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IntroductionIntroduction
In 2007, the Nuffield Foundation commissioned a team from the University of Oxford to review
the available research literature on how children learn mathematics. The resulting review is
presented in a series of eight papers, the first seven of which are summarised here.  

Papers 2 to 5 focus mainly on mathematics relevant to primary schools (pupils to age 11 years),
while papers 6 and 7 consider aspects of mathematics in secondary schools. Paper 1 is the
Overview, and Paper 8, not included here, is the Methodological appendix. 

Full versions of the 8 papers, together with an Introduction and summary of findings, are available 
to download from our website, www.nuffieldfoundation.org

The review as a whole illuminates important aspects of mathematics learning from the
perspectives of educational psychology and practice. It identifies important issues of significance 
to policy makers and practitioners as well as identifying significant gaps in our evidence base.

We are grateful to the authors for their commitment to this task and for producing such a
comprehensive analysis of the extensive literature in this important field. We welcome the review
and are confident it will usefully inform continuing debates about how best to improve curriculum

design, teaching and learning for all students of elementary mathematics.

Anthony Tomei

Director, Nuffield Foundation

About the authors
Terezinha Nunes is Professor of Educational Studies at the University of Oxford. 
Peter Bryant is Senior Research Fellow in the Department of Education, University of Oxford.
Anne Watson is Professor of Mathematics Education at the University of Oxford.

About the Nuffield Foundation
The Nuffield Foundation is an endowed charitable trust established in 1943 by William Morris
(Lord Nuffield), the founder of Morris Motors, with the aim of advancing social well being. We
fund research and practical experiment and the development of capacity to undertake them;
working across education, science, social science and social policy. While most of the Foundation’s
expenditure is on responsive grant programmes we also undertake our own initiatives.
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Aims
Our aim in the review is to present a synthesis of research on mathematics learning by

children from the age of five to the age of sixteen years and to identify the issues that are

fundamental to understanding children’s mathematics learning. In doing so, we concentrated

on three main questions regarding key understandings in mathematics. 

• What insights must students have in order to understand basic mathematical concepts?

• What are the sources of these insights and how does informal mathematics knowledge 

relate to school learning of mathematics?

• What understandings must students have in order to build new mathematical ideas using

basic concepts?

PAPER 1:
Overview
By Terezinha Nunes, Peter Bryant and Anne Watson, University of Oxford 
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Theoretical framework
While writing the review, we concluded that there are two distinct types of theory about how
children learn mathematics. 

Explanatory theories set out to explain how children’s mathematical thinking and knowledge
change. These theories are based on empirical research on children’s solutions to mathematical
problems as well as on experimental and longitudinal studies. Successful theories of this sort
should provide insight into the causes of children’s mathematical development and worthwhile
suggestions about teaching and learning mathematics. 

Pragmatic theories set out to investigate what children ought to learn and understand and also
identify obstacles to learning in formal educational settings. Pragmatic theories are usually not
tested for their consistency with empirical evidence, nor examined for the parsimony of their
explanations vis-à-vis other existing theories; instead they are assessed in multiple contexts for
their descriptive power, their credibility and their effectiveness in practice.

Our starting point in the review is that children need to learn about quantities and the relations
between them and about mathematical symbols and their meanings. These meanings are based 
on sets of relations. Mathematics teaching should aim to ensure that students’ understanding of
quantities, relations and symbols go together.

Conclusions
This theoretical approach underlies the six main sections of the review. We now summarise the
main conclusions of each of these sections. 

Whole numbers
• Whole numbers represent both quantities and relations between quantities, such as

differences and ratio. Primary school children must establish clear connections between
numbers, quantities and relations.

• Children’s initial understanding of quantitative relations is largely based on correspondence.
One-to-one correspondence underlies their understanding of cardinality, and one-to-many
correspondence gives them their first insights into multiplicative relations. Children should be
encouraged to think of number in terms of these relations.

• Children start school with varying levels of ability in using different action schemes to solve
arithmetic problems in the context of stories. They do not need to know arithmetic facts to
solve these problems: they count in different ways depending on whether the problems they 
are solving involve the ideas of addition, subtraction, multiplication or division.

• Individual differences in the use of action schemes to solve problems predict children’s
progress in learning mathematics in school.

• Interventions that help children learn to use their action schemes to solve problems lead to
better learning of mathematics in school.

• It is more difficult for children to use numbers to represent relations than to represent quantities. 
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Implications for the classroom
Teaching should make it possible for children to:

• connect their knowledge of counting with their knowledge of quantities
• understand additive composition and one-to-many correspondence
• understand the inverse relation between addition and subtraction
• solve problems that involve these key understandings
• develop their multiplicative understanding alongside additive reasoning.

Implications for further research
Long-term longitudinal and intervention studies with large samples are needed to support curriculum
development and policy changes aimed at implementing these objectives. There is also a need for
studies designed to promote children’s competence in solving problems about relations. 

Fractions
• Fractions are used in primary school to represent quantities that cannot be represented by 

a single whole number. As with whole numbers, children need to make connections between
quantities and their representations in fractions in order to be able to use fractions meaningfully.

• Two types of quantities that are taught in primary school must be represented by fractions.
The first involves measurement: if you want to represent a quantity by means of a number
and the quantity is smaller than the unit of measurement, you need a fraction; for example, 
a half cup or a quarter inch. The second involves division: if the dividend is smaller than the
divisor, the result of the division is represented by a fraction; for example, three chocolates
shared among four children. 

• Children use different schemes of action in these two different situations. In division situations,
they use correspondences between the units in the numerator and the units in the
denominator. In measurement situations, they use partitioning.

• Children are more successful in understanding equivalence of fractions and in ordering
fractions by magnitude in situations that involve division than in measurement situations.

• It is crucial for children’s understanding of fractions that they learn about fractions in both types
of situation: most do not spontaneously transfer what they learned in one situation to the other. 

• When a fraction is used to represent a quantity, children need to learn to think about how
the numerator and the denominator relate to the value represented by the fraction. They
must think about direct and inverse relations: the larger the numerator, the larger the quantity,
but the larger the denominator, the smaller the quantity.

• Like whole numbers, fractions can be used to represent quantities and relations between
quantities, but they are rarely used to represent relations in primary school. Older students
often find it difficult to use fractions to represent relations.

Implications for the classroom
Teaching should make it possible for children to:

• use their understanding of quantities in division situations to understand equivalence and
order of fractions

• make links between different types of reasoning in division and measurement situations
• make links between understanding fractional quantities and procedures
• learn to use fractions to represent relations between quantities, as well as quantities.
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Implications for further research
Evidence from experimental studies with larger samples and long-term interventions in the
classroom are needed to establish how division situations relate to learning fractions. Investigations
on how links between situations can be built are needed to support curriculum development and
classroom teaching.

There is also a need for longitudinal studies designed to clarify whether separation between
procedures and meaning in fractions has consequences for further mathematics learning.

Given the importance of understanding and representing relations numerically, studies that
investigate under what circumstances primary school students can use fractions to represent
relations between quantities, such as in proportional reasoning, are urgently needed.

Relations and their mathematical representation
• Children have greater difficulty in understanding relations than in understanding quantities. 

This is true in the context of both additive and multiplicative reasoning problems. 

• Primary and secondary school students often apply additive procedures to solve multiplicative
problems and multiplicative procedures to solve additive problems. 

• Teaching designed to help students become aware of relations in the context of additive
reasoning problems can lead to significant improvement.

• The use of diagrams, tables and graphs to represent relations in multiplicative reasoning
problems facilitates children’s thinking about the nature of the relations between quantities. 

• Excellent curriculum development work has been carried out to design programmes that help
students develop awareness of their implicit knowledge of multiplicative relations. This work
has not been systematically assessed so far.

• An alternative view is that students’ implicit knowledge should not be the starting point for
students to learn about proportional relations; teaching should focus on formalisations rather
than informal knowledge and only later seek to connect mathematical formalisations with
applied situations.This alternative approach has also not been systematically assessed yet.

• There is no research that compares the results of these diametrically opposed ideas.

Implications for the classroom
Teaching should make it possible for children to:

• distinguish between quantities and relations
• become explicitly aware of the different types of relations in different situations
• use different mathematical representations to focus on the relevant relations in specific

problems
• relate informal knowledge and formal learning.

Implications for further research
Evidence from experimental and long-term longitudinal studies is needed on which approaches 
to making students aware of relations in problem situations improve problem solving. A study
comparing the alternative approaches – starting from informal knowledge versus starting from
formalisations – would make a significant contribution to the literature.
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Space and its mathematical representation
• Children come to school with a great deal of informal and often implicit knowledge about

spatial relations. One challenge in mathematical education is how best to harness this
knowledge in lessons about space.

• This pre-school knowledge of space is mainly relational. For example, children use a stable
background to remember the position and orientation of objects and lines.

• Measuring length and area poses particular problems for children, even though they are able
to understand the underlying logic of measurement. Their difficulties concern iteration of
standard units and the need to apply multiplicative reasoning to the measurement of area.

• From an early age children are able to extrapolate imaginary straight lines, which allows 
them to learn how to use Cartesian co-ordinates to plot specific positions in space with little
difficulty. However, they need help from teachers on how to use co-ordinates to work out the
relation between different positions.

• Learning how to represent angle mathematically is a hard task for young children, even though
angles are an important part of their everyday life. Initially children are more aware of angle in
the context of movement (turns) than in other contexts. They need help from to teachers to
be able to relate angles across different contexts. 

• An important aspect of learning about geometry is to recognise the relation between
transformed shapes (rotation, reflection, enlargement). This can be difficult, since children’s
preschool experiences lead them to recognise the same shapes as equivalent across such
transformations, rather than to be aware of the nature of the transformation. 

• Another aspect of the understanding of shape is the fact that one shape can be transformed
into another by addition and subtraction of its subcomponents. For example, a parallelogram
can be transformed into a rectangle of the same base and height by the addition and
subtraction of equivalent triangles. Research demonstrates a danger that children learn 
these transformations as procedures without understanding their conceptual basis.

Implications for the classroom
Teaching should make it possible for children to:

• build on spatial relational knowledge from outside school
• relate their knowledge of relations and correspondence to the conceptual basis of measurement
• iterate with standard and non-standard units
• understand the difference between measurements which are/are not multiplicative
• relate co-ordinates to extrapolating imaginary straight lines
• distinguish between scale enlargements and area enlargements.

Implications for further research
There is a serious need for longitudinal research on the possible connections between children’s
pre-school spatial abilities and how well they learn about geometry at school. 

Psychological research is needed on: children’s ability to make and understand transformations and
the additive relations in compound shapes; the exact cause of children’s difficulties with iteration;
how transitive inference, inversion and one-to-one correspondence relate to problems with
geometry, such as measurement of length and area. 
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There is a need for intervention studies on methods of teaching children to work out the relation
between different positions, using co-ordinates. 

Algebra
• Algebra is the way we express generalisations about numbers, quantities, relations and functions.

For this reason, good understanding of connections between numbers, quantities and relations is
related to success in using algebra. In particular, understanding that addition and subtraction are
inverses, and so are multiplication and division, helps students understand expressions and solve
equations.

