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3 Key understandings in mathematics learning

Headlines

We have assumed a general educational context
which encourages thinking and problem-solving
across subjects. A key difference about mathematics
is that empirical approaches may solve individual
problems, and offer directions for reasoning, but do
not themselves lead to new mathematical knowledge
or mathematical reasoning, or to the power that
comes from applying an abstract idea to a situation.

In secondary mathematics, the major issue is not
how children learn elementary concepts, but what
experiences they have had and how these enable or
limit what else can be learnt.That is why we have
combined several aspects of secondary mathematics
which could be exemplified by particular topics.

• Students have to be fluent in understanding methods
and confident about using them to know why and
when to apply them, but such application does not
automatically follow learning procedures. Students
have to understand the situation as well as being able
to call on a familiar repertoire of ideas and methods.

• Students have to know some elementary concepts
well enough to apply them and combine them to
form new concepts in secondary mathematics, but
little is known from research about what concepts
are essential in this way. Knowledge of a range of
functions is necessary for modelling situations.

• Students have to learn when and how to use
informal, experiential reasoning and when to use
formal, conventional, mathematical reasoning.
Without special attention to meanings many
students tend to apply visual reasoning, or be
triggered by verbal cues, rather than to analyse
situations mathematically.

• In many mathematical situations in secondary
mathematics, students have to look for relations
between numbers and variables and relations
between relations and properties of objects, and
know how to represent them.

How secondary learners tackle
new situations

In new situations students first respond to familiarity
in appearance, or language, or context. They bring
earlier understandings to bear on new situations,
sometimes erroneously. They naturally generalise from
what they are offered, and they often over-generalise
and apply inappropriate ideas to new situations. They
can learn new mathematical concepts either as
extensions or integrations of earlier concepts, and/or
as inductive generalisations from examples, and/or as
abstractions from solutions to problems. 

Routine or context?

One question is whether mathematics is learnt
better from routines, or from complex contextual
situations. Analysis of research which compares how
children learn mathematics through being taught
routines efficiently (such as with computerised and
other learning packages designed to minimise
cognitive load) to learning through problem-solving
in complex situations (such as through Realistic
Mathematics Education) shows that the significant
difference is not about the speed and retention of
learning but what is being learnt. In each approach
the main question for progression is whether the
student learns new concepts well enough to use 
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and adapt them in future learning and outside
mathematics. Both approaches have inherent
weaknesses in this respect. These weaknesses will
become clear in what follows. However, there are
several studies which show that those who develop
mathematical methods of enquiry over time can
then learn procedures easily and do as well, or
better, in general tests.

Problem-solving 
and modelling

To learn mathematics one has to learn to solve
mathematical problems or model situations
mathematically. Studies of students’ problem solving
mainly focus in the successful solution of
contextually-worded problems using mathematical
methods, rather than using problem solving as a
context for learning new concepts and developing
mathematical thinking. To solve unfamiliar problems 
in mathematics, a meta-analysis of 487 studies
concluded that for students to be maximally
successful:
• problems need to be fully stated with supportive

diagrams
• students need to have previous extensive

experience in using the representations used
• they have to have relevant basic mathematical skills

to use
• teachers have to understand problem-solving

methods.

This implies that fluency with representations and
skills is important, but also depends on how clearly
the problem is stated. In some studies the difficulty is
also to do with the underlying concept, for example,
in APU tests area problems were difficult with or
without diagrams. 

To be able to solve problems whose wording does
not indicate what to do, students have to be able
to read the problem in two ways: firstly, their
technical reading skills and understanding of
notation have to be good enough; secondly, they
have to be able to interpret it to understand the
contextual and mathematical meanings. They have
to decide whether and how to bring informal
knowledge to bear on the situation, or, if they
approach it formally, what are the variables and
how do they relate. If they are approaching it
formally, they then have to represent the
relationships in some way and decide how to
operate on them.

International research into the use of ICT to provide
new ways to represent situations and to see
relationships, such as by comparing spreadsheets,
graph plotters and dynamic images appear to speed
up the process of relating representations through
isomorphic reasoning about covariation, and hence
the development of understanding about
mathematical structures and relations.

Application of earlier learning

Knowing methods
Students who have only routine knowledge may not
recognize that it is relevant to the situation. Or they
can react to verbal or visual cues without reference
to context, such as ‘how much?’ triggering
multiplication rather than division, and ‘how many?’
always triggering addition. A further problem is that
they may not understand the underlying relationships
they are using and how these relate to each other.
For example, a routine approach to 2 x 1/3 x 3/2
may neither exploit the meaning of fractions nor the
multiplicative relation.

Students who have only experience of applying
generic problem-solving skills in a range of
situations sometimes do not recognize underlying
mathematical structures to which they can apply
methods used in the past. Indeed, given the well-
documented tendency for people to use ad hoc
arithmetical trial-and-adjustment methods wherever
these will lead to reasonable results, it is possible
that problem-solving experience may not result in
learning new mathematical concepts or working
with mathematical structures, or in becoming fluent
with efficient methods.

Knowing concepts
Students who have been helped to learn concepts,
and can define, recognise and exemplify elementary
ideas are better able to use and combine these
ideas in new situations and while learning new
concepts. However, many difficulties appear to be
due to having too limited a range of understanding.
Their understanding may be based on examples
which have irrelevant features in common, such as
the parallel sides of parallelograms always being
parallel to the edges of a page. Understanding is
also limited by examples being similar to a
prototype, rather than extreme cases. Another
problem is that students may recognize examples of
a concept by focusing too much on visual or verbal
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aspects, rather than their properties, such as
believing that it is possible to construct an
equilateral triangle on a nine-pin geoboard 
because it ‘looks like one’.

Robust connections between and within earlier 
ideas can make it easier to engage with new ideas,
but can also hinder if the earlier ideas are limited and
inflexible. For example, learning trigonometry involves
understanding: the definition of triangle; right-angles;
recognizing them in different orientations; what angle
means and how it is measured; typical units for
measuring lines; what ratio means; similarity of
triangles; how ratio is written as a fraction; how to
manipulate a multiplicative relationship; what ‘sin’
(etc.) means as a symbolic representation of a
function and so on. Thus knowing about ratios 
can support learning trigonometry, but if the
understanding of ‘ratio’ is limited to mixing cake
recipes it won’t help much. To be successful students
have to have had enough experience to be fluent,
and enough knowledge to use methods wisely.

They become better at problem-solving and
modelling when they can:
• draw on knowledge of the contextual situation to

identify variables and relationships and/or, through
imagery, construct mathematical representations
which can be manipulated further

• draw on a repertoire of representations, functions,
and methods of operation on these

• have a purpose for the modelling process, so that
the relationship between manipulations in the
model and changes in the situation can be
meaningfully understood and checked for
reasonableness.

Knowing how to approach
mathematical tasks

To be able to decide when and how to use informal
or formal approaches, and how to use prior
knowledge, students need to be able to think
mathematically about all situations in mathematics
lessons. This develops best as an all-encompassing
perspective in mathematics lessons, rather than
through isolated experiences. 

