By 

understanding what leads children with less educated parents to do less well at 

school, we may be able to design better interventions at multiple stages in children's 

development.  

The Department for Education’s Plan for improving social mobility through education 

in 2017 highlighted the key role played by parental education in the processes 

underlying social mobility. However, for most traits, including educational outcomes, 

children resemble their parents because of nature (the genes they inherit) and 

nurture (the environment they grow up in). Research shows that many 

behaviours linked to academic achievement are influenced by genetics (J. J. Lee et 

al., 2018; Okbay et al., 2022; Polderman et al., 2015), a finding that is often 

overlooked or arguably misinterpreted (Barlow, 2019; Harden, 2023; Heine et al., 

2019). Educational achievement is shaped by a complex interplay of genetic 

predispositions and environmental influences that makes the “nature versus nurture” 

dichotomy obsolete and demands for more complex theories and methods (Barlow, 

2019; Turkheimer, 2000).  
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Integrating genetic and environmental factors in our models can help us 

uncover how biological processes work alongside external influences, giving 

us a clearer picture of what drives differences in academic achievement and how to 

support every learner more effectively. Ignoring genetic influences in educational 

outcomes not only hinders rigorous aetiological research but might contribute to the 

very social inequality that we wish to address (Barlow, 2019; Hart et al., 2021; 

Turkheimer, 2000). 

 

Genetic transmission and genetic nurture 

One such complex gene-environment interplay is the fact that parents provide both 

their genetic predisposition and a rearing environment to their children. Mothers and 

fathers each pass on half of their genetic material to their children (genetic 

transmission). However, even though the other half is not inherited, these non-

transmitted genes continue to influence the parents’ traits and can influence traits in 

their children.  

This concept – when parents’ genes influence offspring outcomes by shaping 

the environment that they provide for them, above and beyond genetic 

transmission – is known as genetic nurture (Bates et al., 2018; Kong et al., 

2018). It describes how parents’ genes indirectly shape their children’s 

characteristics via an environmental route.  

For example, parents with a higher genetic predisposition for cognitive abilities may 

have a greater interest in activities such as reading and may engage in nurturing 

behaviour such as reading to their child, which, in turn, fosters learning in their 

offspring (see Figure 1). Despite the term ‘nurture,’ genetic nurture may exist without 

actual parent-offspring nurturing behaviour. Instead, it could work through other 

factors, inside or outside the home, which are linked to parental genetic factors, such 

as income, school quality or neighbourhood.  
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Figure 1. Graphical representation of genetic transmission, i.e., the direct inheritance of 
genetic material from parents to offspring (continuous line, in red) and genetic nurture, 
i.e., the influence of parental genes on the environment they provide, which indirectly 
affects offspring development (dotted line, in blue). 

 

Perhaps counterintuitively, evidence of genetic nurture is prime evidence that 

environmental pathways do matter when it comes to shaping children’s 

educational outcomes, even after accounting for genetic transmission (the 

genetic route of transmission whereby parents directly transmit their genes to 

offspring). That is, even if we are measuring genetics, by identifying genetic nurture 

effects we can test if the rearing environment of a child, independent from their own 

genetic predisposition, is influencing their behaviour (for example, educational 

achievement).  

In fact, accounting for genetic transmission is key to provide evidence of 

environmental effects that are unbiased by genetic effects/confounding. Yet, until 

recently, most educational research has failed to consider that parents 

influence their children’s educational attainment and achievements both 

environmentally through their behaviour and resources, and through their 

genes, potentially leading to biased conclusions (Hart et al., 2021). Failure to 

account for genetic transmission in the association between parental education, or 

any other parental or environmental factor, and offspring educational achievement 

hinders our ability to establish any causal links between them.  

Parental
genotype

Child’s
genotype

Child’s
behaviour
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Polygenic scores and educational research 

Since the seminal works by Bates et al. (2018) and Kong et al. (2018) on genetic 

nurture and education, several studies have aimed to estimate genetic nurture 

effects for educational attainment. In those studies, polygenic scores for educational 

attainment generated from genome-wide association studies (GWAS, see Glossary 

on page 31) where combined with family-based designs of educational attainment to 

disentangle genetic nurture from genetic transmission effects (described below). 

A polygenic score can be described as the count of the number of trait-relevant 

genetic variants present in the person’s DNA and it is expressed as a single score for 

each individual. Before adding them up, genetic variants are assigned a different 

weight based on the strength of the link between that variant and the outcome of 

interest that was reported in the sample where the GWAS was conducted. For a 

review on this topic, see Allegrini et al. (2022) and Pingault et al. (2022). For a lay 

overview, we refer the reader to the education tool developed by Lia Petronio in 

collaboration with the Broad Institute: https://polygenicscores.org/explained/. 

Accounting for genetic confounding is critical in education research. Work by us and 

others has shown that polygenic scores - the individual scores summarising the 

effects of thousands of DNA variants - can explain over 12% of the individual 

differences in children’s educational achievement (Allegrini et al., 2019) and over 

13% in educational attainment in adults (Okbay et al., 2022).  

It is particularly important to note that polygenic scores do not reflect any individual’s 

innate potential for education. Rather, they capture genetic correlations that also 

reflect the sociocultural, familial, and historical contexts of education and aggregate 

the effect of hundreds or thousands of genetic variants. In turn, these genetic 

variants are linked to a host of intermediate traits, each influenced by many other 

genetic variants and intertwined with environmental conditions.  

For example, polygenic scores can reflect both direct genetic transmission and 

also social influences, in particular environmentally transmitted intergenerational 

effects (Fletcher & Lehrer, 2011). In other words, part of the genetic influences on 

children’s educational achievement reflects the environment that parents provide to 

their children (Bates et al., 2018; Belsky et al., 2018; Kong et al., 2018). To this 

purpose, the polygenic scores for the child, the father and the mother are 

https://polygenicscores.org/explained/
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combined into a statistical model to estimate genetic and environmental 

routes of transmissions (see Figure 2 and Glossary, page 31). 

 

 

Figure 2. Associations between parental and child 
genotypes and offspring’s phenotype in a trio model 
using polygenic scores. If associations between parental 
genotypes (GM or GF) and child phenotype (PC) persist 
after accounting for child genotype (GC), this indicates 
‘genetic nurture’ effects. For mothers, for example, genetic 
nurture effects act via the pathway GM → PC after 
accounting for GC, and ‘genetic transmission’ effects via 
the path GC → PC. Note: C = child, F = father, G = genotype, 
M = mother, P = phenotype. 

 

By identifying the extent to which each transmission route (genetic or environmental) 

influences offspring behaviour, genetic nurture studies may help researchers to 

evaluate and design more effective compensatory interventions. That is, once 

transmission routes are understood, follow-up research can search for distal (such 

as, parental education, income distribution, equal access to good quality schooling) 

and proximal targets for intervention programs (for example, parenting).  