• To understand algebraic symbolisation, students have to (a) understand the underlying
operations and (b) become fluent with the notational rules. These two kinds of learning, 
the meaning and the symbol, seem to be most successful when students know what is being
expressed and have time to become fluent at using the notation.

• Students have to learn to recognise the different nature and roles of letters as: unknowns,
variables, constants and parameters, and also the meanings of equality and equivalence. These
meanings are not always distinct in algebra and do not relate unambiguously to arithmetical
understandings.

• Students often get confused, misapply, or misremember rules for transforming expressions and
solving equations. They often try to apply arithmetical meanings inappropriately to algebraic
expressions. This is associated with over-emphasis on notational manipulation, or on
‘generalised arithmetic’, in which they may try to get concise answers.

Implications for the classroom
Teaching should make it possible for children to:

• read numerical and algebraic expressions relationally, rather than as instructions to calculate 
(as in substitution)

• describe generalisations based on properties (arithmetical rules, logical relations, structures) 
as well as inductive reasoning from sequences

• use symbolism to represent relations
• understand that letters and ‘=’ have a range of meanings
• use hands-on ICT to relate representations
• use algebra purposefully in multiple experiences over time
• explore and use algebraic manipulation software.

Implications for further research
We need to know how explicit work on understanding relations between quantities enables
students to move successfully between arithmetical to algebraic thinking. 

Research on how expressing generality enables students to use algebra is mainly in small-scale
teaching interventions, and the problems of large-scale implementation are not so well reported.
We do not know the longer-term comparative effects of different teaching approaches to early
algebra on students’ later use of algebraic notation and thinking.

There is little research on higher algebra, except for teaching experiments involving functions.
How learners synthesise their knowledge of elementary algebra to understand polynomial
functions, their factorisation and roots, simultaneous equations, inequalities and other algebraic
objects beyond elementary expressions and equations is not known.
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There is some research about the use of symbolic manipulators but more needs to be learned
about the kinds of algebraic expertise that develops through their use.

Modelling, solving problems and learning 
new concepts in secondary mathematics
Students have to be fluent in understanding methods and confident about using them to know
why and when to apply them, but such application does not automatically follow the learning of
procedures. Students have to understand the situation as well as to be able to call on a familiar
repertoire of facts, ideas and methods.

Students have to know some elementary concepts well enough to apply them and combine 
them to form new concepts in secondary mathematics. For example, knowing a range of
functions and/or their representations seems to be necessary to understand the modelling
process, and is certainly necessary to engage in modelling. Understanding relations is necessary 
to solve equations meaningfully.

Students have to learn when and how to use informal, experiential reasoning and when to 
use formal, conventional, mathematical reasoning. Without special attention to meanings, many
students tend to apply visual reasoning, or be triggered by verbal cues, rather than analyse
situations to identify variables and relations.

In many mathematical situations in secondary mathematics, students have to look for relations
between numbers, and variables, and relations between relations, and properties of objects, and
know how to represent them.

Implications for the classroom
Teaching should make it possible for children to:

• learn new abstract understandings, which is neither achieved through learning procedures, nor
through problem-solving activities, without further intervention

• use their obvious reactions to perceptions and build on them, or understand conflicts with them
• adapt to new meanings and develop from earlier methods and conceptualizations over time
• understand the meaning of new concepts ‘know about’, ‘know how to’, and ‘know how to use’
• control switching between, and comparing, representations of functions in order to

understand them
• use spreadsheets, graphing tools, and other software to support application and authentic use 

of mathematics.

Implications for further research
Existing research suggests that where contextual and exploratory mathematics, integrated through
the curriculum, do lead to further conceptual learning it is related to conceptual learning being a
rigorous focus for curriculum and textbook design, and in teacher preparation, or in specifically
designed projects based around such aims. There is therefore an urgent need for research to identify
the key conceptual understandings for success in secondary mathematics. There is no evidence to
convince us that the new U.K. curricula will necessarily lead to better conceptual understanding of
mathematics, either at the elementary level which is necessary to learn higher mathematics, or at
higher levels which provide the confidence and foundation for further mathematical study.

We need to understand the ways in which students learn new ideas in mathematics that depend
on combinations of earlier concepts, in secondary school contexts, and the characteristics of
mathematics teaching at higher secondary level which contribute both to successful conceptual
learning and application of mathematics.
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Common themes 
We reviewed different areas of mathematical activity, and noted that many of them involve common
themes, which are fundamental to learning mathematics: number, logical reasoning, reflection on
knowledge and tools, understanding symbol systems and mathematical modes of enquiry.

Number
Number is not a unitary idea, which children learn in a linear fashion. Number develops in
complementary strands, sometimes with discontinuities and changes of meaning. Emphasis on
procedures and manipulation with numbers, rather than on understanding the underlying relations
and mathematical meanings, can lead to over-reliance and misapplication of methods in arithmetic,
algebra, and problem-solving. For example, if children form the idea that quantities are only equal
if they are represented by the same number, a principle that they could deduce from learning to
count, they will have difficulty understanding the equivalence of fractions. Learning to count and to
understand quantities are separate strands of development. Teaching can play a major role in
helping children co-ordinate these two forms of knowledge without making counting the only
procedure that can be used to think about quantities. 

Successful learning of mathematics includes understanding that number describes quantity; being
able to make and use distinctions between different, but related, meanings of number ; being
able to use relations and meanings to inform application and calculation; being able to use
number relations to move away from images of quantity and use number as a structured,
abstract, concept.

Logical reasoning
The evidence demonstrates beyond doubt that children must rely on logic to learn mathematics
and that many of their difficulties are due to failures to make the correct logical move that would
have led them to the correct solution. Four different aspects of logic have a crucial role in learning
about mathematics.

The logic of correspondence (one-to-one and one-to-many correspondence) The extension of the use
of one-to-one correspondence from sharing to working out the numerical equivalence 
or non-equivalence of two or more spatial arrays is a vastly important step in early mathematical
learning. Teaching multiplication in terms of one-to-many correspondence is more effective than
teaching children about multiplication as repeated addition.

The logic of inversion Longitudinal evidence shows that understanding the inverse relation 
between addition and subtraction is a strong predictor of children’s mathematical progress. A flexible
understanding of inversion is an essential element in children’s geometrical reasoning as well. The
concept of inversion needs a great deal more prominence than it has now in the school curriculum.   

The logic of class inclusion and additive composition Class inclusion is the basis of the understanding
of ordinal number and the number system. Children’s ability to use this form of inclusion in
learning about number and in solving mathematical problems is at first rather weak, and needs
some support.

The logic of transitivity All ordered series, including number, and also forms of measurement
involve transitivity (a > c if a > b and b > c: a = c if a = b and b = c). Learning how to use
transitive relations in numerical measurements (for example, of area) is difficult. One reason is 
that children often do not grasp the importance of iteration (repeated units of measurement). 
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The results of longitudinal research (although there is not an exhaustive body of such work)
support the idea that children’s logic plays a critical part in their mathematical learning.

Reflection on knowledge and tools
Children need to re-conceptualise their intuitive models about the world in order to access the
mathematical models that have been developed in the discipline. Some of the intuitive models
used by children lead them to appropriate mathematical problem solving, and yet they may not
know why they succeeded. Implicit models can interfere with problem solving when students rely
on assumptions that lead them astray.

The fact that students use intuitive models when learning mathematics, whether the teacher
recognises the models or not, is a reason for helping them to develop an awareness of their
models. Students can explore their intuitive models and extend them to concepts that are less
intuitive, more abstract. This pragmatic theory has been shown to have an impact in practice.

Understanding symbol systems
Systems of symbols are human inventions and thus are cultural tools that have to be taught.
Mathematical symbols are human-made tools that improve our ability to control and adapt to 
the environment. Each system makes specific cognitive demands on the learner, who has to
understand the systems of representation and relations that are being represented; for example
place-value notation is based on additive composition, functions depict covariance. Students 
can behave as if they understand how the symbols work while they do not understand them
completely: they can learn routines for symbol manipulation that remain disconnected from
meaning. This is true of rational numbers, for example. 

Students acquire informal knowledge in their everyday lives, which can be used to give meaning
to mathematical symbols learned in the classroom. Curriculum development work that takes
this knowledge into account is not as widespread as one would expect given discoveries from
past research.

Mathematical modes of enquiry
Some important mathematical modes of enquiry arise in the topics covered in this synthesis. 

Comparison helps us make new distinctions and create new objects and relations  Comparisons are
related to making distinctions, sorting and classifying; students need to learn to make these
distinctions based on mathematical relations and properties, rather than perceptual similarities.

Reasoning about properties and relations rather than perceptions  Throughout mathematics,
students have to learn to interpret representations before they think about how to respond.
They need to think about the relations between different objects in the systems and schemes
that are being represented. 

Making and using representations Conventional number symbols, algebraic syntax, coordinate
geometry, and graphing methods, all afford manipulations which might otherwise be impossible.
Coordinating different representations to explore and extend meaning is a fundamental
mathematical skill. 

Action and reflection-on-action In mathematics, actions may be physical manipulation, or symbolic
rearrangement, or our observations of a dynamic image, or use of a tool. In all these contexts, we
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observe what changes and what stays the same as a result of actions, and make inferences about
the connections between action and effect. 

Direct and inverse relations  It is important in all aspects of mathematics to be able to construct
and use inverse reasoning. As well as enabling more understanding of relations between quantities,
this also establishes the importance of reverse chains of reasoning throughout mathematical
problem-solving, algebraic and geometrical reasoning. 

Informal and formal reasoning At first young children bring everyday understandings into school
and mathematics can allow them to formalise these and make them more precise. Mathematics
also provides formal tools, which do not describe everyday experience, but enable students to
solve problems in mathematics and in the world which would be unnoticed without a
mathematical perspective. 

Epilogue
We have made recommendations about teaching and learning, and hope to have made the
reasoning behind these recommendations clear to educationalists (in the extended review). We
have also recognised that there are weaknesses in research and gaps in current knowledge, some
of which can be easily solved by research enabled by significant contributions of past research.
Other gaps may not be so easily solved, and we have described some pragmatic theories that are
or can be used by teachers when they plan their teaching. Classroom research stemming from the
exploration of these theories can provide new insights for further research in the future, alongside
longitudinal studies which focus on learning mathematics from a psychological perspective. 
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Headlines
• Whole numbers are used in primary school to represent quantities and relations. It is 

crucial for children’s success in learning mathematics in primary school to establish clear

connections between numbers, quantities and relations.

• Using different schemes of action, such as setting objects in correspondence, children can

judge whether two quantities are equivalent, and if they are not, make judgements about

their order of magnitude. These insights are used in understanding the number system

beyond simply producing a string of number words in a fixed order. It takes children some

time to make links between their understanding of quantities and their knowledge of

number.

• Children start school with varying levels of ability in using different action schemes to solve

arithmetic problems in the context of stories. They do not need to know arithmetic facts

to solve these problems: they count in different ways depending on whether the problems

they are solving involve the ideas of addition, subtraction, multiplication or division.

• Individual differences in the use of action schemes to solve problems predict children’s

progress in learning mathematics in school.

• Interventions that help children learn to use their action schemes to solve problems lead

to better learning of mathematics in school.

• It is considerably more difficult for children to use numbers to represent relations than

to represent quantities. Understanding relations is crucial for their further development

in mathematics in school.