Students have to:
• learn to avoid instant reactions based in superficial

visual or verbal similarity
• practice using typical methods of mathematical

enquiry explicitly over time

• have experience of mulling problems over time in
order to gain insight.

With suitable environments, tools, images and
encouragement, learners can and do use their
general perceptual, comparative and reasoning
powers in mathematics lessons to:
• generalise from what is offered and experienced
• look for analogies
• identify variables
• choose the most efficient variables, those with 

most connections
• see simultaneous variations
• understand change
• reason verbally before symbolising
• develop mental models and other imagery
• use past experience of successful and unsuccessful

attempts
• accumulate knowledge of operations and situations

to do all the above successfully

Of course, all the tendencies just described can also
go in unhelpful directions and in particular people
tend to: 
• persist in using past methods and applying

procedures without meaning, if that has been their
previous mathematical experience

• get locked into the specific situation and do not, by
themselves, know what new mathematical ideas
can be abstracted from these experiences

• be unable to interpret symbols, text, and other
representations in ways the teacher expects

• use additive methods; assume that if one variable
increases so will another; assume that all change is
linear ; confuse quantities.
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RECOMMENDATIONS 

Research about mathematical
learning

Learning routine methods and learning
through complex exploration lead to
different kinds of knowledge and cannot
be directly compared; neither method
necessarily enables learning new concepts
or application of powerful mathematics
ideas. However, those who have the habit
of complex exploration are often able to
learn procedures quickly.

Students naturally respond to familiar
aspects of mathematics; try to apply prior
knowledge and methods, and generalize
from their experience.

Students are more successful if they 
have a fluent repertoire of conceptual
knowledge and methods, including
representations, on which to draw.

Multiple experiences over time enable
students to develop new ways to work on
mathematical tasks, and to develop the
ability to choose what and how to apply
earlier learning.

Students who work in computer-
supported multiple representational
contexts over time can understand and
use graphs, variables, functions and the
modelling process. Students who can
choose to use available technology are
better at problem solving, and have
complex understanding of relations, and
have more positive views of mathematics.

Recommendations for teaching 

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of the importance of
understanding new concepts, and avoid teaching solely to pass
test questions, or using solely problem-solving mathematical
activities which do not lead to new abstract understandings.

Students should be helped to balance the need for fluency
with the need to work with meaning.

Teaching should take into account students’ natural ways of
dealing with new perceptual and verbal information, and the
likely misapplications. Schemes of work and assessment should
allow enough time for students to adapt to new meanings and
move on from earlier methods and conceptualizations.

Developers of the curriculum, advisory schemes of work and
teaching methods should give time for new experiences and
mathematical ways of working to become familiar in several
representations and contexts before moving on.

Students need time and multiple experiences to develop a
repertoire of appropriate functions, operations,
representations and mathematical methods in order to solve
problems and model situations.

Teaching should ensure conceptual understanding as well as
‘knowing about’, ‘knowing how to’, and ‘knowing how to use’.

Schemes of work should allow for students to have multiple
experiences, with multiple representations over time to
develop mathematically appropriate ‘habits of mind’.

There are resource implications about the use of ICT. Students
need to be in control of switching between representations and
comparisons of symbolic expression in order to understand the
syntax and the concept of functions. The United Kingdom may
be lagging behind the developed world in exploring the use of
spreadsheets, graphing tools, and other software to support
application and authentic use of mathematics.



Recommendations for research

Application of research findings about problem-
solving, modelling and conceptual learning to current
curriculum developments in the United Kingdom
suggests that there may be different outcomes in
terms of students’ ability to solve quantitative and
spatial problems in realistic contexts. However, there
is no evidence to convince us that the new National
Curriculum in England will lead to better conceptual
understanding of mathematics, either at the
elementary levels, which are necessary to learn
higher mathematics, or at higher levels which provide
the confidence and foundation for further
mathematical study. Where contextual and
exploratory mathematics, integrated through the
curriculum, do lead to further conceptual learning it
is related to conceptual learning being a rigorous
focus for curriculum and textbook design, and in
teacher preparation, such as in China, Japan,
Singapore, and the Netherlands, or in specifically
designed projects based around such aims.

In the main body of Paper 7: Modelling, solving
problems and learning new concepts in secondary
mathematics there are several questions for future
research, including the following.
• What are the key conceptual understandings for

success in secondary mathematics, from the point
of view of learning?

• How do students learn new ideas in mathematics
at secondary level that depend on combinations of
earlier concepts?

• What evidence is there of the characteristics of
mathematics teaching at higher secondary level
which contribute both to successful conceptual
learning and application of mathematics?

7 Key understandings in mathematics learning
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Introduction

By the time students enter secondary school, they
possess not only intuitive knowledge from outside
mathematics and outside school, but also a range of
quasi-intuitive understandings within mathematics,
derived from earlier teaching and from their
memory of generalisations, metaphors, images,
metonymic associations and strategies that have
served them well in the past. Many of these typical
understandings are described in the previous
chapters. Tall and Vinner (1981) called these
understandings ‘concept images’, which are a ragbag
of personal conceptual, quasi-conceptual, perceptual
and other associations that relate to the language of
the concept and are loosely connected by the
language and observable artefacts associated with
the concept. Faced with new situations, students will
apply whatever familiar methods and associations
come to mind relatively quickly – perhaps not
realising that this can be a risky strategy. If ‘doing
what I think I know how to do’ leads so easily to
incorrect mathematics it is hardly surprising that
many students end up seeing school mathematics 
as the acquisition and application of methods, and a
site of failure, rather than as the development of a
repertoire of adaptable intellectual tools. 

At secondary level, new mathematical situations are
usually ideas which arise through mathematics and
can then be applied to other areas of activity; it is
less likely that mathematics involves the formalisation
of ideas which have arisen from outside experience
as is common in the primary phase. Because of this
difference, learning mathematics at secondary level
cannot be understood only in terms of overall
cognitive development. For this review, we
developed a perspective which encompasses both

the ‘pure’ and ‘applied’ aspects of learning at
secondary level, and use research from both
traditions to devise some common implications 
and overall recommendations for practice.

Characteristics of learning
secondary mathematics

We justify the broad scope of this chapter by
indicating similarities between the learning of the new
concepts of secondary mathematics and learning how
to apply mathematics to analyse, express and solve
problems in mathematical and non-mathematical
contexts. Both of these aspects of learning
mathematics depend on interpreting new situations
and bringing to mind a repertoire of mathematical
concepts that are understood and fluent to some
extent. In this review we will show that learning
secondary mathematics presents core common
difficulties, whatever the curriculum approach being
taken, which need to be addressed through pedagogy. 

In all teaching methods, when presented with a new
stimulus such as a symbolic expression on the board,
a physical situation, or a statement of a complex ill-
defined ‘real life’ problem, the response of an
engaged learner is to wonder:

What is this? This entails ‘reading’ situations, 
usually reading mathematical representations or
words, and interpreting these in conventional
mathematical ways. It involves perception, attention,
understanding representations and being able to
decipher symbol systems.