Therefore, by modelling genetic transmission and genetic nurture together using a 

genetically informed approach, this work provides answers to the following 

questions: 

• Are there robust genetic nurture effects in educational outcomes? 

• How can we explain genetic nurture effects for educational outcomes? 

• When does genetic nurture manifest in development? 

  

GM GF

GC

PC

0.50.5
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Are there robust genetic nurture effects in 

educational outcomes? 

 

The impact of children's polygenic scores on children's achievement appears to be a 

combination of direct genetic transmission and the rearing environment (Bates et al., 

2018; Belsky et al., 2018; Kong et al., 2018). To reiterate, such scores in children can 

reflect direct genetic transmission but also social influences, in particular 

environmentally transmitted intergenerational effects. In other words, part of the 

genetic influences on children’s educational achievement reflects the environment 

that parents provide to their children.  

To find robust evidence of genetic nurture effects in educational outcomes, we 

conducted a meta-analysis on all available publications on this topic to date (see 

Appendix A). We extracted all the effects from the various studies and combined 

them into overall estimates of genetic nurture and direct genetic effects. 

Such combined estimates are more robust because they are estimated on larger and 

more varied samples, and they also help understand what factors may modify those 

estimates. For example, we investigated whether those estimates are larger as the 

GWAS used to generate the polygenic scores have increased, gathering millions of 

participants, or if maternal or paternal genetic nurture effects are similar or differ in 

size, among others. 

 

Key Findings 

Twelve studies met the inclusion criteria, comprising 38,654 individual 

offspring, each with at least one genotyped parent across eight cohorts from 

the United Kingdom, Australia, the United States, the Netherlands, and Iceland. 

Most of the studies used the trio approach (see Figure 2, page 13). In terms of the 

most common outcomes of interest, there was an even divide between educational 

attainment and educational achievement. 

Genetic nurture had a small but consistent effect on children's educational 

outcomes (β = 0.08, 95% CI [0.07, 0.09]). In practice, this means a small effect of 
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genetic nurture on educational outcomes, equivalent to around two months of 

schooling for every standard deviation change in parental polygenic scores for 

educational attainment (Wang et al., 2021). 

Across studies, we found robust evidence that genetic nurture plays a 

significant role in children’s educational outcomes. The effect size was 

consistent across studies. After accounting for genetic nurture, we also observed 

substantial genetic transmission effects (direct genetic inheritance) on offspring 

education.  

The effect of genetic transmission on children's educational outcomes was 

stronger than the effects of genetic nurture (β = 0.17, 95% CI [0.13, 0.20]), 

comparable to approximately four months of schooling gained for every standard 

deviation change in parental polygenic scores for educational attainment.   

The effects of genetic nurture and genetic transmission were similar whether 

the genetic scores came from mothers, fathers, or a combination of both. This 

means that there was no evidence that genetic nurture effects were larger for 

mothers compared to fathers.  

When accounting for the role of environmental factors like measured parents' 

education or socioeconomic position, genetic nurture effects were 

significantly reduced. This indicates, as expected, that these factors play a 

significant role in how genetic nurture affects children’s educational attainment and 

achievement.  

 

Implications of Findings 

Overall, our findings support the hypothesis that parental phenotypes matter 

for their offspring’s educational outcomes, even after accounting for genetic 

transmission. Overall, our results provide compelling evidence that education 

disparities reflect a combination of endogenous (such as individual genetic factors) 

and exogenous influences, including parental genetic nurture and broader family 

characteristics like socioeconomic position. These endogenous and exogenous 

sources of educational inequalities are largely beyond a child’s responsibility or 
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control, and each may therefore further motivate compensatory interventions (Bann, 

2021). 

There is significant genetic confounding in the intergenerational transmission of 

education. Therefore, social scientists and educational researchers aiming to 

identify environmental targets for intervention programs should account for 

genetic factors prior to inferring any causal relationship between a risk or protective 

factor and educational outcomes. This is an especially critical point, given that 

aetiological and intervention research that fails to account for genetic factors may be 

subject to bias. 

The finding that genetic nurture effects are of similar magnitude in mothers and 

fathers suggests that influences from both parents on their offspring behaviour 

are similar in magnitude. However, parents might contribute in different ways 

(for example, one parent might increase family income or read to the child). Genetic 

nurture may also operate through the broad family-level environments shared by 

both parents (such as neighbourhood). 

Accounting for observed measures of parental education or family socioeconomic 

position decreased the effect of genetic nurture by three quarters. This suggests that 

a substantial amount of genetic nurture effects may be attributed to 

environmental pathways related to parental education, occupation, and 

income. It echoes the evidence that children’s educational outcomes are influenced 

by the availability of resources in their family, indicated either by socioeconomic 

background or the education of their parents (Morris et al., 2018).  

Our finding that broad family-level socio economic characteristics largely explains 

genetic nurture effects does not rule out proximal factors such as parenting in the 

chain of factors leading to educational outcomes. Future investigations should 

explore specific family-level pathways through which genetic nurture operates to 

inform compensatory interventions (for example, financial support versus schooling 

access). 

Future research should also examine genetic nurture effects in alternative 

family arrangements (such as single-parent families) and in families with varying 

levels of parental involvement. In the presence of genuine nurturing effects, we 

would expect genetic nurture effects on educational outcomes to vary accordingly 
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(for example, be stronger for the most involved parent), which could help shed 

further light on environmental factors mediating genetic nurture effects.
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How can we explain genetic nurture effects for 

educational outcomes? 

 

Previous studies suggest that many parental characteristics are associated with child 

educational outcomes, including cognitive and non-cognitive skills (Dickson et al., 

2016; Taylor et al., 2004) (McGue et al., 2020; Vanzella-Yang et al., 2024), 

socioeconomic position (SEP) (Engle & Black, 2008; Sirin, 2005), psychopathology 

(Ranning et al., 2018; Shen et al., 2016), personality and wellbeing (Steinmayr et al., 

2010), or fertility and risk behaviours (Batstra et al., 2003; Downey, 1995; Levine et 

al., 2001; Sayal et al., 2014).  

Parental education is likely to also influence key aspects of child development 

strongly associated with the child’s ability to thrive in the educational system, such as 

experiences of mental health difficulties, and thus contribution to the 

intergenerational transmission of underachievement (Esch et al., 2014; Kulkarni et 

al., 2021).  

Having established the significance of genetic nurture effects on education, we 

wanted to broaden the question to examine a wider range of parental traits and child 

outcomes and investigate how these genetic nurture effects manifest themselves 

across various dimensions of child development.  