PAPER 2: 
Understanding 
extensive quantities
and whole numbers
By Terezinha Nunes and Peter Bryant, University of Oxford 



Understanding extensive 
quantities and whole numbers

In children’s everyday lives and before they start school, they have experiences of manipulating and
comparing quantities. For example, even at age four, many children can share sweets fairly between
two recipients by using correspondences: they share giving one-for-you, one-for-me, until there are
no sweets left. They do sometimes make mistakes but they know that, when the sharing is done
fairly, the two people will have the same amount of sweets at the end. Even younger children know
some things about quantities: they know that if you add sweets to a group of sweets, there will be
more sweets there, and if you take some away, there will be fewer. However, they might not know
that if you add a certain number and take away the same number, there will be just as many
sweets as there were before.

At the same time that young children are developing these ideas about quantities, they are often
learning to count. They learn to say the sequence of number words in the right order, they know
that each object that they are counting must be counted once and only once, and that it does not
matter if you count a row of sweets from left to right or from right to left, you should get to the
same number. 

Four-year-olds are thus amazing learners of mathematics. But they lack one thing which is crucially
important: they do not at first make connections between their understanding of quantities and
their knowledge of numbers. So if you ask a four-year-old, who just shared some sweets fairly
between two dolls, to count the sweets that one doll has and then tell you, without counting, how
many sweets the other doll has, the majority (about 60%) will tell you that they do not know.
Knowing that the dolls have the same quantity is not sufficient to know that if one has 8 sweets,
the other one has 8 sweets also, i.e. has the same number.

Quantities and numbers are not the same thing. We can use numbers as measures of quantities,
but we can think about quantities without actually having a measure for them. Until children can
understand the connections between numbers and quantities, they cannot use their knowledge 
of quantities to support their understanding of numbers and vice versa. Because the connections
between quantities and numbers are many and varied, learning about these connections could take
three to four years in primary school.

An important link that children must make between number and quantity is the link between the
order of number words in the counting sequence and the magnitude of the quantity represented.
How do children come to understand that the any number in the counting sequence is equal to
the preceding number plus 1? 

Different explanations have been proposed in the literature. One is that they simply see that
magnitude increases as they count. But this explanation does not work well: our perception of
magnitude is approximate and knowing that any number is equal to its predecessor plus 1 is a 
very precise piece of knowledge. A second explanation is that children use perception, language 
and inferences together to reach this understanding. Young children discriminate well, for example,
one puppet from two puppets and two puppets from three puppets. Because they know these
differences precisely, they put these two pieces of information together, and learn that two is one
more than one, and three is one more than two. They then make the inference that all numbers in
the counting sequence are equal to the predecessor plus one. But this sort of generalisation could
not be stretched into helping children understand that any number is also equal to the last-but-one
in the sequence plus 2. This process of putting together perception with language and then
generalising is an explanation for only the n + 1 idea; it would be much better if we could have a
more general explanation of how children understand the connection between quantities and the
number sequence.

Key understandings in mathematics learning 15



The third explanation for how children connect their knowledge of quantities with the
magnitude of numbers in the counting sequence is that children’s schemes of action play the
most important part in this development. The actions of adding and taking away help them
understand part–whole relations. When they can link their understanding of part–whole 
relations with counting, they will understand many things about relations between numbers. 
A critical change in young children’s behaviour when they add two sets is from ‘count all’ to
‘count on’. If they know that they have 5 sweets, and you add 4 to the 5, they could either start
from 1 and count all the sweets (count all) or they could point to the 5, and count on from
there. ‘Count on’ is a sign that the children have linked their knowledge of part–whole relations
with the counting sequence: they have understood the additive composition number. This
explanation works for the relation between a number and its immediate predecessor and any 
of its predecessors. It is supported by much research that shows that counting on is a sign of
abstraction in part–whole relations, which opens the way for children to solve many other
problems: they can add a quantity to an invisible set, count coins of different denominations to
form a single total, and are ready to learn to use place value to represent numbers in writing.

Adding and subtracting elements to sets also give children the opportunity to understand the
inverse relation between addition and subtraction. This insight is not gained in an all-or-nothing
fashion: children first apply it only to quantities and later on to number also. The majority of five-
year-olds realises that if you add 3 sweets to a set of sweets and then take the same sweets away,
the number of sweets in the set remains the same. However, many of these children will not realise
that if you add 3 sweets to the set and then take 3 other sweets away, the number of sweets is still
the same. They see that adding and taking away the same quantity leaves the original quantity the
same but this does not immediately mean to them that adding and taking away the same number
also leaves the original number the same. Research shows that the step from understanding the
inverse relation between addition and subtraction of quantities is a useful start if one wants to
teach children about the inverse relation between addition and subtraction of number.

Adding, taking away and understanding part–whole relations form one part of the story of what
children know about quantities and numbers in the early years of primary school. They relate to
how additive reasoning develops. The other part of the story is surprising to many people: children
also know quite a lot about multiplicative reasoning when they start school. 

Children use two different schemes of action to solve multiplication and division problems before they
are taught about these operations in school: they use one-to-many correspondence and sharing. If five-
and six-year-olds are shown, for example, four little houses in a row, told that they should imagine that
in each live three dogs, and asked how many dogs live in the street, the majority can say the correct
number. Many children will point three times to each house and count in this way until they complete
the counting at the fourth house. They are not multiplying: they are solving the problem using one-to-
many correspondence. Children can also share objects to recipients and answer problems about
division. They do not know the arithmetic operations, but they can use their reasoning to count in
different ways and solve the problem. So children manipulate quantities using multiplicative reasoning
and solve problems before they learn about multiplication and division in school.

If children are assessed in their understanding of the inverse relation between addition and
subtraction, of additive composition, and of one-to-many correspondence in their first year of
school, this provides us with a good way of anticipating whether they will have difficulties in learning
mathematics in school. Children who do well in these assessments go on to attain better results 
in mathematics assessments in school. Those who do not do well can improve their prospects
through early intervention. Children who received specific instruction on these relations between
quantities and how to use them to solve problems did significantly better than a similar group who
did not receive such instruction. 
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Finally, many studies have used story problems to investigate which uses of additive reasoning are
easier and which are more difficult for children of primary school age. Two sorts of difficulties have
been identified. 

The first relates to the need to understand that addition and subtraction are the inverse of each
other. One story that requires this understanding is: Ali had some Chinese stamps in his collection
and his grandfather gave him 2; now he has 8; how many stamps did he have before his 
grandfather gave him the 2 stamps? This problem exemplifies a situation in which a quantity
increases (the grandfather gave him 2 stamps) but, because the information about the original
number in his collection is missing, the problem is not solved by an addition but rather by a
subtraction. The problem would also be an inverse problem if Ali had some Chinese stamps in his
collection and gave 2 to his grandfather, leaving his collection with 6. In this second problem, there
is a decrease in the quantity but the problem has to be solved by an increase in the number, in
order to get us back to Ali’s collection before he gave 2 stamps away. There is no controversy in
the literature: inverse problems are more difficult than direct problems, irrespective of whether the
arithmetic operation that is used to solve it is addition or subtraction. 

The second difficulty depends on whether the numbers in the problem are all about quantities or
whether there is a need to consider a relation between quantities. In the two problems about Ali’s
stamps, all the numbers refer to quantities. An example of a problem involving relations would be:
In Ali’s class there are 8 boys and 6 girls; how many more boys than girls in Ali’s class? (Or how
many fewer girls than boys in Ali’s class?). The number 2 here refers neither to the number of boys
nor to the number of girls: it refers to the relation (the difference) between number of boys and
girls. A difference is not a quantity: it is a relation. Problems that involve relations are more difficult
than those that involve quantities. It should not be surprising that relations are more difficult to deal
with in numerical contexts than quantities: the majority, if not all, the experiences that children have
with counting have to do with finding a number to represent a quantity, because we count things
and not relations between things. We can re-phrase problems that involve relations so that all the
numbers refer to quantities. For example, we could say that the boys and girls need to find a
partner for a dance; how many boys won’t be able to find a girl to dance with? There are no
relations in this latter problem, all the numbers refer to quantities. This type of problem is
significantly easier. So it is difficult for children to use numbers to represent relations. This could be
one step that teachers in primary school want to help their children take, because it is a difficult
move for every child.
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Research about mathematical
learning

Children’s pre-school knowledge of
quantities and counting develops
separately.

When children start school, they can solve
many different problems using schemes of
action in coordination with counting,
including multiplication and division
problems. 

Three logical-mathematical reasoning
principles have been identified in research,
which seem to be causally related to
children’s later attainment in mathematics 
in primary school. Individual differences in
knowledge of these principles predict later
achievement and interventions reduce
learning difficulties.

Children’s ability to solve word problems
shows that two types of problem cause
difficulties for children: those that involve
the inverse relation between addition and
subtraction and those that involve thinking
about relations.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of the
importance of helping children make connections
between their understanding of quantities and
their knowledge of counting.

Teaching The linear view of development,
according to which understanding addition
precedes multiplication, is not supported by
research. Teachers should be aware of children’s
mathematical reasoning, including their ability to
solve multiplication and division problems, and use
their abilities for further learning.

Teaching A greater emphasis should be given 
in the curriculum to promoting children’s
understanding of the inverse relation between
addition and subtraction, additive composition, and
one-to-many correspondence. This would help
children who start school at risk for difficulties in
learning mathematics to make good progress in 
the first years.
Research Long-term longitudinal and intervention
studies with large samples are needed before
curriculum and policy changes can be proposed.
The move from the laboratory to the classroom
must be based on research that identifies potential
difficulties in scaling up successful interventions.

Teaching Systematic use of problems involving
these difficulties followed by discussions in the
classroom would give children more opportunities
for making progress in using mathematics in
contexts with which they have difficulty.
Research There is a need for intervention
studies designed to promote children’s
competence in solving problems about relations.
Brief experimental interventions have paved the
way for classroom-based research but large-scale
studies are needed.

Recommendations
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Headlines
• Fractions are used in primary school to represent quantities that cannot be represented

by a single whole number. As with whole numbers, children need to make connections

between quantities and their representations in fractions in order to be able to use

fractions meaningfully.

• There are two types of situation in which fractions are used in primary school. The first

involves measurement: if you want to represent a quantity by means of a number and the

quantity is smaller than the unit of measurement, you need a fraction – for example, a

half cup or a quarter inch. The second involves division: if the dividend is smaller than 

the divisor, the result of the division is represented by a fraction. For example, when 

you share 3 cakes among 4 children, each child receives ¾ of a cake. 

• Children use different schemes of action in these two different situations. In division

situations, they use correspondences between the units in the numerator and the units 

in the denominator. In measurement situations, they use partitioning.

• Children are more successful in understanding equivalence of fractions and in ordering

fractions by magnitude in situations that involve division than in measurement situations.

• It is crucial for children’s understanding of fractions that they learn about fractions in

both types of situation: most do not spontaneously transfer what they learned in one

situation to the other. 

• When a fraction is used to represent a quantity, children need to learn to think about

how the numerator and the denominator relate to the value represented by the fraction.

They must think about direct and inverse relations: the larger the numerator, the larger

the quantity but the larger the denominator, the smaller the quantity.

• Like whole numbers, fractions can be used to represent quantities and relations between

quantities, but in primary school they are rarely used to represent relations. Older

students often find it difficult to use fractions to represent relations.