8 Paper 7: Modelling, problem-solving and integrating concepts
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What is going on here? This entails identifying
salient features including non-visual aspects,
identifying variables, relating parts to each other,
exploring what changes can be made and the effects
of change, representing situations in mathematical
ways, anticipating what might be the purpose of a
mathematical object. It involves attention, visualisation,
modelling, static and dynamic representations,
understanding functional, statistical and geometrical
relationships, focusing on what is mathematically
salient and imagining the situation or a
representation of it. 

What do I know about this? This entails recognising
similarities, seeking for recognisable structures
beyond visual impact, identifying variables, proposing
suitable functions, drawing on repertoire of past
experiences and choosing what is likely to be useful.
Research about memory, problem-solving, concept
images, modelling, functions, analysis and analogical
reasoning is likely to be helpful.

What can I do? This entails using past experience to
try different approaches, heuristics, logic, controlling
variables, switching between representations,
transforming objects, applying manipulations and
other techniques. It involves analogical reasoning,
problem-solving, tool-use, reasoning, generalisation and
abstraction, and so on.

Thus, students being presented with the task of
understanding new ideas draw on past experience, if
they engage with the task at all, just as they would if
offered an unfamiliar situation and asked to express
it mathematically. They may only get as far as the first
step of ‘reading’ the stimulus. The alternative is to
wait to be told what to do and treat everything as
declarative, verbatim, knowledge. A full review of
relevant research in all these areas is beyond the
scope of this paper, and much of it is generic rather
than concerned with mathematics.

We organise this Paper into three parts: Part 1 
looks at what learners have to be able to do 
to be successful in these aspects of secondary
mathematics; Part 2 considers what learners actually
do when faced with new complex mathematical
situations; and Part 3 reviews what happens with
pedagogic intervention designed to address typical
difficulties. We end with recommendations for future
research, curriculum development and practice.

Part 1: What learners have to 
be able to do in secondary
mathematics
In this chapter we describe what learners have to 
be able to do in order to learn new concepts, solve
problems, model mathematical situations, and engage
in mathematical thinking.

Learning ‘new’ concepts

Extension of meaning
Throughout school, students meet familiar ideas used
in new contexts which include but extend their old
use, often through integrating simpler concepts into
more complex ideas. Sfard (1991) describes this
process of development of meaning as consisting of
‘interiorization’ through acting on a new idea with
some processes so that it becomes familiar and
meaningful; understanding and expressing these
processes and their effects as manageable units
(condensation), and then this new structure
becomes a thing in itself (reified) that can be 
acted on as a unit in future. 

In this way, in algebra, letters standing for numbers
become incorporated into terms and expressions
which are number-like in some uses and yet cannot
be calculated. Operations are combined to describe
structures, and expressions of structures become
objects which can be equated to each other. Variables
can be related to each other in ways that represent
relationships as functions, rules for mapping one
variable domain to another (see the earlier chapters
on functional relations and algebraic thinking). 

Further, number develops from counting, whole
numbers, and measures to include negatives,
rationals, numbers of the form a + b √n where a
and b are rationals, irrationals and transcendentals,
expressions, polynomials and functions which are
number-like when used in expressions, and the uses
of estimation which contradict earlier shifts towards
accuracy. Eventually, two-dimensional complex
numbers may also have to be understood. Possible
discontinuities of meaning can arise between discrete
and continuous quantities, monomials and
polynomials, measuring and two-dimensionality, and
different representations (digits, letters, expressions
and functions).

Graphs are used first to compare values of various
discrete categories, then are used to express two-
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dimensional discrete and continuous data as in
scatter-graphs, or algebraic relationships between
continuous variables, and later such relationships,
especially linear ones, might be fitted to statistical
representations.

Shapes which were familiar in primary school have 
to be defined and classified in new ways, and new
properties explored, new geometric configurations
become important and descriptive reasoning based
on characteristics has to give way to logical
deductive reasoning based on relational properties.
Finally, all this has to be applied in the three-
dimensional contexts of everyday life.

The processes of learning are sometimes said to
follow historical development, but a better analogy
would be to compare learning trajectories with the
conceptual connections, inclusions and distinctions of
mathematics itself. 

Integration of concepts
As well as this kind of extension, there are new ‘topics’
that draw together a range of earlier mathematics.
Typical examples of secondary topics are quadratic
functions and trigonometry. Understanding each of
these depends to some extent on understanding a
range of concepts met earlier.

Quadratic functions: Learning about quadratic
functions includes understanding:
• the meaning of letters and algebraic syntax; 
• when letters are variables and when they can be

treated as unknown numbers; 
• algebraic terms and expressions; 
• squaring and square rooting; 
• the conventions of coordinates and graphing

functions; 
• the meaning of graphs as representing sets of

points that follow an algebraic rule; 
• the meaning of ‘=’; 
• translation of curves and the ways in which they

can change shape; 
• that for a product to equal zero at least one of its

terms must equal zero and so on.

Trigonometry: Learning this includes knowing:
• the definition of triangle; 
• about right-angles including recognizing them in

different orientations; 
• what angle means and how it is measured; 
• typical units for measuring lines; 
• what ratio means; 
• similarity of triangles; 

• how ratio is written as a fraction; 
• how to manipulate a multiplicative relationship; 
• what ‘sin’ (etc.) means as a symbolic representation

of a function and so on.

New concepts therefore develop both through
extension of meaning and combination of concepts.
In each of these the knowledge learners bring to 
the new topic has to be adaptable and usable, not 
so strongly attached to previous contexts in which 
it has been used that it cannot be adapted. A
hierarchical ‘top down’ view of learning mathematics
would lead to thinking that all contributory concepts
need to be fully understood before tackling new
topics (this is the view taken in the NMAP review
(2008) but is unsupported by research as far as we
can tell from their document). By contrast, if we take
learners’ developing cognition into account we see
that ‘full understanding’ is too vague an aim; it is the
processes of applying and extending prior knowledge
in the context of working on new ideas that
contribute to understanding.