We therefore conducted a series of studies in two UK-based longitudinal cohorts of 

families with genotype and phenotype (i.e., individual's observable traits and 

behaviour, see Glossary) data available using polygenic score analysis and a trio 

approach (see Appendices B and C for detailed description of samples and 

methodology). 

First, we investigated how parents’ genetic predisposition for 25 traits, including 

educational attainment, influence their offspring educational achievement via genetic 

transmission and genetic nurturing. Predictors include polygenic scores (PGS) in the 

domains of education, socioeconomic position (SEP), personality, and psychiatric 

disorders.  
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Then, we investigated which routes of transmission underlie the association between 

educational attainment, the cognitive and non-cognitive components of educational 

attainment (see Glossary, page 31), and two types of mental health difficulties: 

externalising mental health difficulties (such as aggression, hyperactivity, and 

impulsivity) and internalising difficulties (such as anxiety, low mood, or social 

withdrawal). 

The data supporting the following findings originated from mother-father-child trios 

recruited by the ALSPAC and MCS cohorts (see Annexes B and C). The sample 

consisted of 1,377 children (47.0% female) and parents from ALSPAC and 3,228 

children (49.3% female) and their parents from MCS. 

 

Key Findings 

We found evidence of genetic transmission and genetic nurture effects of 

parental genetic predisposition for educational attainment on offspring 

educational achievement. These estimates were comparable to the pooled 

estimates identified in our meta-analysis (Wang et al., 2021).  

In contrast to the findings from the meta-analysis – where genetic effects originating 

from mothers and fathers were of similar magnitude, we did find significant 

differences between maternal and paternal effects for educational attainment at 

different developmental stages of educational attainment. 

Genetic transmission effects were larger than genetic nurture effects for 

educational attainment and cognitive performance. Interestingly, we found the 

opposite trend for the non-cognitive component of educational attainment.  

We also found that parents’ genetic predisposition for eight out of the 24 traits 

other than educational attainment influence their offspring educational 

achievement (measured by their performance at Key Stages 1-5 of education in the 

UK at approximately 7, 11, 14, 16 and 18 years old). This includes ‘age at first birth’, 

‘number of children ever born’, ‘subjective well-being’, ‘ever (being a) smoker’, 

‘bipolar disorder’, ‘cognitive performance’, ‘non-cognitive component of educational 

attainment’ (see Glossary), and ‘household income’ (see Figures 4 and 5 in pages 25 

and 26).  
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Figure 3. Beta estimates with 95% confidence intervals for polygenic scores (PGSs) 

associated with genetic transmission (child) and parent-specific (maternal and paternal) 

genetic nurture effects for educational attainment (EA), cognitive (COG), and non-cognitive 

components (NONCOG) on educational achievement of offspring measured at Key Stages 1-

5. Note: child and parental PGSs are modelled jointly. 

 

Overall, parental polygenic scores for personality and health behaviours were more 

associated with educational achievement in offspring than the child’s own genetic 

predisposition for the same traits. This suggested genetic nurture effects played a 

larger role in educational achievement than genetic transmission for 

personality and health behaviours. For example, through ages 7 to 18, we found 

genetic nurture effects of ‘age at first birth’ while genetic transmission effects were 

only significant at one time point. 

We found significant differences between maternal and paternal genetic influences 

for ‘age at first birth,’ ‘number of children ever born,’ and ‘ever (being a) smoker,’ with 
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maternal effects being larger overall1. We did not find differences between maternal 

and paternal influences in the domains of psychiatric diagnoses, cognition, or SEP 

traits. This is consistent with the findings of the meta-analysis (see ‘Are there robust 

genetic nurture effects in educational outcomes’ section). 

Finally, we found that parental educational attainment is associated with less 

mental health difficulties in childhood and adolescence and that this association 

operates both via genetic transmission and genetic nurture pathways. These 

influences are different for externalising (which includes aggression, hyperactivity, 

and impulsivity difficulties) and internalising difficulties (which includes difficulties 

such as anxiety, low mood, or social withdrawal). For externalising difficulties, 

genetic transmission effects increased from ages 3 to 14 years, while genetic nurture 

effects decreased. Both types of genetic influences remained constant across 

childhood and adolescence for internalising difficulties. 

 

Implications of Findings 

A key strength of these studies is that they integrate genetic and phenotypic data to 

examine genetic transmission and genetic nurture across a wide range of parental 

traits, extending beyond educational attainment. 

Our results indicate that several parental traits, previously associated with their 

offspring educational achievement, show evidence of both genetic 

transmission and genetic nurture effects. These findings stress the need to 

combine genetic and environmental data when investigating the intergenerational 

transmission of educational achievement in more traits than just educational 

attainment. 

The finding that genetic nurture effects (i.e., for personality and health behaviour 

traits) were larger than genetic transmission effects highlights the importance of 

the rearing environment and suggests that specific family-level characteristics 

 

1 It is important to consider the potential for index event bias in the cases of ‘age at first birth’ 
and ‘number of children ever born’, as analyses are conditioned on individuals who have had 
children. However, we argue that this does not undermine our conclusions, as polygenic 
influences on reproductive behaviour are likely to be present across the entire population.  
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(e.g., ‘subjective well-being’) may underpin the intergenerational cycle of 

underachievement. These results give us insight into what aspects of parental 

characteristics might be driving the genetic nurture effects of parental genetic 

predisposition to educational attainment. 

Such findings (e.g., ‘age at first birth’, ‘number of children ever born’) raise the 

question of what these genetic predispositions are acting as proxy for, and 

what intermediate factors could explain this relationship, such as childhood 

socioeconomic circumstances or risk tolerance, in the case of reproductive traits 

(Mills et al., 2021). These findings help researchers design more granular questions 

regarding specific factors in a child’s environment that could underlie the 

intergenerational association of parental education and offspring educational 

achievement, beyond genetic confounding.  

We did not find parent-specific effects for psychiatric diagnoses, cognition, or SEP 

traits, other than educational attainment. It is possible that both parents contribute 

equally to shaping the environment that influences educational achievement, albeit 

through different mechanisms - such as distal factors like increased family income or 

proximal factors like shared activities (such as reading to the child). This aligns with 

behavioural studies showing that parental involvement is equally influential on 

children’s educational outcomes regardless of whether it comes from mothers or 

fathers (Barger et al., 2019; Kim & Hill, 2015).  

We did find significant differences between maternal and paternal genetic influences 

for ‘age at first birth’, ‘number of children ever born’, and ‘ever (being a) smoker’ 

which might indicate that some maternal and paternal influences may operate 

through distinct mechanisms, reinforcing the need for future research to delineate 

these pathways. 
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When does genetic nurture manifest in 

development? 