PAPER 3: 
Understanding rational 
numbers and intensive
quantities
By Terezinha Nunes and Peter Bryant, University of Oxford 



Understanding rational numbers 
and intensive quantities

There is little doubt that students find fractions a challenge in mathematics. Teachers often say that 
it is difficult to teach fractions and some think that it would be better for everyone if children were
not taught about fractions in primary school. In order to understand fractions as numbers, students
must be able to know whether two fractions are equivalent or not, and if they are not, which one is
the bigger number. This is similar to understanding that 8 sweets is the same number as 8 marbles
and that 8 is more than 7 and less than 9, for example. These are undoubtedly key understandings
about whole numbers and fractions. But even after the age of 11 many students have difficulty in
knowing whether two fractions are equivalent and do not know how to order some fractions. For
example, in a study carried out in London, students were asked to paint 2/3 of figures divided in 3, 6
and 9 equal parts. The majority solved the task correctly when the figure was divided into 3 parts
but 40% of the 11- to 12-year-old students could not solve it when the figure was divided into 6 or
9 parts, which meant painting an equivalent fraction (4/6 and 6/9, respectively).

Fractions are used in primary school to represent quantities that cannot be represented by a single
whole number. If the teaching of fractions were to be omitted from the primary school curriculum,
children would not have the support of school learning to represent these quantities. We do not
believe that it would be best to just forget about teaching fractions in primary school because
research shows that children have some informal knowledge that could be used as a basis for
learning fractions. Thus the question is not whether to teach fractions in primary school but what
do we know about their informal knowledge and how can teachers draw on this knowledge.

There are two types of situation in which fractions are used in primary school: measurement and
division situations.

When we measure anything, we use a unit of measurement. Often the object we are measuring
cannot be described only with whole units, and we need fractions to represent a part of the unit.
In the kitchen we might need to use a ½ cup of milk and when setting the margins for a page in
a document we often need to be precise and define the margin as, for example, as 3.17 cm. These
two examples show that, when it comes to measurement, we use two types of notation, ordinary
and decimal notation. But regardless of the notation used, we could not accurately describe the
quantities in these situations without using fractions. When we speak of ¾ of a chocolate bar, we
are using fractions in a measurement situation: we have less than one unit, so we need to describe
the quantity using a fraction.

In division situations, we need a fraction to represent a quantity when the dividend is smaller
than the divisor. For example, if 3 cakes are shared among 4 children, it is not possible for each
one to have a whole cake, but it is still possible to carry out the division and to represent the
amount that each child receives using a number, ¾. It would be possible to use decimal notation
in division situations too, but this is rarely the case. The reason for preferring ordinary fractions in
these situations is that there are two quantities in division situations: in the example, the number
of cakes and the number of children. An ordinary fraction represents each of these quantities by
a whole number: the dividend is represented by the numerator, the divisor by the denominator,
and the operation of division by the dash between the two numbers.

Although these situations are so similar for adults, we could conclude that it is not necessary to
distinguish between them, however, research shows that children think about the situations
differently. Children use different schemes of action in each of these situations. 

In measurement situations, they use partitioning. If a child is asked to show ¾ of a chocolate, the
child will try to cut the chocolate in 4 equal parts and mark 3 parts. If a child is asked to compare
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¾ and 6/8, for example, the child will partition one unit in 4 parts, the other in 8 parts, and try 
to compare the two. This is a difficult task because the partitioning scheme develops over a long
period of time and children have to solve many problems to succeed in obtaining equal parts
when partitioning. Although partitioning and comparing the parts is not the only way to solve this
problem, this is the most likely solution path tried out by children, because they draw on their
relevant scheme of action.

In division situations, children use a different scheme of action, correspondences. A problem
analogous to the one above in a division situation is: there are 4 children sharing 3 cakes and 8
children sharing 6 identical cakes; if the two groups share the cakes fairly, will the children in one
group get the same amount to eat as the children in the other group? Primary school pupils often
approach this problem by establishing correspondences between cakes and children. In this way
they soon realise that in both groups 3 cakes will be shared by 4 children; the difference is that 
in the second group there are two lots of 3 cakes and two lots of 4 children, but this difference
does not affect how much each child gets.

From the beginning of primary school, many children have some informal knowledge about
division that could be used to understand fractional quantities. Between the ages of five and 
seven years, they are very bad at partitioning wholes into equal parts but can be relatively good
at thinking about the consequences of sharing. For example, in one study in London 31% of the
five-year-olds, 50% of the six-year-olds and 81% of the seven-year-olds understood the inverse
relation between the divisor and the shares resulting from the division: they knew that the more
recipients are sharing a cake, the less each one will receive. They were even able to articulate this
inverse relation when asked to justify their answers. It is unlikely that they had at this time made 
a connection between their understanding of quantities and fractional representation; actually, it is
unlikely that they would know how to represent the quantities using fractions. 

The lack of connection between students’ understanding of quantities in division situations 
and their knowledge about the magnitude of fractions is very clearly documented in research.
Students who have no doubt that recipients of a cake shared between 3 people will fare better
than those of a cake shared between 5 people may, nevertheless, say that 1/5 is a bigger fraction
than 1/3 because 5 is a bigger number than 3. Although they understand the inverse relation in
the magnitude of quantities in a division situation, they do not seem to connect this with the
magnitude of fractions. The link between their understanding of fractional quantities and fractions
as numbers has to be developed through teaching in school.

There is only one well-controlled experiment which compared directly young children’s
understanding of quantities in measurement and division situations. In this study, carried out in
Portugal, the children were six- to seven-years-old. The context of the problems in both situations
was very similar : it was about children eating cakes, chocolates or pizzas. In the measurement
problems, there was no sharing, only partitioning. For example, in one of the measurement
problems, one girl had a chocolate bar which was too large to eat in one go. So she cut her
chocolate in 3 equal pieces and ate 1. A boy had an identical bar of chocolate and decided to 
cut his into 6 equal parts, and eat 2. The children were asked whether the boy and the girl ate 
the same amount of chocolate. The analogous division problem was about 3 girls sharing one
chocolate bar and 6 boys sharing 2 identical chocolate bars. The rate of correct responses in the
partitioning situation was 10% for both six- and seven-year-olds and 35% and 49%, respectively,
for six- and seven-year-olds in the division situation. 

These results are relevant to the assessment of variations in mathematics curricula. Different
countries use different approaches in the initial teaching of fraction, some starting from division
and others from measurement situations. There is no direct evidence from classroom studies to
show whether one starting point results in higher achievement in fractions than the other. The
scarce evidence from controlled studies supports the idea that division situations provide children
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with more insight into the equivalence and order of quantities represented by fractions and 
that they can learn how to connect these insights about quantities with fractional representation.
The studies also indicate that there is little transfer across situations: children who succeed in
comparing fractional quantities and fractions after instruction in division situations do no better in
a post-test when the questions are about measurement situations than other children in a control
group who received no teaching. The converse is also true: children taught in measurement
situations do no better than a control group in division situations.

A major debate in mathematics teaching is the relative weight to be given to conceptual
understanding and procedural knowledge in teaching. The difference between conceptual
understanding and procedural knowledge in the teaching of fractions has been explored in 
many studies. These studies show that students can learn procedures without understanding 
their conceptual significance. Studies with adults show that knowledge of procedures can 
remain isolated from understanding for a long time: some adults who are able to implement the
procedure they learned for dividing one fraction by another admit that they have no idea why 
the numerator and the denominator exchange places in this procedure. Learners who are able 
to co-ordinate their knowledge of procedures with their conceptual understanding are better at
solving problems that involve fractions than other learners who seem to be good at procedures
but show less understanding than expected from their knowledge of procedures. These results
reinforce the idea that it is very important to try to make links between children’s knowledge of
fractions and their understanding of fractional quantities.

Finally, there is little, if any, use of fractions to represent relations between quantities in primary
school. Secondary school students do not easily quantify relations that involve fractions. Perhaps
this difficulty could be attenuated if some teaching about fractions in primary school involved
quantifying relations that cannot be described by a single whole number. 
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Research about mathematical
learning

Children’s knowledge of fractional
quantities starts to develop before they
are taught about fractions in school.

There are two types of situation relevant
to primary school teaching in which
quantities cannot be represented by a
single whole number: measurement and
division. 

Children do not easily transfer their
understanding of fractions from division to
measurement situations and vice-versa.

Many students do no make links between
their conceptual understanding of fractions
and the procedures that they are taught
to compare and operate on fractions in
school.

Fractions are taught in primary school only
as representations of quantities.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of children’s
insights regarding quantities that are represented
by fractions and make connections between their
understanding of these quantities and fractions.

Teaching The primary school curriculum should
include the study of both types of situation in the
teaching of fractions. Teachers should be aware of
the different types of reasoning used by children
in each of these situations.
Research Evidence from experimental studies
with larger samples and long-term interventions 
in the classroom are needed to establish whether
division situations are indeed a better starting
point for teaching fractions.

Teaching Teachers should consider how to
establish links between children’s understanding of
fractions in division and measurement situations.
Research Investigations on how links between
situations can be built are needed to support
curriculum development and classroom teaching.

Teaching Greater attention may be required in
the teaching of fractions to creating links between
procedures and conceptual understanding.
Research There is a need for longitudinal studies
designed to clarify whether this separation
between procedural and conceptual knowledge
does have important consequences for further
mathematics learning.

Teaching Consideration should be given to the
inclusion of situations in which fractions are used
to represent relations.
Research Given the importance of
understanding and representing relations
numerically, studies that investigate under what
circumstances primary school students can use
fractions to represent relations between quantities
are urgently needed.

Recommendations
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Headlines
• Children have greater difficulty in understanding relations than in understanding quantities.

This is true in the context of both additive and multiplicative reasoning problems. 

• Primary and secondary school students often apply additive procedures to solve

multiplicative reasoning problems and also apply multiplicative procedures to solve

additive reasoning problems. 

• Explicit instruction to help students become aware of relations in the context of additive

reasoning problems can lead to significant improvement in children’s performance.

• The use of diagrams, tables and graphs to represent relations facilitates children’s thinking

about and discussing the nature of the relations between quantities in problems. 

• Excellent curriculum development work has been carried out to design instruction to

help students develop awareness of their implicit knowledge of multiplicative relations.

This programme has not been systematically assessed so far.

• An alternative view is that students’ implicit knowledge should not be the starting point

for students to learn about proportional relations; teaching should focus on

formalisations rather than informal knowledge and seek to connect mathematical

formalisations with applied situations only later.

• There is no research comparing the results of these diametrically opposed ideas.

PAPER 4: 
Understanding relations and
their graphical representation
By Terezinha Nunes and Peter Bryant, University of Oxford 



Understanding relations and 
their graphical representation

Children need to learn to co-ordinate their knowledge of numbers with their understanding 
of quantities. This is critical for mathematics learning in primary school so that they can use their
understanding of quantities to support their knowledge of numbers and vice versa. But this is 
not all that students need to learn to be able to use mathematics sensibly. Using mathematics also
involves thinking about relations between quantities. Research shows quite unambiguously that it 
is more difficult for children to solve problems that involve relations than to solve problems that
involve only quantities.