Whichever view is taken, learners have to bring
existing understanding to bear on new mathematical
contexts. There are conflicting research conclusions
about the process of bringing existing ideas to bear
on new stimuli: Halford (e.g. 1999) talks of conceptual
chunking to describe how earlier ideas can be drawn
on as packages, reducing to simpler objects ideas
which are initially formed from more complex ideas,
to develop further concepts and argues for such
chunking to be robust before moving on. He focuses
particularly on class inclusion (see Paper 5,
Understanding space and its representation in
mathematics) and transitivity, structures of relations
between more than two objects, as ideas which are
hard to deal with because they involve several levels
of complexity. Examples of this difficulty were
mentioned in Paper 4, Understanding relations and
their graphical representation, showing how relations
between relations cause problems. Chunking includes
loss of access to lower level meanings, which may be
useful in avoiding unnecessary detail of specific
examples, but can obstruct meaningful use.
Freudenthal (1991, p. 469) points out that automatic
connections and actions can mask sources of insight,
flexibility and creativity which arise from meanings. He
observed that when students are in the flow of
calculation they are not necessarily aware of what
they are doing, and do 
not monitor their work. It is also the case that much
of the chunking that has taken place in earlier
mathematics is limited and hinders and obstructs
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future learning, leading to confusion with
contradictory experiences. For example, the
expectation that multiplication will make ‘things’ bigger
can hinder learning that it only means this sometimes
– multiplication scales quantities in a variety of ways.
The difficulties faced by students whose understanding
of the simpler concepts learnt in primary school is
later needed for secondary mathematical ideas, are
theorised by, among others, Trzcieniecka-Schneider
(1993) who points out that entrenched and limited
conceptual ideas (including what Fischbein calls
‘intuitions’ (1987) and what Tall calls ‘metbefores’
(2004)) can hinder a student’s approach to unfamiliar
examples and questions and create resistance, rather
than a willingness to engage with new ideas which
depend on adapting or giving up strongly-held notions.
This leads not only to problems understanding new
concepts which depend on earlier concepts, but also
makes it hard for learners to see how to apply
mathematics in unfamiliar situations. On the other
hand, it is important that some knowledge is fluent
and easily accessible, such as number bonds,
recognition of multiples, equivalent algebraic forms, 
the shape of graphs of common functions and so 
on. Learners have to know when to apply ‘old’
understandings to be extended, and when to give
them up for new and different understandings. 

Inductive generalisation
Learners can also approach new ideas by inductive
generalisation from several examples. English and
Halford (1995 p. 50) see this inductive process1 as
the development of a mental model which fits the
available data (the range of examples and instances
learners have experienced) and from which
procedures and conjectures can be generated. For
example, learners’ understanding about what a linear
graph can look like is at first a generalisation of the
linear graphs they have seen that have been named
as such. Similarly, learners’ conjectures about the
relationship between the height and volume of water
in a bottle, given as a data set, depends on reasoning
both from the data and from general knowledge of
such changes. Leading mathematicians often remark
that mathematical generalisation also commonly
arises from abductive reasoning on one generic
example, such as conjectures about relationships
based on static geometrical diagrams. For both these
processes, the examples available as data, instances,
and illustrations from teachers, textbooks and other
sources play a crucial role in the process. Learners
have to know what features are salient and generalise
from them. Often such reasoning depends on
metonymic association (Holyoak and Thagard, 1995),

so that choices are based on visual, linguistic and cues
which might be misleading (see also earlier chapter
on number) rather than mathematical meaning. As
examples: the prototypical parallelogram has its
parallel edges horizontal to the page; and x2 and 2x
are confused because it is so common to use ‘x = 2’
as an example to demonstrate algebraic meaning.

Abstraction of relationships
A further way to meet new concepts is through a
process of ‘vertical mathematisation’ (Treffers, 1987)
in which experience of solving complex problems
can be followed by extracting general mathematical
relationships. It is unlikely that this happens naturally
for any but a few students, yet school mathematics
often entails this kind of abstraction. The Freudenthal
Institute has developed this approach through
teaching experiments and national roll-out over a
considerable time, and its Realistic Mathematics
Education (e.g. Gravemeijer and Doorman, 1999)
sees mathematical development as 
• seeing what has to be done to solve the kinds 

of problems that involve mathematics
• from the solutions extracting new mathematical

ideas and methods to add to the repertoire
• these methods now become available for future

use in similar and new situations (as with Piaget’s
notion of reflective abstraction and Polya’s 
‘looking back’). 

Gravemeijer and Doorman show that this approach,
which was developed for primary mathematics, is
also applicable to higher mathematics, in this case
calculus. They refer to ‘the role models can play in a
shift from a model of situated activity to a model for
mathematical reasoning. In light of this model-
of/model-for shift, it is argued that discrete functions
and their graphs play a key role as an intermediary
between the context problems that have to be
solved and the formal calculus that is developed.’ 

Gravemeijer and Doorman’s observation explains
why, in this paper, we are treating the learning of
new abstract concepts as related to the use of
problem-solving and modelling as forms of
mathematical activity. In all of these examples of new
learning, the fundamental shift learners are expected
to make, through instruction, is from informal,
experiential, engagement using their existing
knowledge to formal, conventional, mathematical
understanding. This shift appears to have three
components: construction of meaning; recognition in
new contexts; playing with new ideas to build further
ideas (Hershkowitz, Schwartz and Dreyfus, 2001).

11 Key understandings in mathematics learning
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It would be wrong to claim, however, that learning
can only take place through this route, because
there is considerable evidence that learners can
acquire routine skills through programmes of
carefully constructed, graded, tasks designed to deal
educatively with both right answers and common
errors of reasoning, giving immediate feedback
(Anderson , Corbett, Koedinger and Pelletier, 1995).
The acquisition of routine skills without explicit
work on their meaning is not the focus of this
paper, but the automatisation of routines so that
learners can focus on structure and meaning by
reflection later on has been a successful route for
some in mathematics.

There is recent evidence from controlled trials
that learning routines from abstract presentations
is a more efficient way to learn about underlying
mathematical structure than from contextual,
concrete and story-based learning tasks (Kaminski,
Sloutsky and Heckler, 2008). There are several
problems with their findings, for example in one
study the sample consisted of undergraduates for
whom the underlying arithmetical concept being
taught would not have been new, even if it had
never been explicitly formalised for them before.
In a similar study with 11-year-olds, addition
modulo 3 was being taught. For one group a
model of filling jugs with three equal doses was
used; for the other group abstract symbols were
used. The test task consisted of spurious
combinatorics involving three unrelated objects2.
Those who had been taught using abstract
unrelated symbols did better, those who had been
taught using jug-filling did not so well. While these
studies suggest that abstract knowledge about
structures is not less applicable than experience
and ad hoc knowledge, they also illuminate the
interpretation difficulties that students have in
learning how to model phenomena
mathematically, and how familiar meanings 
(e.g. about jug-filling) dominate over abstract
engagement. What Kaminski’s results say to
educationists is not ‘abstract rules are better’ but
‘be clear about the learning outcomes you are
hoping to achieve and do not expect easy 
transfer between abstract procedures and
meaningful contexts’.

Summary
• Learners have to understand new concepts as

extensions or integrations of earlier concepts, as
inductive generalisations from examples, and as
abstractions from solutions to problems.

• Robust chunking of earlier ideas can make it easier
to engage with new ideas, but can also hinder if the
earlier ideas are limited and inflexible.

• Routine skills can be adopted through practise 
to fluency, but this does not lead to conceptual
understanding, or ability to adapt to unfamiliar
situations, for many students.

• Learners have to know when and how to bring
earlier understandings to bear on new situations.

• Learners have to know how and when to shift
between informal, experiential activity to formal,
conventional, mathematical activity.