 

Genetic nurture reflects the parental nurturing environment in the home, which is 

likely to be more important earlier in life than later (Briley & Tucker‐Drob, 2017; 

Tucker-Drob et al., 2014). To investigate the developmental timing of genetic nurture 

and genetic transmission effects, we examined the timing of genetic transmission 

and genetic nurture effects using longitudinal data and estimated both types of 

genetic effects at five different points of children’s academic journey (i.e., Key Stages 

1-5 of education in the UK, at approximately 7, 11, 14, 16 and 18 years).  

We did this for 25 traits including educational attainment, the two components of 

educational attainment (cognitive and non-cognitive), socioeconomic position (SEP), 

personality, and psychiatric disorders.  

In addition, we also investigated if there were age-specific differences in the 

association between parental genetic predisposition to educational attainment, and 

two types of mental health difficulties in offspring: externalising mental health 

difficulties (such as aggression, hyperactivity, and impulsivity) and internalising 

difficulties (such as anxiety, low mood, or social withdrawal). 

The data supporting the following findings originated from mother-father-child trios 

recruited by the ALSPAC and MCS cohorts (see Appendices B and C). The sample 

consisted of 1,377 children (47.0% female) and parents from ALSPAC and 3,228 

children (49.3% female) and their parents from MCS. 

 

Key findings 

A key strength of these studies is that they integrate genetic and phenotypic data 

to examine genetic transmission and genetic nurture across a wide range of 

parental traits, extending beyond educational attainment, and are 

developmentally sensitive with measures of educational achievement throughout 

childhood and early adolescence.  
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We found that genetic transmission and genetic nurture effects of parental 

genetic predisposition to educational attainment on measures of offspring 

educational achievement were of significantly different magnitude across 

developmental stages but followed the same trend during the offspring’s 

educational journey (see Figure 3). Both genetic transmission and genetic nurture 

pathways played a bigger role in offspring educational achievement later in life (Key 

Stages 4 and 5, henceforth referred to as KS). 

Maternal genetic nurture effects were larger than paternal effects, and they 

either both followed the same trajectory (they had an increased effect by 

adolescence), or maternal effects became more important with age while paternal 

effects remained stable. 

For example, by age 18, a one standard deviation higher child educational 

attainment PGS was associated with a 0.23 standard deviation higher KS5 

standardised scores, indexing the strength of direct genetic transmission (β=0.23, 

95% CI [0.14, 0.32]). In comparison, a one standard deviation higher mothers’ 

educational attainment PGS was associated with a 0.12 higher KS5 score (indexing 

genetic nurture), while one standard deviation higher fathers’ educational attainment 

PGS was associated with a 0.08 higher KS5 score (β=0.12, 95% CI [0.04, 0.19] and 

β=0.08, 95% CI [0.00, 0.16], respectively).  

When investigating developmental effects in other traits, both genetic transmission 

and genetic nurture effects varied across time for ‘age at first birth’, ‘number 

of children ever born’, ‘subjective well-being’, ‘ever (being a) smoker’, ‘bipolar 

disorder’, ‘cognitive performance’, ‘non-cognitive factor, and ‘household 

income’ (i.e., at approximately 7, 11, 14, 16 and 18 years old). 

For most traits, both genetic transmission and genetic nurture estimates 

appear to increase with age. For example, standardised beta estimates of maternal 

genetic nurture and genetic transmission effects for ‘age at first birth’ at Key Stage 1 

were β=0.09 [0.02, 0.15] and β = −0.03 [−0.09, 0.06], while at Key Stage 5 they were 

β= 0.13 [0.05, 0.21] and β=0.07 [−0.02, 0.16], respectively (see Figures 4 and 5).  
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Figure 4. Beta estimates with 95% confidence intervals for polygenic scores (PGSs) 

associated with genetic transmission (i.e., child polygenic scores, PGS) and genetic nurture 

effects (i.e., parent-specific PGS) for age at first birth, ever smoker, and number of children 

ever born (NCHILDREN) on educational achievement from best fitting model. Note: Child 

and parental PGSs are modelled jointly. 

 

Genetic transmission estimates for the non-cognitive factor remained non-

significant across all ages, but genetic nurture effects became more important 

with age. Genetic nurture effects for the non-cognitive factor were larger than for 

cognitive performance, especially at earlier ages (see Figure 3, page 20). 

Finally, we found that the association between parental educational attainment and 

externalising difficulties in childhood and adolescence changed over time. At age 3, 

genetic transmission and genetic nurture effects were of similar magnitude. 

However, by age 14, genetic nurture effects had faded while genetic transmission 

effects had nearly doubled. We found no age differences for genetic transmission 

and genetic nurture effects on internalising difficulties and interestingly, genetic 

nurture effects were larger than genetic transmission effects. The association 

between educational attainment and mental health difficulties was different for 

cognitive and non-cognitive genetic components of the parental genetic 

predisposition to educational attainment. 
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Figure 5. Beta estimates with 95% confidence intervals for polygenic scores (PGSs) 

associated with genetic transmission (i.e., child polygenic scores, PGS) and genetic nurture 

effects (i.e., parental PGS) for bipolar disorder, household income, and social deprivation, 

on educational achievement from best fitting model. Note: Child and parental PGSs are 

modelled jointly. 

 

Implications of Findings 

Our findings suggest substantial differences in the role of genetic transmission 

and genetic nurture in the intergenerational transmission of educational achievement 

across childhood and adolescence, as well as some environmentally mediated 

genetic nurture effects. The increasing influence of both effects on educational 

achievement during later stages (KS4 and KS5) highlights the necessity of 

modelling age-specific differences when considering intergenerational 

transmission of educational achievement.  

In addition, these findings suggest the existence of specific factors in the 

rearing environment of children contributing to their educational achievement. 

These factors operate both via the cognitive and non-cognitive components of 

educational attainment. In addition, intervention programmes targeting parents might 
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prove more effective when focusing on non-cognitive aspects of education and 

parent-child interaction. 

For example, early parental interventions focused on non-cognitive traits may be 

particularly useful, while child-focused interventions addressing both cognitive and 

non-cognitive traits may be more beneficial during adolescence. 

The strength of this approach lies in our ability to disentangle the complex 

interplay between inherited traits and environmental influences on educational 

outcomes, offering a more nuanced understanding of development. Using 

longitudinal data and within-family studies allows us to control for shared family 

environments. In this way, we can obtain less biased estimates of genetic 

transmission and genetic nurture effects of parental education-related traits on 

offspring educational achievement over time. 