A simple problem about quantities is: Paul had 5 marbles. He played two games with his friend. In
the first game, he won 6 marbles. In the second game he lost 4 marbles. How many marbles does
he have now? The same numerical information can be used differently, making the problem into
one which is all about relations: Paul played three games of marbles. In the first game, he won 5
marbles. In the second game, he won 6. In the third game, he lost 4. Did he end up winning or
losing marbles? How many?

The arithmetic that children need to use to solve is the same in both problems: add 5 and 6 and
subtract 4. But the second problem is significantly more difficult for children because it is all about
relations. They don’t know how many marbles Paul actually had at any time, they only know that
he had 5 more after the first game than before, and 6 more after the second game, and 4 fewer
after the third game. Some children say that this problem cannot be solved because we don’t
know how many marbles Paul had to begin with: they recognise that it is possible to operate on
quantities, but do not recognise that it is possible to operate on relations. Why should this be so?

One possible explanation is the way in which we express relations. When we speak about
quantities, we say that Paul won marbles or lost marbles; these are two opposite statements.
When we speak about relations, statements that use opposite words may mean the same thing:
after winning 5 marbles, we can say that Paul now has 5 more marbles or that before he had 5
fewer. In order to grasp the concept of relations fully, students must be able to view these two
different statements as meaning the same thing. Research shows that some students are able to
treat these different statements as having the same meaning but others find this difficult. Students
who realise that the two statements mean the same thing are more successful in solving problems
about relations.

A second plausible explanation is that many children do not distinguish clearly between quantities
and relations when they use numbers. When they are given a problem about relations, they
interpret the relations as quantities. If they are given a problem like ‘Tom, Fred, and Rhoda put
their apples into a bag. Tom and Fred together had 17 more apples than Rhoda. Tom had 7 apples.
Rhoda had 5 apples. How many apples did Fred have?’, they write down that Tom and Fred had
17 apples together (instead of 17 more than Rhoda). When they make this interpretation error,
the problem seems very easy: if Tom had 7, Fred had 10. The information about Rhoda seems
irrelevant. But of course this is not the solution. It is possible to teach children to represent
quantities and relations differently, and thus to distinguish the two: for example, they can be taught
to write ‘plus 17’ to show that this is not a quantity but a relation. Children aged seven to nine
years can adopt this notation and at the same time improve their ability to solve relational
problems. However, even after this teaching, they still seem to be tempted to interpret relations 
as quantities. So, learning to represent relations helps children take a step towards distinguishing
relations and quantities but they need plenty of opportunity to think about this distinction.

A third difficulty is that relational thinking involves building a model of a problem situation in 
order to treat the relations in the problem mathematically. In primary school, children have little
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opportunity to explore situations in their mathematics lessons before solving a problem. If they
make a mistake in solving a problem when their computation was correct, the error is explained
as ‘choice of the wrong operation’, but the wrong choice of operation is a symptom, not an
explanation for what went wrong during problem solving.

Models of situations are ways of thinking about them, and more than one way may be
appropriate. It all depends on the question that we want to answer. Suppose there are 12 girls
and 18 boys in a class and they are assigned to single-sex groups during French lessons. If there
were not enough books for all of them and the Head Teacher decided to give 4 books to the girls
and 6 books to the boys, would this be fair? If you give one book to each girl, there are 8 girls left
without books; if you give one book to each boy, there are 12 boys left without books. This seems
unfair. If you ask all the children to share, 3 girls will share one book and 3 boys will share one
book. This seems fair. The first model is additive: the questions it answers are ‘How many more
girls than books?’ and ‘How many more boys than books?’ The second model is multiplicative: it
examines the ratio between girls and books and the ratio between boys and books. If the Head
Teacher is planning to buy more books, she needs an additive model. If the Head Teacher is not
planning to buy more books, the ratio is more informative. A model of a situation is constructed
by the problem solver for a purpose; additive and multiplicative relations answer different
questions about the same situation. 

Children, but also adults, often make mistakes in the choice of operation when solving problems:
they sometimes use additive reasoning when they should have used multiplicative reasoning 
but they can also make the converse mistake, and use multiplicative reasoning when additive
reasoning would be appropriate. So, we need to examine research that explains how children 
can become more successful in choosing the appropriate model to answer a question.

Experts often use diagrams, tables and graphs to help them analyse situations. These
resources could support children’s thinking about situations. But children seem to have
difficulty in using these resources and have to learn how to use them. They have to become
literate in the use of these mathematical tools in order to interpret them correctly. A
question that has not been addressed in the literature is whether children can learn about
using these tools and about analysing situations mathematically at the same time. Research
about interpreting tables and graphs has been carried out either to assess students’ previous
knowledge (or misconceptions) before they are taught or to test ways of making them
literate in the use of these tools.

A remarkable exception is found in the work of researchers in the Freudenthal Institute. One 
of their explicit aims for instruction in mathematics is to help students mathematise situations: i.e.
to help them build a model of a situation and later transform it into a model for other situations
through their awareness of the relations in the model. They argue that we need to use diagrams,
tables and graphs during the process of mathematising situations. These are built by students (with
teacher guidance) as they explore the situations rather than presented to the students ready
made for interpretation. Students are encouraged to use their implicit knowledge of relations; 
by building these representations, they can become aware of which models they are using. The
process of solution is thus not to choose an operation and calculate but to analyse the relations
in the problem and work towards solution. This process allows the students to become aware of
the relations that are conserved throughout the different steps.

Streefland worked out in detail how this process would work if students were asked to solve
Hart’s famous onion soup recipe problem. In this problem, students are presented with a recipe
of onion soup for 8 people and asked how much of each ingredient they would need if they
were preparing the soup for 6 people. Many students use their everyday knowledge of relations
in searching for a solution: they think that you need half of the original recipe (which would serve
4) plus half of this (which would serve 2 people) in order to have a recipe for 6 people. This
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perfectly sound reasoning is actually a mixture of additive and multiplicative thinking: half 
of a recipe for 8 serves 4 people (multiplicative reasoning) and half of the latter serves 2
(multiplicative reasoning); 6 people is 2 more than 4 (additive); a recipe for 6 is the same 
as the recipe for 4 plus the recipe for 2 (additive). 

Streefland and his colleagues suggested that diagrams and tables provide the sort of representation
that helps students think about the relations in the problem. It is illustrated here by the ratio table
showing how much water should be used in the soup. The table can be used to help students
become aware that the first two steps in their reasoning are multiplicative: they divide the number
of persons in half and also the amount of water in half. Additive reasoning does not work: the
transformation from 8 to 4 people would mean subtracting 4 whereas the parallel transformation
in the amount of water would be to subtract 1. So the relation is not the same. If they can discover
that multiplicative reasoning preserves the relation, whereas additive reasoning does not, they could
be encouraged to test whether there is a multiplicative relation that they can use to find the recipe
for 6; they could come up with x3, trebling the recipe for 2. Streefland’s ratio table can be used as a
model for testing if other situations fit this sort of multiplicative reasoning. The table can be
expanded to calculate the amounts of the other ingredients.

An alternative approach in curriculum development is to start from formalisations and not to
base teaching on students’ informal knowledge. The aim of this approach is to establish links
between different formal representations of the same relations. A programme proposed by
Adjiage and Pluvinage starts with lines divided into segments: students learn how to represent
segments with the same fraction even though the lengths of the lines differ (e.g. 3/5 of lines 
of different lengths). Next they move to using these formal representations in other types of
problems: for example, mixtures of chocolate syrup and milk where the number of cups of each
ingredient differs but the ratio of chocolate to total number of cups is the same. Finally, students
are asked to write abstractions that they learned in these situations and formulate rules for
solving the problems that they solved during the lessons. An example of generalisation expected is
‘seven divided by four is equal to seven fourths’ or ‘7 ÷ 4 = 7/4’. An example of a rule used in
problem solving would be ‘Given an enlargement in which a 4 cm length becomes a 7 cm length,
then any length to be enlarged has to be multiplied by 7/4.’

There is no systematic research that compares these two very different approaches. Such
research would provide valuable insight into how children come to understand relations.
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Research about mathematical
learning

Numbers are used to represent quantities
and relations. Primary school children
often interpret statements about relations
as if they were about quantities and thus
make mistakes in solving problems.

Many problem situations involve both
additive and multiplicative relations; which
one is used to solve a problem depends
on the question being asked. Both children
and adults can make mistakes in selecting
additive or multiplicative reasoning to
answer a question.

Experts use diagrams, tables and graphs 
to explore the relations in a problem
situation before solving a problem. 

Some researchers propose that informal
knowledge interferes with students’
learning. They propose that teaching
should start from formalisations which are
only later applied to problem situations.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of
children’s difficulties in distinguishing between
quantities and relations during problem solving.

Teaching The primary school curriculum should
include the study of relations in situations in a
more explicit way.
Research Evidence from experimental studies is
needed on which approaches to making students
aware of relations in problem situations improve
problem solving.

Teaching The use of tables and graphs in the
classroom may have been hampered by the
assumption that students must first be literate in
interpreting these representations before they can
be used as tools. Teachers should consider using
these tools as part of the learning process during
problem solving.
Research Systematic research on how students
use diagrams, tables and graphs to represent
relations during problem solving and how this
impacts their later learning is urgently needed.
Experimental and longitudinal methods should 
be combined.

Teaching Teachers who start from
formalisations should try to promote links across
different types of mathematical representations
through teaching.
Research There is a need for experimental and
longitudinal studies designed to investigate the
progress that students make when teaching starts
from formalisations rather than from students’
informal knowledge and the long-term
consequences of this approach to teaching
students about relations.

Recommendations
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Headlines
• Children come to school with a great deal of knowledge about spatial relations. One of

the most important challenges in mathematical education is how best to harness this

implicit knowledge in lessons about space.

• Children’s pre-school implicit knowledge of space is mainly relational. Teachers should

be aware of kinds of relations that young children recognise and are familiar with, such

as their use of stable background to remember the position and orientation of objects

and lines.

• Measuring of length and area poses particular problems for children, even though they

are able to understand the underlying logic of measurement. Their difficulties concern

iteration of standard units, which is a new idea for them, and also the need to apply

multiplicative reasoning to the measurement of area.

• From an early age children are able to extrapolate imaginary straight lines, which allows

them to learn how to use Cartesian co-ordinates to plot specific positions in space with

no difficulty. However, they need instruction about how to use co-ordinates to work out

the relation between different positions.

• Learning how to represent angle mathematically is a hard task for young children, even

though angles are an important part of their everyday life. There is evidence that children

are more aware of angle in the context of movement (turns) than in other contexts and

learn about the mathematics of angle relatively easily in this context. However, children

need a great deal of help from to teachers to understand how to relate angles across

different contexts.

• An important aspect of learning about geometry is to recognise the relation between

transformed shapes (rotation, reflection, enlargement). This also can be difficult, since

children’s pre-school experiences lead them to recognise the same shapes as equivalent

across such transformations, rather than to be aware of the nature of the transformation.

However, there is very little research on this important question.

PAPER 5: 
Understanding space 
and its representation 
in mathematics
By Peter Bryant, University of Oxford 



Understanding space and its    
representation in mathematics

At school, children often learn formally about matters that they already know a great deal about in
an informal and often quite implicit way. Sometimes their existing, informal understanding, which for
the most part is based on experiences that they start to have long before going to school, fits well
with what they are expected to learn in the classroom. At other times, what they know already, or
what they think they know, clashes with the formal systems that they are taught at school and can
even prevent them from grasping the significance of these formal systems.