• There is no ‘best way’ to teach mathematical
structure: it depends whether the aim is to become
fluent and apply methods in new contexts, or to
learn how to express structures of given situations.

Problem-solving

The phrase ‘problem-solving’ has many meanings 
and the research literature often fails to make
distinctions. In much research solving word problems
is seen as an end in itself and it is not clear whether
the problem introduces a mathematical idea,
formalises an informal idea, or is about translation of
words into mathematical instructions. There are
several interpretations and the ways students learn,
and can learn, differ accordingly. The following are the
main uses of the phrase in the literature.

1 Word problems with arithmetical steps used to
introduce elementary concepts by harnessing
informal knowledge, or as situations in which
learners have to apply their knowledge of
operations and order (see Paper 4, Understanding
relations and their graphical representation).

These situations may be modelled with concrete
materials, diagrams or mental images, or might draw
on experiences outside school. The purpose may
be either to learn concepts through familiar
situations, or to learn to apply formal or informal
mathematical methods. For example, upper primary
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students studied by Squire, Davies and Bryant
(2004) were found to handle commutativity much
better than distributivity, which they could only do 
if there were contextual cues to help them. For
teaching purposes this indicates that distributive
situations are harder to recognise and handle, and a
mathematical analysis of distributivity supports this
because it entails encapsulation of one operation
before applying the second and recognition of the
importance of order of operations.

2 Worded contexts which require the learner to decide to
use standard techniques, such as calculating area, time,
and so on. Diagrams, standard equations and graphs
might offer a bridge towards deciding what to do.
For instance, consider this word problem: ‘The area
of a triangular lawn is 20 square metres, and one
side is 5 metres long. If I walk in a straight line from
the vertex opposite this side, towards this side, to
meet it at right angles, how far have I walked?’ The
student has to think of how area is calculated,
recognise that she has been given a ‘base’ length and
asked about ‘height’, and a diagram or mental image
would help her to ‘see’ this. If a diagram is given
some of these decisions do not have to be made,
but recognition of the ‘base’ and ‘height’ (not
necessarily named as such) and knowledge of area
are still crucial.

In these first two types of problem, Vergnaud’s
classification of three types of multiplicative problems
(see Paper 4, Understanding relations and their
graphical representation) can be of some help if they
are straightforwardly multiplicative. But the second
type often calls for application of a standard formula
which requires factual knowledge about the situation,
and understanding the derivation of formulae so that
their components can be recognised.

3 Worded contexts in which there is no standard
relationship to apply, or algorithm to use, but an
answer is expected. Typically these require setting
up an equation or formula which can then be
applied and calculated. This depends on
understanding the variables and relationships; these
might be found using knowledge of the situation,
knowledge of the meaning of operations, mental
or graphical imagery. For example, consider the
question, ‘One side of a rectangle is reduced in
length by 20%, the other side in increased by 20%;
what change takes place in the area?’ The student
is not told exactly what to do, and has to develop
a spatial, algebraic or numerical model of the
situation in order to proceed. She might decide

that this is about representing the changed lengths
in terms of the old lengths, and that these lengths
have to be multiplied to understand what happens
to the area. She might ascribe some arbitrary
numbers to help her do this, or some letters, or
she might realise that these are not really relevant
– but this realisation is quite sophisticated.
Alternatively she might decide that this is an
empirical problem and generate several numerical
examples, then using inductive reasoning to give a
general answer.

4 Exploratory situations in which there is an ill-defined
problem, and the learner has to mathematise by
identifying variables and conjecturing relationships,
choosing likely representations and techniques.
Knowledge of a range of possible functions may 
be helpful, as is mental or graphical imagery. 

In these situations the problem might have been
posed as either quasi-abstract or situated. There may
be no solution, for example: ‘Describe the advantages
and disadvantages of raising the price of cheese rolls
at the school tuck shop by 5p, given that cheese
prices have gone down by 5% but rolls have gone
up by 6p each’. Students may even have posed the
entire situation themselves. They have to treat this as
a real situation, a real problem for them, and might
use statistical, algebraic, logical or ad hoc methods. 

5 Mathematical problems in which a situation is
presented and a question posed for which there is
no obvious method. This is what a mathematician
means by ‘problem’ and the expected line of attack
is to use the forms of enquiry and mathematical
thinking specific to mathematics. For example:
‘What happens to the relationship between the
sum of squares of the two shorter sides of
triangles and the square on the longer side if we
allow the angle between them to vary?’ We leave
these kinds of question for the later section on
mathematical thinking.

Learning about students’ solution methods for
elementary word problems has been a major focus 
in research on learning mathematics. This research
focuses on two stages: translation into mathematical
relations, and solution methods3. A synthesis can be
found in Paper 4, Understanding relations and their
graphical representation. It is not always clear in the
research whether the aim is to solve the original
problem, to become better at mathematising
situations, or to demonstrate that the student can use
algebra fluently or knows how to apply arithmetic.

13 Key understandings in mathematics learning



14 SUMMARY – PAPER 2: Understanding whole numbers

Students have to understand that there will be several
layers to working with worded problems and cannot
expect to merely read and know immediately what 
to do. Problems in which linguistic structure matches
mathematical structure are easier because they only
require fluent replacement of words and numbers by
algebra. For example, analysis according to cognitive
load theory informs us that problems with fewer
words, requiring fewer operations, and where the
linguistic structure matches the mathematical structure
closely, are easier for learners to solve algebraically
(Kintsch, 1986), but this is tautologous as such
problems are necessarily easier since they avoid the
need for interpretation and translation. Such
interpretation may or may not be related to
mathematical understanding. This research does,
however, alert us to the need for students to learn
how to tackle problems which do not translate easily
– simply knowing what to do with the algebraic
representation is not enough. In Paper 4,
Understanding relations and their graphical
representation, evidence is given that rephrasing the
words to make meaning more clear might hinder
learning to transform the mathematical
relationships in problems. 

Students might start by looking at the numbers
involved, thinking about what the variables are and
how they relate, or by thinking of the situation and
what they expect to happen in it. Whether the
choice of approach is appropriate depends on
curriculum aims, and this observation will crop up
again and again in this chapter. It is illustrated in the
assumptions behind the work of Bassler, Beers and
Richardson (1975). They compared two approaches
to teaching 15-year-olds how to solve verbal
problems, one more conducive to constructing
equations and the other more conducive to grasping
the nature of the problem. Of course, different
emphases in teaching led to different outcomes in the
ways students approached word problems. If the aim
is for students to construct symbolic equations, then
strategies which involve identification of variables and
relationships and understanding how to express them
are the most appropriate. If the aim is for learners to
solve the problem by whatever method then a more
suitable approach might be for them to imagine the
situation and choose from a range of representations
(graphical, numerical, algebraic, diagrammatic) possibly
shifting between them, which can be manipulated to
achieve a solution. 