Furthermore, our findings regarding intergenerational influences of parental 

education on offspring’s mental health difficulties suggest that the effectiveness of 

interventions might depend on the type of mental health difficulty and the 

developmental stage. For externalising difficulties in early childhood (rule-breaking, 

hyperactivity, aggression), programs promoting non-cognitive skills in parents (e.g., 

socio-emotional skills) might prove fruitful, while later in life they might focus on the 

youth’s and their environment outside of home. For internalising difficulties 

(emotional and peer problems), a focus on both the family environment, targeting 

non-cognitive skills, and the child, targeting cognitive behavioural skills, may provide 

significant opportunities for additional research and, potentially, intervention. 
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Conclusions, Limitations and Future Directions 

 

This project underscores the intricate interplay between genetic and environmental 

factors in shaping educational outcomes across generations. Our findings confirm 

that both genetic transmission (direct inheritance of genes) and genetic nurture 

(environment shaped by parental genetics) influence children’s educational 

attainment and achievement. While genetic inheritance does play a role in 

educational outcomes, it does not imply that carrying specific genetic variants 

causes the behaviour; rather, it reflects a complex chain of events and 

interactions, including how genes interplay with environmental factors and 

broader developmental processes. 

We show that the rearing environment – influenced by parental genetic 

predisposition to educational attainment, personality and health behaviour traits, or 

non-cognitive aspects of educational attainment – plays a significant role in 

educational achievement and mental health of children and young 

adolescents. These results reinforce the importance of integrating genetic and 

social science perspectives to better understand intergenerational educational 

transmission. 

A substantial amount of genetic nurture effects may be attributed to 

environmental pathways related to family socioeconomic position. This 

supports the claim that children’s educational outcomes are influenced by the 

availability of resources in their family, indicated either by socioeconomic background 

or the education of their parents. Future investigations should explore specific family-

level pathways through which genetic nurture operates to inform compensatory 

interventions (for example, financial support versus schooling access).  

Our findings suggest that, overall, for parental traits other than educational 

attainment, genetic nurture effects play a bigger role during early childhood, 

while genetic transmission effects become more pronounced in adolescence, 

emphasising the developmental sensitivity of these influences. This trajectory 

suggests research focusing on environmental factors in early childhood might prove 

especially fruitful when it comes to understanding the aetiology of learning and 
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emotional difficulties and the role of parenting, family environment and 

socioeconomic in educational outcomes. 

Our results suggest that no single intervention is likely to be effective for all 

family members independent from the developmental stage. Interventions 

focusing on the parents might be more effective earlier, while child-focused 

interventions might be more useful in adolescence.  

For most traits under study, we found that genetic nurture effects are of similar 

magnitude in mothers and fathers. Incorporating data from mothers and fathers 

can therefore help us increase the robustness of our findings and for certain traits 

might support the use of imputation techniques for cases when data from both 

biological parents is not available, therefore increasing sample size and improving 

the precision of our estimates. 

Additionally, non-cognitive factors, such as motivation and self-regulation, emerge 

as good candidates for researchers interested in individual-level factors likely 

to influence the rearing environment of children, their educational outcomes 

and mental health. Research targeting non-cognitive factors in early childhood 

might identify interventions that improve educational outcomes and bolster mental 

health, preparing children to overcome future challenges. In addition, our findings 

regarding the influence of parental traits beyond educational attainment – 

such as lifestyle choices (for example smoking, age at first birth) and 

psychological factors (such as bipolar disorder) – further underscore the value of 

research partnerships between educational and health researchers to identify risk 

and protective factors that could improve both educational outcomes and mental 

health in youth. 

It is necessary to stress that polygenic scores capture genetic predispositions 

rather than actual behaviour and should not be considered a replacement for 

observed survey data. An advantage of polygenic scores however is that they 

provide a standardised metric for parental traits that removes some of the biases 

associated with self-reports and heterogeneity of measurements so common in 

developmental studies.  

Finally, there are several caveats to the findings presented in this report. First, 

technical biases may give rise to genetic nurture in our models even in the absence 
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of true genetic nurture (e.g. assortative mating or population stratification – see 

Glossary, page 31). Second, our samples primarily comprise participants of 

European ancestry, which introduces a Eurocentric bias and limits generalisability to 

non-European populations. Third, missing data are a common challenge in 

longitudinal studies, although we used estimation methods specifically designed to 

address this issue. Fourth, within-family trio analyses of single cohorts may lack 

sufficient power, highlighting the need for replication in larger, more diverse cohorts. 

Fifth, different definitions of educational achievement at different developmental 

stages might be driving some of the differences observed across developmental 

points.  

Looking ahead, we argue that the evidence supporting the presence of genetic 

nurture in educational outcomes supports further research into the 

mechanisms of genetic nurture. It would be particularly interesting to study how 

specific family-level pathways – such as parental mental health, income, or parenting 

styles – mediate its effects.  

In conclusion, this project underscores the necessity of a comprehensive approach 

to breaking cycles of educational disadvantage, one that integrates genetic and 

environmental perspectives. By addressing the complex interplay of genetic 

influences and early childhood environments, future research and, in due course, 

intervention programmes, can be better positioned to provide equitable educational 

opportunities for all children, fostering resilience, reducing inequalities, and 

promoting social mobility across generations. 

 

 



   

 

31 

 

Glossary 

Note: These definitions were elaborated by the research team. For additional terms, 

we refer the reader to the Talking Glossary of Genomic and Genetic Terms 

developed by the National Human Genome Research Institute 

(https://www.genome.gov/genetics-glossary). 

 

Term Definition 

Assortative mating The tendency of individuals to pair with others 

who share similar traits, such as height, 

education, or social background, influencing 

population genetics and increasing family-level 

similarity in those traits. 

Cognitive component The cognitive component of educational 

attainment refers to the subset of genetic variants 

for educational attainment that operates through 

or strongly overlaps with measured cognition.  

Confidence interval (CI) A confidence interval is a range of values around 

an estimate (e.g. an estimate of genetic nurture). 

It provides a sense of how precise that estimate 

is; the narrower the interval, the more confident 

we are in the estimate. 

Educational achievement A person’s performance at school – the grade 

they achieve (A, B, C, etc.) 

 

Educational attainment The highest education level a person reaches 

(GCSE, A level or master’s degree for example) 

https://www.genome.gov/genetics-glossary
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Genetic nurture The process by which parents’ genes indirectly 

influence outcomes for their offspring through their 

rearing environment beyond direct genetic 

transmission. In the genetics literature, several 

other terms have been used to describe this 

including ‘dynastic effects,’ ‘genetic nurture,’ 

‘familial genetic effects,’ and ‘indirect genetic 

effects.’ 

Genome-wide association 

study (GWAS) 

Genetic studies that examine millions of genetic 

variants to identify those that are associated with 

a trait of interest (e.g. educational attainment). 

Heritability Metric that represents how much of the individual 

differences we see in a trait (like height or 

educational attainment) can be explained by 

genetic differences for a given sample at a given 

time. Heritability does not apply to one individual, 

but to trait variation in a group of individuals. 