Geometry is a good and an obvious example. Geometry lessons at school deal with the use of
mathematics and logic to analyse spatial relations and the properties of shapes. The spatial
relations and the shapes in question are certainly a common part of any child’s environment, and
psychological research has established that from a very early age children are aware of them and
quite familiar with them. It has been shown that even very young babies not only discriminate
regular geometric shapes but can recognise them when they see them at a tilt, thus co-ordinating
information about the orientation of an object with information about the pattern of its contours. 

Babies are also able to extrapolate imaginary straight lines (a key geometric skill) at any rate in social
situations because they can work out what someone else is looking at and can thus construct that
person’s line of sight. Another major early achievement by young children is to master the logic that
underlies much of the formal analysis of spatial relations that goes on in geometry. By the time they
first go to school young children can make logical transitive inferences (A > B, B > C, therefore 
A > C; A = B, B = C, therefore A = C), which are the logical basis of all measurement. In their first
few years at school they also become adept at the logic of inversion (A + B – B), which is a logical
move that is an essential part of studying the relation between shapes. 

Finally, there is strong evidence that most of the information about space that children use and
remember in their everyday lives is relational in nature. One good index of this is that children’s
memory of the orientation of lines is largely based on the relation between these lines and the
orientation of stable features in the background. For this reason children find it much easier 
to remember the orientation of horizontal and vertical lines than of diagonal lines, because
horizontal and vertical features are quite common in the child’s stable spatial environment. For 
the same reason, young children remember and reproduce right angles (perpendicular lines)
better than acute or obtuse angles. The relational nature of children’s spatial perception and
memory is potentially a powerful resource for learning about geometry, since spatial relations 
are the basic subject matter of geometry.
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• Another aspect of the understanding of shape is the fact that one shape can be

transformed into another, by addition and subtraction of its subcomponents. For example,

a parallelogram can be transformed into a rectangle of the same base and height by the

addition and subtraction of equivalent triangles and adding two equivalent triangles to a

rectangle creates a parallelogram. Research demonstrates that there is a danger that

children might learn about these transformations only as procedures without

understanding their conceptual basis.

• There is a severe dearth of psychological research on children’s geometrical learning. In

particular we need long-term studies of the effects of intervention and a great deal more

research on children’s understanding of transformations of shape.



With so much relevant informal knowledge about space and shape to draw on, one might think
that children would have little difficulty in translating this knowledge into formal geometrical
understanding. Yet, it is not always that easy. It is an unfortunate and well-documented fact that
many children have persistent difficulties with many aspects of geometry. 

One evidently successful link between young children’s early spatial knowledge and their more formal
experiences in the classroom is their learning how to use Cartesian co-ordinates to plot positions in
two-dimensional space. This causes schoolchildren little difficulty, although it takes some time for them
to understand how to work out the relation between two positions plotted in this way. 

Other links between informal and formal knowledge are harder for young children. The
apparently simple act of measuring a straight line, for example, causes them problems even
though they are usually perfectly able to make the appropriate logical moves and understand
the importance of one-to-one correspondence, which is an essential part of relating the units
on a ruler to the line being measured. One problem here is that they find it hard to understand
the idea of iteration: iteration is about repeated measurements, so that a ruler consists of a set
of iterated (repeated) units like centimetres. Iteration is necessary when a particular length
being measured is longer than the measuring instrument. Another problem is that the one-to-
one correspondence involved in measuring a line with a ruler is asymmetrical. The units
(centimetres, inches) are visible and clear in the ruler but have to be imagined on the line itself.
It is less of a surprise that it also takes children a great deal of time to come to terms with the
fact that measurement of area usually needs some form of multiplication, e.g. height x width
with rectangles, rather than addition. 

The formal concept of angle is another serious stumbling block for children even though they 
are familiar enough with angles in their everyday spatial environments. The main problem is that
they find it hard to grasp that two angles in very different contexts are the same, e.g. themselves
turning 90o and the corner of a page in a book. Abstraction is an essential part of geometry but
it has very little to do with children’s ordinary spatial perception and knowledge. 

For much the same reason, decomposing a relatively complex shape into several simpler
component shapes – again an essential activity in geometry – is something that many children find
hard to do. In their ordinary lives it is usually more important for them to see shapes as unities,
rather than to be able to break them up into other shapes. This difficulty makes it hard for them
to work out relationships between shapes. For example, children who easily grasp that a + b – b
= a, nevertheless often fail to understand completely the demonstration that a rectangle and a
parallelogram with the same base and height are equal in area because you can transform the
parallelogram into the rectangle by subtracting a triangle from one end of the parallelogram and
adding an exactly equivalent triangle to the other end. 

We know little about children’s understanding of transformations of shape or of any difficulties
that they might have when they are taught about these transformations. This is a serious gap in
research on children’s mathematical learning. It is well recognised, however, that children and some
adults confuse scale enlargements with enlargements of area. They think that doubling the length
of the contour of a geometric shape such as a square or a rectangle also doubles its area, which is
a serious misconception. Teachers should be aware of this potential difficulty when they teach
children about scale enlargements.

Researchers have been more successful in identifying these obstacles than in showing us how 
to help children to surmount them. There are some studies of ways of preparing children for
geometry in the pre-school period or in the early years at school. This research, however,
concentrated on short-term gains in children’s geometric understanding and did not answer the
question whether these early teaching programmes would actually help children when they begin
to learn about geometry in the classroom. 
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Research about mathematical
learning

Children’s pre-school knowledge of space
is relational. They are skilled at using stable
features of the spatial framework to
perceive and remember the relative
orientation and position of objects in 
the environment. There is, however, no
research on the relation between this
informal knowledge and how well children
learn about geometry. 

Children already understand the logic of
measurement in their early school years.
They can make and understand transitive
inferences, they understand the inverse
relation between addition and subtraction,
and they can recognise and use one-to-
one correspondence. These are three
essential aspects of measurement.

Many children have difficulties with the
idea of iteration of standard units in
measurement.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of the
research on children’s considerable spatial
knowledge and skills and should relate their
teaching of geometrical concepts to this
knowledge.
Research There is a serious need for
longitudinal research on the possible connections
between children’s pre-school spatial abilities and
how well they learn about geometry at school.

Teaching The conceptual basis of measurement
and not just the procedures should be an
important part of the teaching. Teachers should
emphasise transitive inferences, inversion of
addition and subtraction and also one-to-one
correspondence and should show children their
importance.
Research Psychologists should extend their
research on transitive inference, inversion and one-
to-one correspondence to geometrical problems,
such as measurement of length and area.

Teaching Teachers should recognise this
difficulty and construct exercises which involve
iteration, not just with standard units but with
familiar objects like cups and hands.
Research Psychologists should study the exact
cause of children’s difficulties with iteration.

Recommendations
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There has also been research on teaching children about angle, mostly in the context of
computer-based teaching programmes. One of the most interesting points to come out of this
research is that teaching children about angle in terms of movements (turning) is successful, and
there is some evidence that children taught this way are quite likely to transfer their new
knowledge about angle to other contexts that do not involve movement.

However, there has been no concerted research on how teachers could take advantage of children’s
considerable spatial knowledge when teaching them geometry. We badly need long-term studies of
interventions that take account of children’s relational approach to the spatial environment and
encourage them to grasp other relations, such as the relation between shapes and the relation
between shapes and their subcomponent parts, which go beyond their informal spatial knowledge.



Research about mathematical
learning

Many children wrongly apply additive
reasoning, instead of multiplicative
reasoning, to the task of measuring area.
Children understand this multiplicative
reasoning better when they first think of it
as the number of tiles in a row times the
number of rows than when they try to
use a base times height formula.

Even very young children can easily
extrapolate straight lines and
schoolchildren have no difficulty in learning
how to plot positions using Cartesian co-
ordinates, but it is difficult for them to
work out the relation between different
positions plotted in this way.

Research on pre-school intervention
suggests that it is possible to prepare
children for learning about geometry by
enhancing their understanding of space
and shapes. However, this research has not
included long-term testing and therefore
the suggestion is still tentative.

Children often learn about the relation
between shapes (e.g. between a
parallelogram and a rectangle) as a
procedure without understanding the
conceptual basis for these transformations.

There is hardly any research on children’s
understanding of the transformation of
shapes, but there is evidence of confusion
in many children about the effects of
enlargement: they consider that doubling
the length of the perimeter of a square,
for example, doubles its area. 

Recommendations for teaching 
and research 

Teaching In lessons on area measurement,
teachers can promote children’s use of the
reasoning ‘number in a row times number of
rows’ by giving children a number of tiles that is
insufficient to cover the area. They should also
contrast measurements which do, and
measurements which do not, rest on
multiplication.

Teaching Teachers, using concrete material,
should relate teaching about spatial co-ordinates
to children’s everyday experiences of
extrapolating imaginary straight lines.
Research There is a need for intervention
studies on methods of teaching children to work
out the relation between different positions,
using co-ordinates.

Research There will have to be long-term
predictive and long-term intervention studies 
on this crucial, but neglected, question

Teaching Children should be taught the
conceptual reasons for adding and subtracting
shape components when studying the relation
between shapes.
Research Existing research on this topic was
done a very long time ago and was not very
systematic. We need well-designed longitudinal
and intervention studies on children’s ability to
make and understand such transformations.

Teaching Teachers should be aware of the risk
that children might confuse scale enlargements
with area enlargements.
Research Psychologists could easily study how
children understand transformations like reflection
and rotation but they have not done so. We need
this kind of research.

Recommendations (continued)
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Headlines
• Algebra is the way we express generalisations about numbers, quantities, relations 

and functions. For this reason, good understanding of connections between numbers,

quantities and relations is related to success in using algebra. In particular, students

need to understand that addition and subtraction are inverses, and so are multiplication

and division.

• To understand algebraic symbolisation, students have to (a) understand the underlying

operations and (b) become fluent with the notational rules. These two kinds of learning,

the meaning and the symbol, seem to be most successful when students know what is

being expressed and have time to become fluent at using the notation.

• Students have to learn to recognise the different nature and roles of letters as:

unknowns, variables, constants and parameters, and also the meanings of equality and

equivalence. These meanings are not always distinct in algebra and do not relate

unambiguously to arithmetical understandings, Mapping symbols to meanings is not learnt

in one-off experiences.

• Students often get confused, misapply, or misremember rules for transforming

expressions and solving equations. They often try to apply arithmetical meanings to

algebraic expressions inappropriately. This is associated with over-emphasis on notational

manipulation, or on ‘generalised arithmetic’, in which they may try to get concise answers.

PAPER 6: 
Algebraic reasoning
By Anne Watson, University of Oxford 



Understanding symbolisation
The conventional symbol system is not merely an expression of generalised arithmetic; to
understand it students have to understand the meanings of arithmetical operations, rather than
just be able to carry them out. Students have to understand ‘inverse’ and know that addition and
subtraction are inverses, and that division is the inverse of multiplication. Algebraic representations
of relations between quantities, such as difference and ratio, encapsulate this idea of inverse. 
Using familiarity with symbolic expressions of these connections, rather than thinking in terms 
of generalising four arithmetical operations, gives students tools with which to understand
commutativity and distributivity, methods of solving equations, and manipulations such as
simplifying and expanding expressions. 