Clements (1980) and others have found that with
elementary students reading and comprehension

account for about a quarter of the errors of lower
achieving students. The initial access to such problems
is therefore a separate issue before students have to
anticipate and represent (as Boero (2001) describes
the setting-up stage) the mathematics they are going
to use. Ballew and Cunningham (1982) with a sample
of 217 11-year-olds found that reading and
computational weaknesses were to blame for
difficulties alongside interpretation – but they may
have underestimated the range of problems lurking
within ‘interpretation’ because they did not probe 
any further than these two variables and the links
between reading, understanding the relations, and
deciding what to compute were not analysed.
Verschaffel, De Corte and Vierstraete (1999)
researched the problem-solving methods and
difficulties experienced by 199 upper primary
students with nine word problems which combined
ordinal and cardinal numbers. Questions were
carefully varied to require different kinds of
interpretation. They found, among other
characteristics, that students tended to choose
operations according to the relative size of the
numbers in the question and that choice of formal
strategies tended to be erroneous while informal
strategies were more likely to be correct.
Interpretation therefore depends on understanding
operations sufficiently to realize where to apply them,
recognizing how variables are related, as well as
reading and computational accuracy. Success also
involves visualising, imagining, identifying relationships
between variables. All these have to be employed
before decisions about calculations can be made.
(This process is described in detail in Paper 2 for the
case of distinguishing between additive and
multiplicative relations.) Then learners have to know
which variable to choose as the independent variable,
recognise how to express other variables in relation
to it, have a repertoire of knowledge of operations
and functions to draw on, and think to draw on
them. Obviously elementary arithmetical skills are
crucial, but automatisation of procedures only aids
solution if the structural class is properly identified in
the first place. Automatisation of techniques can
hinder solution of problems that are slightly different
to prior experience because it can lead to over-
generalisation and misapplication, and attention to
language and layout cues rather than the structural
meaning of the stated problem. For example, if
learners have decided that ‘how many…?’ questions
always indicate a need to use multiplication (as in ‘If
five children have seven sweets each, how many do
they have in total?’) they may find it hard to answer
the question ‘If 13 players drink 10 litres of cola, how
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many should I buy for 22 players?’ because the
answer is not a straightforward application of
multiplication. The ‘automatic’ association of ‘how
many’ with a multiplication algorithm, whether it is
taught or whether learners have somehow devised it
for themselves, would lead to misapplication.

Learners may not know how and when to bring
other knowledge into play; they may not have had
enough experience of producing representations to
think to use them; the problem may offer a
representation (e.g. diagram) that does not for them
have meaning which can match to the situation. If
they cannot see what to do, they may decide to try
possible numbers and see what happens. A difficulty
with successive approximation is that young learners
often limit themselves to natural numbers, and do
not develop facility with fractions which appear as a
result of division, nor with decimals which are
necessary to deal with ‘a little bit more than’ and ‘a
little bit less than’. An area which is well-known to
teachers but is under-researched is how learners
shift from thinking about only about natural numbers
in trial-and-adjustment situations.

Caldwell and Goldin (1987) extended what was
already well-known for primary students into the
secondary phase, and found that abstract problems
were, as for primary, significantly harder than
concrete ones for secondary students in general, but
that the differences in difficulty became smaller for
older students. ‘Concrete problems’ were those
couched in terms of material objects and realistic
situations, ‘abstract’ problems were those which
contained only abstract objects and/or symbols. They
analysed the scripts of over 1000 students who took
a test consisting of 20 problems designed along the
concrete-abstract dimension in addition to some
other variables. Lower secondary students
succeeded on 55% of the concrete problems and
43% abstract, whereas higher secondary students
succeeded on 69% of concrete and 66% of abstract.
Whether the narrowing of the gap is due to
teaching (as Vygotsky might suggest) or natural
maturation (as some interpretations of Piaget might
suggest) we do not know. They also found that
problems which required factual knowledge are
easier than those requiring hypotheses for secondary
students, whereas for primary students the reverse
appeared to be true. This shift might be due to
adolescents being less inclined to enter imaginary
situations, or to adolescents knowing more facts, or it
may be educative due to the emphasis teachers put
on factual rather than imaginative mathematical

activity. However, it is too simplistic to say ‘applying
facts is easy’. In this study, further analysis suggests
that the questions posed may not have been
comparable on a structural measure of difficulty,
number of variables and operations for example,
although comparing ‘level of difficulty’ in different
question-types is not robust. 

In a well-replicated result, the APU sample of 
15-year-olds found area and perimeter problems
equally hard both in abstract and diagrammatic
presentations (Foxman et al. 1985). A contextual
question scored 10% lower than abstract versions.
The only presentation that was easier for area was
‘find the number of squares in…’ which virtually tells
students to count squares and parts of squares. In a
teaching context, this indication of method is not
necessarily an over-simplification. Dickson’s study of
students’ interpretation of area (in four schools)
showed that, given the square as a measuring unit,
students worked out how to evaluate area and in
then went on to formalise their methods and even
devise the rectangle area formula themselves (1989). 

The research findings are therefore inconclusive about
shifts between concrete and abstract approaches
which can develop in the normal conditions of school
mathematics, but the role of pedagogy indicates that
more might be done to support abstract reasoning
and hypothesising as important mathematical practices
in secondary school. 

Hembree’s meta-analysis (1992) of 487 studies of
problem-solving gives no surprises – the factors that
contribute to success are: 
• that problems are fully stated with supportive

diagrams
• that students have previous extensive experience in

using the representations used
• that they have relevant basic mathematical skills to

use
• that teachers who understand problem-solving

methods are better at teaching them
• that heuristics might help in lower secondary.

Hembree’s analysis seems to say that learners get to
the answer easiest if there is an obvious route to
solution. While Hembree did a great service in
producing this meta-analysis, it fails to help with the
questions: How can students learn to create their
own representations and choose between them?
How can students learn to devise new methods to
solve new problems? How can students learn to act
mathematically in situations that are not fully defined?
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How do students get the experience that makes
them better at problem-solving? An alternative
approach is to view problem-solving as far from
clear-cut and instead to see each problem as a
situation requiring modelling (see next section). 

Summary
To solve problems posed for pedagogic purposes,
secondary mathematics learners have to:
• be able to read and understand the problem
• know when they are expected to use formal

methods
• know which methods to apply and in what order

and how to carry them out
• identify variables and relationships, choosing which

variable to treat as independent
• apply appropriate knowledge of situations and

operations
• use mental, graphical and diagrammatic imagery
• choose representations and techniques and know

how to operate with them
• know a range of useful facts, operations and

functions
• decide whether to use statistical, algebraic, logical

or ad hoc methods.

Modelling

In contrast to ‘problem-solving’ situations in which the
aim and purpose is often ambiguous, modelling refers
to the process of expressing situations in conventional
mathematical representations which afford
manipulation and exploration. Typically, learners are
expected to construct an equation, function or

diagram which represents the variables in the situation
and then, perhaps, solve an equation or answer some
other related question based on their model4. Thus
modelling presents many of the opportunities and
obstacles described under ‘problem-solving’ above but
the emphasis of this section is to focus on the
identification of variables and relationships and the
translation of these into representations. Carpenter,
Ansell, Franke, Fennema and Weisbeck (1993) show
that even very young children can do far more
sophisticated quantitative reasoning when modelling
situations for themselves than is expected if we think
of it solely as application of known operations,
because they bring their knowledge of acting in similar
situations to bear on their reasoning.