When estimating heritability in a group of people, 

it does not necessarily translate to other groups 

(e.g. groups living in other environments). 

Meta-analysis A statistical method for combining estimates (e.g. 

genetic nurture estimates) from multiple studies. 

Non-cognitive component The non-cognitive component of educational 

attainment refers to another portion of the genetic 

signal underlying educational attainment that is 

not captured by cognition in GWAS studies. It 

might tap on traits such as diligence, grit, or self-

control. These traits also promote educational 

success but are not fully accounted for by 

intelligence measures. 
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Phenotype The observable traits or characteristics of an 

organism e.g., educational attainment. 

Polygenic scores An individual score summarising the effects of 

thousands of DNA variants that contribute to 

individual differences on a trait. Also referred to in 

the genetics literature as “polygenic risk score,” 

“polygenic index.” 

Population stratification Bias in genetic analyses due to systematic 

differences in allele frequencies among 

subpopulations e.g., ancestry or other factors. If 

not accounted for, it can confound genetic 

association studies, creating misleading links 

between genetic variants and traits. 

Statistical control Method to account for “confounding” variables, i.e. 

variables that can create apparent associations 

between a risk factor and an outcome when there 

is no true causal effect. Statistical techniques 

such as regression analysis aim to account for 

those confounding variables to minimise 

confounding and get closer to the true effect. 

Systematic review A review of the scientific literature using a 

structured and transparent method to collect, 

assess, and synthesise the evidence. 

Trio design or within-family 

trio design 

Genetic epidemiology method which involves 

using the child’s and both of their biological 

parents’ polygenic scores to predict a specific 

phenotype of interest. Combining those three 

polygenic scores in a single model allow us to 

statistically control the effect of each polygenic 

score for the two others. We can then isolate (i) 
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direct genetic transmission, which is indexed by 

the controlled effect of the child polygenic score in 

that joint model; (ii) and genetic nurture effect 

which is indexed by the effect of the parental 

polygenic scores in that joint model, which 

controls for genetic transmission via the child 

polygenic score. Also referred to as the ‘statistical 

control approach.’ 

Virtual parent A numerical score based on the set of alleles that 

were not passed on to the offspring from a 

specific parent, therefore capturing genetic 

nurture effects. 
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Appendix A: Meta-analytical approach  

This systematic review and meta-analysis was performed in line with well-known 

quality guidelines as reported in detail in the published paper (Wang et al., 2021). 

We conducted a literature search in July 2020 using following several literature 

databases.  

To estimate genetic nurture effects on educational outcomes, we included articles 

estimating genetic nurture in parent(s)-offspring samples using polygenic scores 

(PGS) for educational attainment (EA) since 2013, when the first EA genome-wide 

association study (GWAS) became available. Two authors independently screened 

titles and abstracts of all articles retrieved during the search before reviewing the full 

text of potentially eligible studies. 

To be included in the meta-analysis, studies had to meet the following criteria:  

• They assessed offspring educational attainment (for example, years of 

education or highest degree obtained) or educational achievement (national 

test scores or levels, school grades) in the general population. 

• Genetic factors were measured using PGSs for educational attainment. 

• They derived estimates for genetic nurture effects on education from, either 

studies using either the virtual parent (testing whether the PGSs calculated 

from parents’ non-transmitted alleles predict offspring educational outcomes) 

or trio design (calculating genome-wide polygenic scores and correcting for 

the effect of child’s genotype by analysing parental and children polygenic 

scores in the same statistical model). 

Quality assessment, data extraction, and effect size calculation  

Two of the authors independently assessed the methodological quality of each 

included study using an adapted version of the Newcastle-Ottawa scale (NOS21). 

Authors gave each study a score that reflected overall study quality, ranging from 0 

to 9 (see supplemental note 2.3 of the main paper for detailed scoring criteria and 

Table S3 for scores of included studies). Two of the authors independently extracted 

data for each study, including:  

• Publication characteristics (study name, first author, year). 

• Sample characteristics (cohort name, sample size, population source, 

ethnicity, sex distribution). 

• Study design (virtual parent or trio design). 

• Calculation of PGSs (the GWAS used to derive the PGS, PGS threshold, 

source/parent of origin of genotype, whether standardised). 

• Education-related outcomes assessed (educational outcome, outcome type, 

age at assessment, whether standardised). 
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• Effect size (estimation type, estimation, 95% CI or standard error of the 

estimation) 

• Confounding variables adjusted for.  

Where information was missing, original study authors were contacted to request the 

information.  

The two authors who extracted and coded the data had a high level of agreement 

(92.6% on quality assessment and 97.8% on data extraction).  

Statistical analysis 

Analyses were conducted in a statistical software called R with Metafor, a dedicated 

package for meta-analysis. To account for the fact that some studies reported 

multiple results originating from the same cohorts, thereby creating dependencies 

between estimates, we implemented adequate statistical models (Multilevel 

Random-Effects).  

Next, we went a step further and used a specific technique, meta-regression, to 

evaluate if certain characteristics (called moderators) of each study, like study design 

or how educational attainment was defined, might affect the overall results.  

We tested four main categorical moderators:  

1) Whether the parental PGS was constructed based on maternal, paternal, or 

the mixture of both parents’ genotypes,  

2) The type of analytic method used to estimate the genetic nurture effects 

(virtual parent, partial or full statistical control),  

3) The type of educational outcome assessed (educational attainment or 

educational achievement), and  

4) The specific GWAS summary statistics used to calculate the PGSs.  

We also evaluated how study characteristics might have influenced the effect sizes 

reported in the literature (i.e., methodological quality, sample size, and attrition in 

cohorts). To investigate the possible environmental pathways through which genetic 

nurture works, we examined how much the effects of genetic nurture were reduced 

when adjusting for parents' educational levels and family socioeconomic position 

(SEP). 
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Appendix B: Analysis of the ALSPAC cohort 

This study used data from the Avon Longitudinal Study of Parents and Children 

(ALSPAC), an ongoing population-based birth cohort study which follows pregnant 

women recruited in Avon (southwest England), their partners and their offspring, 

between 1991-1992 (Boyd et al., 2013; Fraser et al., 2013; Northstone et al., 2019). 

We are extremely grateful to all the families who took part in the ALSPAC study, the 

midwives for their help in recruiting them, and the whole ALSPAC team, which 

includes interviewers, computer and laboratory technicians, clerical workers, 

research scientists, volunteers, managers, receptionists and nurses. 

Genome wide genotyping data was generated by Sample Logistics and Genotyping 

Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of 

America) using support from 23andMe. 