The precise use of notation has to be learnt as well, of course, and many aspects of algebraic
notation are inherently confusing (e.g. 2r and r 2). Over-reliance on substitution as a method of
doing this can lead students to get stuck with arithmetical meanings and rules, rather than being
able to recognise algebraic structures. For example, students who have been taught to see
expressions such as:

97 – 49 + 49

as structures based on relationships between numbers, avoiding calculation, identifying variation,
and having a sense of limits of variability, are able to reason with relationships more securely and
at a younger age than those who have focused only on calculation. An expression such as 3x + 4
is both the answer to a question, an object in itself, and also an algorithm or process for
calculating a particular value. This has parallels in arithmetic: the answer to 3 ÷ 5 is 3/5. 

Time spent relating algebraic expressions to arithmetical structures, as opposed to calculations,
can make a difference to students’ understanding. This is especially important when understanding
that apparently different expressions can be equivalent, and that the processes of manipulation
(often the main focus of algebra lessons) are actually transformations between equivalent forms.

Meanings of letters and signs
Large studies of students’ interpretation and use of letters have shown a well-defined set of
possible actions. Learners may, according to the task and context:

• try to evaluate them using irrelevant information
• ignore them
• used as shorthand for objects, e.g. a = apple
• treat them as objects
• use a letter as a specific unknown
• use a letter as a generalised number
• use a letter as a variable.

Teachers have to understand that students may use any one of these approaches and students
need to learn when these are appropriate or inappropriate. There are conventions and uses of
letters throughout mathematics that have to be understood in context, and the statement ‘letters
stand for numbers’ is too simplistic and can lead to confusion. For example:

• it is not always true that different letters have different values 
• a letter can have different values in the same problem if it stands for a variable 
• the same letter does not have to have the same value in different problems.
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A critical shift is from seeing a letter as representing an unknown, or ‘hidden’, number defined
within a number sentence such as:

3 + x = 8

to seeing it as a variable, as in y = 3 + x, or 3 = y – x. Understanding x as some kind of
generalized number which can take a range of values is seen by some researchers to provide 
a bridge from the idea of unknown to that of variables. The use of boxes to indicate unknown
numbers in simple ‘missing number’ statements is sometimes helpful, but can also lead to
confusion when used for variables, or for more than one hidden number in a statement.

Expressions linked by the ‘equals’ sign might be not just numerically equal, but also equivalent, yet
students need to retain the ‘unknown’ concept when setting up and solving equations which have
finite solutions. For example, 10x – 5 = 5(2x – 1) is a statement about equivalence, and x is a
variable, but 10x – 5 = 2x + 1 defines a value of the variable for which this equality is true. Thus x
in the second case can be seen as an unknown to be found, but in the first case is a variable. Use
of graphical software can show the difference visually and powerfully because the first situation is
represented by one line, and the second by two intersecting lines, i.e. one point.

Misuse of rules
Students who rely only on remembered rules often misapply them, or misremember them, or 
do not think about the meaning of the situations in which they might be successfully applied. 
Many students will use guess-and-check as a first resort when solving equations, particularly when
numbers are small enough to reason about ‘hidden numbers’ instead of ‘undoing’ within the algebraic
structure. Although this is sometimes a successful strategy, particularly when used in conjunction with
graphs, or reasoning about spatial structures, or practical situations, over-reliance can obstruct the
development of algebraic understanding and more universally applicable techniques.

Large-scale studies of U.K. school children show that, despite being taught the BIDMAS rule and
its equivalents, most do not know how to decide on the order of operations represented in an
algebraic expression. Some researchers believe this to be due to not fully understanding the
underlying operations, others that it may be due to misinterpretation of expressions. There is
evidence from Australia and the United Kingdom that students who are taught to use flow
diagrams, and inverse flow diagrams, to construct and reorganise expressions are better able to
decide on the order implied by expressions involving combinations of operations. However, it is
not known whether students taught this way can successfully apply their knowledge of order in
situations in which flow diagrams are inappropriate, such as with polynomial equations, those
involving the unknown on ‘both sides’, and those with more than one variable. To use algebra
effectively, decisions about order have to be fluent and accurate.

Misapplying arithmetical meanings 
to algebraic expressions
Analysis of children’s algebra in clinical studies with 12- to 13-year-olds found that the main
problems in moving from arithmetic to algebra arose because: 

• the focus of algebra is on relations rather than calculations; the relation a + b = c represents
three unknown quantities in an additive relationship 

• students have to understand inverses as well as operations, so that a hidden value can be
found even if the answer is not obvious from knowing number bonds or multiplication facts; 
7 + b = 4 can be solved using knowledge of addition, but c + 63 = 197 is more easily solved
if subtraction is used as the inverse of addition
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• some situations have to be expressed algebraically first in order to solve them. ‘My brother is
two years older than me, my sister is five years younger than me; she is 12, how old will my
brother be in three years’ time?’ requires an analysis and representation of the relationships
before solution. ‘Algebra’ in this situation means constructing a method for keeping track of
the unknown as various operations act upon it.

• letters and numbers are used together, so that numbers may have to be treated as symbols
in a structure, and not evaluated. For example, the structure 2(3+b) is different from the
structure of 6 + 2b although they are equivalent in computational terms. Learners have to
understand that sometimes it is best to leave number as an element in an algebraic structure
rather than ‘work it out’.

• the equals sign has an expanded meaning; in arithmetic it is often taken to mean ‘calculate’ but in
algebra it usually means ‘is equal to’ or ‘is equivalent to’. It takes many experiences to recognise
that an algebraic equation or equivalence is a statement about relations between quantities, or
between combinations of operations on quantities. Students tend to want ‘closure’ by compressing
algebraic expressions into one term instead of understanding what is being expressed. 

Expressing generalisations
In several studies it has been found that students understand how to use algebra if they have
focused on generalizing with numerical and spatial representations in which counting is not an
option. Attempts to introduce symbols to very young students as tools to be used when they
have a need to express known general relationships, have been successful both for aiding their
understanding of symbol use, and understanding the underlying quantitative relations being
expressed. For example, some year 1 children first compare and discuss quantities of liquid in
different vessels, and soon become able to use letters to stand for unknown amounts in
relationships, such as a > b; d = e; and so on. In another example, older primary children could
generalise the well-known questions of how many people can sit round a line of tables, given that
there can be two on each side of each table and one at each of the extreme ends. The ways in
which students count differ, so the forms of the general statement also differ and can be
compared, such as: ‘multiply the number of tables by 4 and add 2 or ‘it is two times one more
than the number of tables’. 

The use of algebra to express known arithmetical generalities is successful with students 
who have developed advanced mental strategies for dealing with additive, multiplicative and
proportional operations (e.g. compensation as in 82 – 17 = 87 – 17 – 5). When students 
are allowed to use their own methods of calculation they often find algebraic structures for
themselves. For example, expressing 13 x 7 as 10 x 7 + 3 x 7, or as 2 x 72 –7, are enactments 
of distributivity and learners can represent these symbolically once they know that letters can
stand for numbers, though this is not trivial and needs several experiences. Explaining a general
result, or structure, in words is often a helpful precursor to algebraic representation.

Fortunately, generalising from experience is a natural human propensity, but the everyday
inductive reasoning we do in other contexts is not always appropriate for mathematics.
Deconstruction of diagrams and physical situations, and identification of relationships between
variables, have been found to be more successful methods of developing a formula than pattern-
generalisation from number sequences alone. The use of verbal descriptions has been shown to
enable students to bridge between observing relations and writing them algebraically.

Further aspects of algebra arise in the companion summaries, and also in the main body of Paper
6: Algebraic reasoning. 
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Research about mathematical
learning

The bases for using algebraic symbolisation
successfully are (a) understanding the
underlying operations and relations and
(b) being able to use symbolism correctly.

Children interpret ‘letter stands for
number’ in a variety of ways, according 
to the task. Mathematically, letters have
several meanings according to context:
unknown, variable, parameter, constant.

Children interpret ‘=’ to mean ‘calculate’;
but mathematically ‘=’ means either ‘equal
to’ or ‘equivalent to’.

Students often forget, misremember,
misinterpret situations and misapply rules

Everyone uses ‘guess-&-check’ if answers
are immediately obvious, once algebraic
notation is understood. 

Recommendations for teaching 

Emphasis should be given to reading numerical
and algebraic expressions relationally, rather than
computationally. For algebraic thinking, it is more
important to understand how operations
combine and relate to each other than how they
are performed. Teachers should avoid emphasising
symbolism without understanding the relations it
represents.

Developers of the curriculum, advisory schemes
of work and teaching methods need to be aware
of children’s possible interpretations of letters, and
also that when correctly used, letters can have a
range of meanings. Teachers should avoid using
materials that oversimplify this variety. Hands-on
ICT can provide powerful new ways to
understand these differences in several
representations.

Developers of the curriculum, advisory schemes
of work and teaching methods need to be aware
of the difficulties about the ‘=’ sign and use
multiple contexts and explicit language. Hands-on
ICT can provide powerful new ways to
understand these differences in several
representations.

Developers of the curriculum, advisory schemes 
of work and teaching methods need to take into
account that algebraic understanding takes time,
multiple experiences, and clarity of purpose.
Teachers should emphasise situations in which
generalisations can be identified and described to
provide meaningful contexts for the use of
algebraic expressions. Use of software which carries
out algebraic manipulations should be explored. 

Algebra is meaningful in situations for which specific
arithmetic cannot be easily used, as an expression
of relationships. Focusing on algebra as ‘generalised
arithmetic’, e.g. with substitution exercises, does not
give students reasons for using it.

Recommendations
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Research about mathematical
learning

Even very young students can use letters
to represent unknowns and variables in
situations where they have reasoned a
general relationship by relating properties.
Research on inductive generalisation from
pattern sequences to develop algebra
shows that moving from expressing simple
additive patterns to relating properties has
to be explicitly supported.

Recommendations for teaching 

Algebraic expressions of relations should be a
commonplace in mathematics lessons, particularly
to express relations and equivalences. Students
need to have multiple experiences of algebraic
expressions of general relations based in
properties, such as arithmetical rules, logical
relations, and so on as well as the well-known
inductive reasoning from sequences.

Recommendations (continued)

Recommendations for research
The main body of Paper 6: Algebraic reasoning includes a number of areas for which further
research would be valuable, including the following.

• How does explicit work on understanding relations between quantities enable students to 
move successfully from arithmetical to algebraic thinking? 

• What kinds of explicit work on expressing generality enable students to use algebra?

• What are the longer-term comparative effects of different teaching approaches to early
algebra on students’ later use of algebraic notation and thinking?

• How do learners’ synthesise their knowledge of elementary algebra to understand polynomial
functions, their factorisation and roots, simultaneous equations, inequalities and other algebraic
objects beyond elementary expressions and equations?

• What useful kinds of algebraic expertise could be developed through the use of computer
algebra systems in school?
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Headlines
We have assumed a general educational context which encourages thinking and problem-

solving across subjects. A key difference about mathematics is that empirical approaches

may solve individual problems, and offer directions for reasoning, but do not themselves

lead to new mathematical knowledge or mathematical reasoning, or to the power that

comes from applying an abstract idea to a situation.