A typical modelling cycle involves representing a
realistic situation in mathematical symbols and then
using isomorphism between the model and the
situation, manipulate variables either in the model or
the situation and observe how such transformations
re-translate between the model and the situation. This
duality is encapsulated in the ideas of model-of and
model-for. The situation is an instantiation of an abstract
model. The abstract model becomes a model-for being
used to provide new insights and possibilities for the
original situation. This isomorphic duality is a more
general version of Vergnaud’s model described in
Paper 4, Understanding relations and their graphical
representation. For learners, the situation can provide
insight into possibilities in the mathematics, or the
mathematics can provide insights into the situation. For
example, a graphical model of temperature changes
can afford prediction of future temperatures, while
actual temperature changes can afford understanding
of continuous change as expressed by graphs. 
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Research literature in this area gives primacy to
different features. We are limited to looking at
teaching experiments which are necessarily influenced
by particular curriculum aims. Either the research
looks at the learning of functions (that is extending
the learners’ repertoire of standard functions and
their understanding of their features and properties)
and sees modelling, interpreting and reifying functions
as components of that learning (e.g. O’Callaghan,
1998), or the research sees skill in the modelling
process as the goal of learning and sees knowledge 
of functions (their types and behaviour) as an
essential component of that. In either approach there
are similar difficulties. O’Callaghan, (1998) using a
computer-intensive approach, found that while
students did achieve a better understanding of
functions through modelling than comparable
students pursuing a traditional ‘pure’ course, and were
more motivated and engaged in mathematics, they
were no better at reifying what they had learnt than
the traditional students. In pre- and post-tests
students were asked to: model a situation using a
function; interpret a function in a realistic situation;
translate between representations; and use and
transform algebraic functions which represent a
financial situation. Students’ answers improved in all
but the last task which required them to understand
the role of variables in the functions and the relation
between the functions. In other words, they were
good at modelling but not at knowing more about
functions as objects in their own right. 

MacGregor and Stacey (1993) (281 lower-secondary
students in free response format and 1048 similar
students who completed a multiple-choice item)
show that the relationship between words, situations
and making equations is not solely one of translating
into symbols and correct algebra, rather it involves
translating what is read into some kind of model
developed from an existing schema and then
representing the model – so there are two stages at
which inappropriate relationships can be introduced,
the mental model and the expressions of that
model. The construction of mental models is
dependent on:
• what learners know of the situation and how they

imagine it
• how this influences their identification of variables,

and 
• their knowledge of possible ways in which variables

can vary together. 

What is it that students can see? Carlson and
colleagues (2002) investigated students’ perceptions

and images of covariation, working mainly with
undergraduates. The task is to work out how one
variable varies in relation to another variable. Their
findings have implications for younger students,
because they find that their students can construct
and manipulate images of how a dependent variable
relates to the independent variable in dynamic
events, such as when variation is positional, or visually
identifiable, or can be seen to increase or decrease
relative to the dependent variable, but the rate at
which it changes change is harder to imagine. For
our purposes, it is important to know that
adolescents can construct images of relationships, but
O’Callaghan’s work shows that more is required for
this facility to be used to develop knowledge of
functions. When distinguishing between linear and
quadratic functions, for example, rate of change is a
useful indicator instead of some particular values, the
turning point or symmetrical points, which may not
be available in the data.

Looking at situations with a mathematical
perspective is not something that can be directly
taught as a topic, nor does it arise naturally out of
school mathematical learning. Tanner and Jones
(1994) worked with eight schools introducing
modelling to their students. Their aim was not to
provide a vehicle to learning about functions but to
develop modelling skills as a form of mathematical
enquiry. They found that modelling had to be
developed over time so that learners developed a
repertoire of experience of what kinds of things to
focus on. Trelinski (1983) showed that of 223
graduate maths students only 9 could construct
suitable mathematical models of non-mathematical
situations – it was not that they did not know the
relevant mathematics, but that they had never been
expected to use it in modelling tasks before. It does
not naturally follow that someone who is good at
mathematics and knows a lot about functions
automatically knows how to develop models.

So far we have only talked about what happens when
learners are asked to produce models of situations.
Having a use for the models, such as a problem to
solve, might influence the modelling process. Campbell
, Collis and Watson (1995) extended the findings of
Kouba’s research (1989) (reported in Paper 4) and
analysed the visual images produced and used by four
groups of 16-year-olds as aids to solving problems. The
groups were selected to include students who had
high and low scores on a test of vividness of visual
imagery, and high and low scores on a test of
reasoning about mathematical operations. They were
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then given three problems to solve: one involving
drink-driving, one about cutting a painted cube into
smaller cubes and one about three people consuming
a large bag of apples by successively eating 1/3 of what
was left in it. The images they developed differed in
their levels of generality and abstraction, and success
related more to students’ ability to operate logically
rather than to produce images, but even so there was
a connection between the level of abstraction afforded
by the images, logical operational facility and the use of
visually based strategies. For example, graphical
visualisation was a successful method in the drink-
driving problem, whereas images of three men with
beards sleeping in a hut and eating the apples were
vivid but unhelpful. The creation of useful mathematical
images needs to be learnt. In Campbell’s study,
questions were asked for which a model was needed,
so this purpose, other than producing the model itself,
may have influenced the modelling process. Models
were both ‘models of ’ and ‘models for’, the former
being a representation to express structures and the
latter being related to a further purpose (e.g. van den
Heuvel-Panhuizen, 2003). Other writers have also
pointed to the positive effects of purpose: Ainley, Pratt
and Nardi (2001) and Friel, Curcio and Bright(2001) all
found that having a purpose contributes to students’
sense-making of graphs. 

Summary
• Modelling can be seen as a subclass of problem-

solving methods in which situations are
represented in formal mathematical ways.

• Learners have to draw on knowledge of the
situation to identify variables and relationships and,
through imagery, construct mathematical
representations which can be manipulated further.

• There is some evidence that learners are better at
producing models for which they have a further
purpose.

• To do this, they have to have a repertoire of
mathematical representations, functions, and
methods of operation on these.

• A modelling perspective develops over time and
through multiple situational experiences, and can
then be applied to given problems – the processes
are similar to those learners do when faced with
new mathematical concepts to understand.

• Modelling tasks do not necessarily lead to
improved understanding of functions without the

development of repertoire and deliberate
pedagogy.

Functions

For learners to engage with secondary mathematics
successfully they have to be able to decipher and
interpret the stimuli they are offered, and this
includes being orientated towards looking for
relations between quantities, noticing structures,
identifying change and generalising patterns of
behaviour. Kieran (1992) lists these as good
approaches to early algebra. They also have to 
know the difference between statistical and algebraic
representations, such as the difference between a
bar chart and an algebraic graph. 