The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the 

University of Bristol provide core support for ALSPAC. This publication is the work of 

the authors and will serve as guarantors for the contents of this paper 

Pregnant women resident in Avon, UK with expected dates of delivery between 1st 

April 1991 and 31st December 1992 were invited to take part in the study. Out of 

initial 14,541 pregnancies, 13,988 children were alive at 12 months and 85% of the 

eligible expectant mothers participated. Offspring and their primary carers were 

genotyped when children were 5 years old. At 7 years, eligible cases who had failed 

to join the study at the beginning were recontacted, which increased the sample size 

by 913 more children. The total sample size for analyses using any data collected 

after the age of seven is therefore 15,447 pregnancies, resulting in 15,658 foetuses. 

Of these 14,901 children were alive at 1 year of age.  

Additional information: 

• 14,203 unique mothers were initially enrolled in the study. 

• 14,833 unique women (G0 mothers) enrolled in ALSPAC as of September 

2021. 

• 12,113 G0 partners have been in contact with the study by providing data 

and/or formally enrolling when this started in 2010.  

• 3,807 G0 partners are currently enrolled. 

Ethical approval 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees. The approval code for this 

project is B3496. 

Informed consent for the use of data collected via questionnaires was obtained from 

participants following the recommendations of the ALSPAC Ethics and Law 
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Committee at the time, together with consent for biological samples in accordance 

with the Human Tissue Act (2004).  

At age 18, study children were sent 'fair processing' materials describing ALSPAC’s 

intended use of their health and administrative records and were given clear means 

to consent or object via a written form. Data were not extracted for participants who 

objected, or who were not sent fair processing materials. 

Phenotype Definitions 

The main outcomes of the study were offspring educational achievement throughout 

childhood and adolescence measured by their performance at five major Key Stages 

(1-5) of education in the UK at approximately 7, 11, 14, 16 and 18 years. Fine graded 

point scores of Key Stages were obtained from the UK National Pupil Database 

(NPD) through data linkage to the ALSPAC cohort.  

These official records represent the most accurate record of individual educational 

achievement available in the United Kingdom during compulsory schooling.  

To maximise consistency and sample size, we selected the following phenotypes as 

outcome:  

• For Key Stage 1, we used the prorated summary scores in reading, writing 

and mathematics. 

• For Key Stage 2, we calculated the sum score of the total marks achieved by 

the student in English, Maths and Science. 

• For Key Stage 3, we used the total point score. 

• For Key Stage 4, we used the total point score from General Certificate of 

Secondary Education (GCSE)/General National Vocational Qualification 

(GNVQ). 

• For Key Stage 5 we used the points score contribution made by A Levels.  

Scores were standardised to a mean of zero and a variance of one within each Key 

Stage. Please note that the study website contains details of all the data that is 

available through a fully searchable data dictionary and variable search tool: 

http://www.bristol.ac.uk/alspac/researchers/our-data/. 

Genotyping, Imputation, and Polygenic Scoring 

Genotype data was uploaded to the Michigan Imputation Server and imputed using 

1000G Phase 1 version 3 as the reference panel. Imputed genotypes were then 

filtered with PLINK 1.9 (Chang et al., 2015): duplicated SNPs, SNPs with 

missingness > 2% or minor allele frequency < 1%, or located in non-autosomal 

regions were removed.  

Individuals with missingness > 2%, HWE p < 1×10-6, heterozygosity > mean ± 3SD 

were also removed. We identified related individuals up to third-degree identified 

using KING 2.2.7 (Manichaikul et al., 2010) and randomly excluded one individual 

from each pair of relatives (e.g. siblings in the parental or offspring generation). The 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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sample was further filtered to only include families with genetic data available for 

complete trios (i.e., mother, father and child), resulting in a final sample of 3,228 

trios. Self-reported ethnicity at age 14 indicated that the majority of the sample 

identified as ‘white’ (87.5%). No trios were removed due to ancestry. All analyses 

were controlled for population stratification by including the first ten principal 

components of ancestry. The sample was filtered to include families with genetic 

data available for complete trios (i.e., mother, father, and child), resulting in a sample 

of 1,377 trios with genotype data available. No trios were removed due to ancestry. 

For the ALSPAC cohort, we calculated 25 polygenic scores (PGS) for traits in the 

domains of education, cognition, and socioeconomic position (Davies et al., 2018; 

Demange et al., 2021; Hill et al., 2019; J. J. Lee et al., 2018; Trampush et al., 2017); 

personality, reproductive and risk behaviours traits (Barban et al., 2016; Karlsson 

Linnér et al., 2019; Nagel et al., 2018; Turley et al., 2018); and psychiatric disorders 

(Demontis et al., 2019) (Grove et al., 2019; Howard et al., 2019; Pardinas et al., 

2018; Purves et al., 2019; Stahl et al., 2019). See Supplementary Note for complete 

description of the summary statistics used to calculate each PGS. Polygenic scores 

were computed using PRSice-2 for each trait (Choi & O'Reilly, 2019). SNPs were 

clumped to obtain variants in linkage equilibrium with an r2 > 0.1 within a 250 KB 

window and PRS were constructed across a range of pt (pt = 5e-8, 1e-6, 1e-5, 1e-4, 

1e-3, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5). We then performed a principal 

component analysis (PCA) on the resulting polygenic scores and used the first 

principal component in subsequent association tests. The PCA approach 

outperforms arbitrarily chosen p-value thresholds (Coombes et al., 2020). Polygenic 

scores were adjusted for population stratification by including the first ten principal 

components of ancestry and sex as fixed effects in the model. 

 

Statistical Analysis 

First, we assessed if the genetic factors for each parental trait (either via direct 

transmission or genetic nurture) played a role at all in children’s educational 

achievement across Key Stages 1-5. Next, we tested if maternal and paternal could 

be assumed to be equal in size, and if genetic effects varied across childhood and 

adolescence. The genetic effect of each parental trait was tested independently. We 

did this by defining different structural equation models and perform a stepwise 

model comparison. To make sure our findings were reliable, we used a statistical 

correction method due to multiple comparisons and chose the best fitting, most 

parsimonious model. 
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Appendix C: Analysis of the MCS cohort 

This study used data from the Millennium Cohort Study (MCS), a longitudinal study 

that follows a nationally representative cohort of children born in the UK between 

September 2000 and January 2002.  

The Economic and Social Research Council funds the Centre for Longitudinal 

Studies (CLS) Resource Centre (ES/W013142/1) which provides core support for the 

CLS cohort studies. While the CLS Resource Centre makes these data available, 

CLS does not bear any responsibility for the analysis or interpretation of these data 

by researchers. 

The CLS cohorts are only possible due to the commitment and enthusiasm of their 

participants, their time and contribution is gratefully acknowledged. 