In secondary mathematics, the major issue is not how children learn elementary concepts,

but what experiences they have had and how these enable or limit what else can be learnt.

That is why we have combined several aspects of secondary mathematics which could be

exemplified by particular topics.

• Students have to be fluent in understanding methods and confident about using them to

know why and when to apply them, but such application does not automatically follow

learning procedures. Students have to understand the situation as well as being able to

call on a familiar repertoire of ideas and methods.

• Students have to know some elementary concepts well enough to apply them and

combine them to form new concepts in secondary mathematics, but little is known from

research about what concepts are essential in this way. Knowledge of a range of functions

is necessary for modelling situations.

• Students have to learn when and how to use informal, experiential reasoning and when

to use formal, conventional, mathematical reasoning. Without special attention to

meanings many students tend to apply visual reasoning, or be triggered by verbal cues,

rather than to analyse situations mathematically.

• In many mathematical situations in secondary mathematics, students have to look for

relations between numbers and variables and relations between relations and properties

of objects, and know how to represent them.

PAPER 7: 
Modelling, problem-solving
and integrating concepts
By Anne Watson, University of Oxford 



How secondary learners tackle new situations
In new situations students first respond to familiarity in appearance, or language, or context. They
bring earlier understandings to bear on new situations, sometimes erroneously. They naturally
generalise from what they are offered, and they often over-generalise and apply inappropriate
ideas to new situations. They can learn new mathematical concepts either as extensions or
integrations of earlier concepts, and/or as inductive generalisations from examples, and/or as
abstractions from solutions to problems. 

Routine or context?
One question is whether mathematics is learnt better from routines, or from complex contextual
situations. Analysis of research which compares how children learn mathematics through being
taught routines efficiently (such as with computerised and other learning packages designed to
minimise cognitive load) to learning through problem-solving in complex situations (such as
through Realistic Mathematics Education) shows that the significant difference is not about the
speed and retention of learning but what is being learnt. In each approach the main question for
progression is whether the student learns new concepts well enough to use and adapt them in
future learning and outside mathematics. Both approaches have inherent weaknesses in this
respect. These weaknesses will become clear in what follows. However, there are several studies
which show that those who develop mathematical methods of enquiry over time can then learn
procedures easily and do as well, or better, in general tests.

Problem-solving and modelling
To learn mathematics one has to learn to solve mathematical problems or model situations
mathematically. Studies of students’ problem solving mainly focus in the successful solution of
contextually-worded problems using mathematical methods, rather than using problem solving as a
context for learning new concepts and developing mathematical thinking. To solve unfamiliar problems
in mathematics, a meta-analysis of 487 studies concluded that for students to be maximally successful:

• problems need to be fully stated with supportive diagrams
• students need to have previous extensive experience in using the representations used
• they have to have relevant basic mathematical skills to use
• teachers have to understand problem-solving methods.

This implies that fluency with representations and skills is important, but also depends on how
clearly the problem is stated. In some studies the difficulty is also to do with the underlying
concept, for example, in APU tests area problems were difficult with or without diagrams. 

To be able to solve problems whose wording does not indicate what to do, students have to be
able to read the problem in two ways: firstly, their technical reading skills and understanding of
notation have to be good enough; secondly, they have to be able to interpret it to understand the
contextual and mathematical meanings. They have to decide whether and how to bring informal
knowledge to bear on the situation, or, if they approach it formally, what are the variables and
how do they relate. If they are approaching it formally, they then have to represent the
relationships in some way and decide how to operate on them.

International research into the use of ICT to provide new ways to represent situations and to see
relationships, such as by comparing spreadsheets, graph plotters and dynamic images appear to
speed up the process of relating representations through isomorphic reasoning about covariation,
and hence the development of understanding about mathematical structures and relations.

Key understandings in mathematics learning 41



Application of earlier learning

Knowing methods
Students who have only routine knowledge may not recognize that it is relevant to the situation.
Or they can react to verbal or visual cues without reference to context, such as ‘how much?’
triggering multiplication rather than division, and ‘how many?’ always triggering addition. A further
problem is that they may not understand the underlying relationships they are using and how
these relate to each other. For example, a routine approach to 2 x 1/3 x 3/2 may neither exploit
the meaning of fractions nor the multiplicative relation.

Students who have only experience of applying generic problem-solving skills in a range of
situations sometimes do not recognize underlying mathematical structures to which they can
apply methods used in the past. Indeed, given the well-documented tendency for people to use
ad hoc arithmetical trial-and-adjustment methods wherever these will lead to reasonable results, it
is possible that problem-solving experience may not result in learning new mathematical concepts
or working with mathematical structures, or in becoming fluent with efficient methods.

Knowing concepts
Students who have been helped to learn concepts, and can define, recognise and exemplify
elementary ideas are better able to use and combine these ideas in new situations and while
learning new concepts. However, many difficulties appear to be due to having too limited a range
of understanding. Their understanding may be based on examples which have irrelevant features
in common, such as the parallel sides of parallelograms always being parallel to the edges of a
page. Understanding is also limited by examples being similar to a prototype, rather than extreme
cases. Another problem is that students may recognize examples of a concept by focusing too
much on visual or verbal aspects, rather than their properties, such as believing that it is possible
to construct an equilateral triangle on a nine-pin geoboard because it ‘looks like one’.

Robust connections between and within earlier ideas can make it easier to engage with new
ideas, but can also hinder if the earlier ideas are limited and inflexible. For example, learning
trigonometry involves understanding: the definition of triangle; right-angles; recognizing them in
different orientations; what angle means and how it is measured; typical units for measuring lines;
what ratio means; similarity of triangles; how ratio is written as a fraction; how to manipulate a
multiplicative relationship; what ‘sin’ (etc.) means as a symbolic representation of a function and 
so on. Thus knowing about ratios can support learning trigonometry, but if the understanding of
‘ratio’ is limited to mixing cake recipes it won’t help much. To be successful students have to have
had enough experience to be fluent, and enough knowledge to use methods wisely.

They become better at problem-solving and modelling when they can:
• draw on knowledge of the contextual situation to identify variables and relationships and/or,

through imagery, construct mathematical representations which can be manipulated further
• draw on a repertoire of representations, functions, and methods of operation on these
• have a purpose for the modelling process, so that the relationship between manipulations 

in the model and changes in the situation can be meaningfully understood and checked for
reasonableness.
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Knowing how to approach mathematical tasks
To be able to decide when and how to use informal or formal approaches, and how to use prior
knowledge, students need to be able to think mathematically about all situations in mathematics
lessons. This develops best as an all-encompassing perspective in mathematics lessons, rather than
through isolated experiences. 

Students have to:
• learn to avoid instant reactions based in superficial visual or verbal similarity
• practice using typical methods of mathematical enquiry explicitly over time
• have experience of mulling problems over time in order to gain insight.

With suitable environments, tools, images and encouragement, learners can and do use their
general perceptual, comparative and reasoning powers in mathematics lessons to:

• generalise from what is offered and experienced
• look for analogies
• identify variables
• choose the most efficient variables, those with most connections
• see simultaneous variations
• understand change
• reason verbally before symbolising
• develop mental models and other imagery
• use past experience of successful and unsuccessful attempts
• accumulate knowledge of operations and situations to do all the above successfully

Of course, all the tendencies just described can also go in unhelpful directions and in particular
people tend to: 

• persist in using past methods and applying procedures without meaning, if that has been their
previous mathematical experience

• get locked into the specific situation and do not, by themselves, know what new mathematical
ideas can be abstracted from these experiences

• be unable to interpret symbols, text, and other representations in ways the teacher expects
• use additive methods; assume that if one variable increases so will another; assume that all

change is linear ; confuse quantities.
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Research about mathematical
learning

Learning routine methods and learning
through complex exploration lead to
different kinds of knowledge and cannot
be directly compared; neither method
necessarily enables learning new concepts
or application of powerful mathematics
ideas. However, those who have the habit
of complex exploration are often able to
learn procedures quickly.

Students naturally respond to familiar
aspects of mathematics; try to apply prior
knowledge and methods, and generalize
from their experience.

Students are more successful if they 
have a fluent repertoire of conceptual
knowledge and methods, including
representations, on which to draw.

Multiple experiences over time enable
students to develop new ways to work on
mathematical tasks, and to develop the
ability to choose what and how to apply
earlier learning.

Recommendations for teaching 

Developers of the curriculum, advisory schemes
of work and teaching methods need to be 
aware of the importance of understanding 
new concepts, and avoid teaching solely to pass
test questions, or using solely problem-solving
mathematical activities which do not lead to new
abstract understandings.

Students should be helped to balance the need
for fluency with the need to work with meaning.

Teaching should take into account students’
natural ways of dealing with new perceptual and
verbal information, and the likely misapplications.
Schemes of work and assessment should allow
enough time for students to adapt to new
meanings and move on from earlier methods 
and conceptualizations.

Developers of the curriculum, advisory schemes
of work and teaching methods should give time
for new experiences and mathematical ways of
working to become familiar in several
representations and contexts before moving on.

Students need time and multiple experiences to
develop a repertoire of appropriate functions,
operations, representations and mathematical
methods in order to solve problems and model
situations.

Teaching should ensure conceptual understanding
as well as ‘knowing about’, ‘knowing how to’, and
‘knowing how to use’.

Schemes of work should allow for students 
to have multiple experiences, with multiple
representations over time to develop
mathematically appropriate ‘habits of mind’.

Recommendations
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Research about mathematical
learning

Students who work in computer-
supported multiple representational
contexts over time can understand and
use graphs, variables, functions and the
modelling process. Students who can
choose to use available technology are
better at problem solving, and have
complex understanding of relations, and
have more positive views of mathematics.

Recommendations for teaching 

There are resource implications about the use of
ICT. Students need to be in control of switching
between representations and comparisons of
symbolic expression in order to understand the
syntax and the concept of functions. The United
Kingdom may be lagging behind the developed
world in exploring the use of spreadsheets,
graphing tools, and other software to support
application and authentic use of mathematics.

Recommendations (continued)

Recommendations for research
Application of research findings about problem-solving, modelling and conceptual learning to
current curriculum developments in the United Kingdom suggests that there may be different
outcomes in terms of students’ ability to solve quantitative and spatial problems in realistic
contexts. However, there is no evidence to convince us that the new National Curriculum in
England will lead to better conceptual understanding of mathematics, either at the elementary
levels, which are necessary to learn higher mathematics, or at higher levels which provide the
confidence and foundation for further mathematical study. Where contextual and exploratory
mathematics, integrated through the curriculum, do lead to further conceptual learning it is related
to conceptual learning being a rigorous focus for curriculum and textbook design, and 
in teacher preparation, such as in China, Japan, Singapore, and the Netherlands, or in specifically
designed projects based around such aims.

In the main body of Paper 7: Modelling, solving problems and learning new concepts in secondary
mathematics there are several questions for future research, including the following.

• What are the key conceptual understandings for success in secondary mathematics, from 
the point of view of learning?

• How do students learn new ideas in mathematics at secondary level that depend on
combinations of earlier concepts?

• What evidence is there of the characteristics of mathematics teaching at higher secondary
level which contribute both to successful conceptual learning and application of mathematics?
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