The first data collection took place when cohort members were approximately 9 

months old. Cohort members and their primary carers were genotyped at age 14. In 

our study, we used questionnaire data collected when participants were 3, 5, 7 and 

14 years old, and genotype data from mother-father-child trios.  

To be entered into our analysis, participants must have phenotype data available for 

at least one sweep as well as genotype data. The numbers of trios at each wave with 

complete data were 2,907, 3,055, 3,051, and 3,203, respectively. 

The data collection for the MCS was approved by the UK National Health Service 

Research Ethics Committee. Written consent was obtained from all parents in the 

MCS at each survey. For more details, see Morosoli et al. (2024). 

Phenotype Definitions 

The two phenotypes and main outcomes of the study were externalising and 

internalising problems in childhood and adolescence as measured by the Strengths 

and Difficulties Questionnaire (SDQ; Goodman, 1997). The SDQ comprises 25 items 

grouped into four “difficulties” domains (hyperactivity/inattention, emotional, conduct, 

and peer problems) and one “strength” domain (prosocial behaviour), with scores 

having the same range across all age groups. The conduct and hyperactivity scales, 

and the emotional and peer problems scales can be combined to obtain a single 

externalising and internalising score, respectively (Goodman et al., 2010). These two 

sum scores were used as indicators of externalising and internalising difficulties. The 

SDQ was answered by parents at approximate ages 3, 5, 7, and 14 years. 

Genotyping, Imputation, and Polygenic Scoring 

Genotyping was performed using the Infinium Global Screening Array-24 v1.0. For 

more details on the collection of samples, DNA extraction methods and laboratory 

procedures see Shireby et al. (2024). Prior to imputation, single-nucleotide 

polymorphisms (SNPs) with high levels of missing data (>5%), Hardy-Weinberg 

equilibrium (HWE) p < 1e-6 or minor allele frequency <1% were excluded. Genotype 
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data was uploaded to the Michigan Imputation Server and imputed using 1000G 

Phase 1 version 3 as the reference panel. Imputed genotypes were then filtered with 

PLINK 1.9 (Chang et al., 2015): duplicated SNPs, SNPs with missingness > 2% or 

minor allele frequency < 1%, or located in non-autosomal regions were removed.  

Individuals with missingness > 2%, HWE p < 1×10-6, heterozygosity > mean ± 3SD 

were also removed. We identified related individuals up to third-degree identified 

using KING 2.2.7 (Manichaikul et al., 2010) and randomly excluded one individual 

from each pair of relatives (e.g. siblings in the parental or offspring generation). The 

sample was further filtered to only include families with genetic data available for 

complete trios (i.e., mother, father and child), resulting in a final sample of 3,228 

trios. Self-reported ethnicity at age 14 indicated that the majority of the sample 

identified as ‘white’ (87.5%). No trios were removed due to ancestry. All analyses 

were controlled for population stratification by including the first ten principal 

components of ancestry. 

To generate two quasi-independent components of educational attainment, we 

calculated polygenic scores for educational attainment and cognitive performance 

(henceforth Cog) using GWAS summary statistics from James J. Lee et al. (2018), 

and the non-cognitive component of educational attainment (henceforth NonCog) 

from Demange et al. (2021), mirroring the procedure followed by Demange and 

collaborators, which supports the logic of the present study of investigating 

subcomponents of educational attainment. That is, summary statistics for NonCog 

were generated by conducting a GWAS by subtraction removing the effect of 

cognitive performance and educational attainment, interpreting the residuals as 

noncognitive skills (Demange et al., 2021).  

Polygenic scores were calculated using LDPred2 (Privé et al., 2020), a Bayesian 

method to derive polygenic scores using information on the genetic architecture of a 

trait, and on Linkage Disequilibrium (LD) obtained from a reference panel. We 

followed recommended quality control guidelines for LDPred2 and variants were 

restricted to those included in an extended HapMap3 set (Privé et al., 2023). The 

reference LD panel for the calculation of polygenic scores was UK Biobank and we 

used the precomputed LD matrices provided by Privé et al. (2023). Polygenic scores 

were generated by using the option ‘LDpred2-auto’ and standardised.  

Statistical Analysis 

As a preliminary step, we tested for differences across sex and ages at data 

collection for each outcome using independent samples t-tests and within-subjects 

one-way ANOVA as implemented in the lme4 package (Bates et al., 2015) in R 

v4.4.1 (R Development Core Team, 2024). For the polygenic score analyses, 

externalising and internalising sum scores were standardised within age groups. We 

modelled the effect of parental and child polygenic score effects on offspring’s 

outcomes using structural equation models implemented in the lavaan R-package 

(Rosseel, 2012). We modelled the effect of each family member’s polygenic score on 
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the phenotype jointly, thus decomposing associations between parental polygenic 

scores on offspring phenotypes into genetic transmission or genetic nurture effects 

(see Figure 2, page 13). 

Polygenic scores were adjusted for population stratification by including the first ten 

principal components of ancestry, and for sex including them as fixed effects. 

Missing data were handled using Full Information Maximum Likelihood estimation 

and additional power calculations were conducted for our polygenic score analyses. 

We followed a three-step process to address our research questions. First, we 

estimated two models where the genetic transmission and genetic nurture effects of 

(a) educational attainment, or (b) Cog and NonCog on externalising and internalising 

sum scores – modelled together to account for their correlated developmental 

trajectories – were allowed to differ for mother and fathers and time points (base 

model). Note that Cog and NonCog polygenic scores were modelled together to 

account for the residual correlation between the two polygenic scores.  

We then tested if both genetic transmission and genetic nurture estimates effects 

could be set to zero (i.e., null model) without a significant worsening of model fit, 

providing an omnibus test for genetic effects. Second, base models were compared 

against two restricted models, where either (a) all coefficients were allowed to vary 

across time but maternal and paternal coefficients were constrained to be equal 

(Model 1 or time-varying model); and (b) coefficients for maternal and paternal 

genetic nurture effects were allowed to differ but all coefficients were constrained to 

be equal across time points (Model 2 or parent-specific model).  

Model comparison was conducted separately for each outcome using likelihood-ratio 

tests. We corrected for false discovery rate due to testing multiple hypothesis (i.e., 

model comparison) using the Benjamini-Hochberg procedure as implemented in the 

stats package (R Development Core Team, 2024) with a significance threshold q = 

0.05. Multiple testing correction was applied within each set of comparisons: 5 tests 

for educational attainment, and 9 tests when Cog and NonCog were combined. In 

the absence of statistically significant differences in goodness of fit, the most 

parsimonious model was preferred.  

Finally, we calculated standardised beta coefficients and 95% confidence intervals 

for genetic transmission and genetic nurture effects for educational attainment, Cog 

and NonCog on externalising and internalising sum scores for the best fitting model.  
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