Understanding what a function is, a mapping that
relates values from one space into values in another
space, is not a straightforward matter for learners. In
Paper 4, Understanding relations and their graphical
representation, evidence that the experience of
transforming between values in the same space is
different from transforming between spaces is
described, and for this paper we shall move on and
assume that the purpose of simple additive, scalar
and multiplicative functions is understood, and the
task is now to understand their nature, a range of
kinds of function, their uses, and the ways in which
they arise and are expressed.

Whereas in early algebra learners need to shift 
from seeing expressions as things to be calculated 
to seeing them as expressing structures, they then
have to shift further to seeing functions as relations
between expressions, so that functions become
mathematical objects in themselves and numerical
‘answers’ are likely to be pairs of related values
(Yerushalmy and Schwartz, 1993). Similarly equations
are no longer situations which hide an unknown
number, but expressions of relationships between
two (or more) variables. They have also to
understand the difference between a point-wise
view of functional relationships (as expressed by
tables of values) and a holistic view (reinforced
especially by graphs). 

Yerushalmy and Gilead, in a teaching experiment
with lower-secondary students over a few years
(1999) found that knowledge of a range of functions
and the nature of functions was a good basis for
solving algebraic problems, particularly those that
involved rate because a graph of a function allows
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rates to be observed and compared. Thus functions
and their graphs support the focus on rate that
Carlson’s students found difficult in situations and
diagrams. Functions appeared to provide a bridge
that turned intractable word problems into
modelling tasks by conjecturing which functions
might ‘fit’ the situation. However, their students could
misapply a functional approach. This seems to be an
example of the well-known phenomenon of over-
generalizing an approach beyond its appropriate
domain of application, and arises from students
paying too much attention to what has recently been
taught and too little to the situation.

Students not only have to learn to think about
functional relationships (and consider non-linear
relationships as possibilities), which have an input to
which a function is applied generating some specific
output, but they also need to think about relations
between relations in which there is no immediate
output, rather a structure which may involve several
variables. Halford’s analysis (e.g.1999) closely follows
Inhelder and Piaget’s (1959) theories about the
development of scientific reasoning in adolescence.
He calls these ‘quaternary’ relationships because they
often relate four components appearing as two pairs.
Thus distributivity is quaternary, as it involves two
binary operations; proportion is quaternary as it
involves two ratios. So are rates of change, in which
two variables are compared as they both vary in
relation to something else (their functional relation,
or time, for example). This complexity might
contribute to explaining why Carlson and colleagues
found that students could talk about covariation
relationships from graphs of situations but not rates
of change. Another reason could be the opacity of
the way rate of change has to be read from graphs:
distances in two directions have to be selected and
compared to each other, a judgement or calculation
made of their ratio, and then the same process has
to be repeated around other points on the graphs
and the ratios compared. White and Mitchelmore
(1996) found that even after explicit instruction
students could only identify rates of change in simple
cases, and in complex cases tried to use algebraic
algorithms (such as a given formula for gradient)
rather than relate quantities directly. 

One area for research might be to find out whether
and how students connect the ‘method of
differences’, in which rates of change are calculated
from tables of values, to graphical gradients. One of
the problems with understanding functions is that
each representation brings certain features to the

fore (Goldin, 2002). Graphical representations
emphasise linearity, roots, symmetry, continuity,
gradient; domain; ordered dataset representations
emphasise discrete covariation and may distract
students from starting conditions; algebraic
representations emphasise the structure of relations
between variables, and the family of functions to
which a particular one might be related. To
understand a function fully these have to be
connected and, further, students have to think about
features which are not so easy to visualize but have
to be inferred from, or read into, the representation
by knowing its properties, such as growth rate
(Confrey and Smith, 1994; Slavit, 1997). Confrey 
and Smith used data sets to invite unit-by-unit
comparison to focus on rate-of-change, and deduced
that rate is different from ratio in the ways that it is
learnt and understood (1994). Rate depends on
understanding the covariation of variables, and being
able to conceptualise the action of change, whereas
ratio is the comparison of quantities. 

Summary 
To understand the use of functions to describe
situations secondary mathematics learners have to:
• distinguish between statistical and algebraic

representations
• extend knowledge of relations to understanding

relations between relations
• extend knowledge of expressions as structures to

expressions as objects
• extend knowledge of equations as defining

unknown numbers to equations as expressing
relationships between variables

• relate pointwise and holistic understandings and
representations of functions

• see functions as a new kind of mathematical object
• emphasize mathematical meaning to avoid over-

generalising
• have ways of understanding rate as covariation.

Mathematical thinking

In this section we mention mathematical problems –
those that arise in the exploration of mathematics
rather than problems presented to learners for them
to exercise methods or develop ‘problem-solving’
skills. In mathematical problems, learners have to use
mathematical methods of enquiry, some of which are
also used in word problems and modelling situations,
or in learning about new concepts. To learn
mathematics in this context means two things: 
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to learn to use methods of mathematical enquiry 
and to learn mathematical ideas which arise in 
such enquiry. 

Descriptions of what is entailed in mathematical
thinking are based mainly on Polya’s work (1957), 
in which mathematical thinking is described as a
holistic habit of enquiry in which one might draw 
on any of about 70 tactics to make progress with 
a mathematical question. For example, the tactics
include make an analogy, check a result, look for
contradictions, change the problem, simplify,
specialise, use symmetry, work backwards, and so
on. Although some items in Polya’s list appear in
descriptions of problem-solving and modelling
tactics, others are more likely to be helpful in purely
mathematical contexts in which facts, logic, and
known properties are more important than merely
dealing with current data. Cuoco, Goldenberg and
Mark (1997) have devised a typography of aspects
of mathematical habits of mind. For example,
mathematicians look at change, look at stability,
enjoy symbolisation, invent, tinker, conjecture,
experiment, relate small things to big things, and so
on. The typography encompasses the perspectives
which experts bring to bear on mathematics – that
is they bring ideas and relationships to bear on
situations rather than merely use current data and
specific cases. Both of these lists contain dozens of
different ‘things to do’ when faced with mathematics.
Mason, Burton and Stacey (1982) condensed these
into ‘specialise-generalise; conjecture-convince’ which
focuses on the shifts between specific cases and
general relationships and properties, and the
reasoning shift between demonstrating and proving.
All of these reflect the processes of mathematical
enquiry undertaken by experienced mathematicians.
Whereas in modelling there are clear stages of
work to be done, ‘mathematical thinking’ is not an
ordered list of procedures, rather it is a way of
describing a cast of mind that views any stimulus as
an object of mathematical interest, encapsulating
relationships between relationships, relationships
between properties, and the potential for more
such relationships by varying variables, parameters
and conditions.

Krutetskii (1976) conducted clinical interviews with
130 Soviet school children who had been identified
as strong mathematicians. He tested them
qualitatively and quantitatively on a wide range of
mathematical tasks, looked for common factors in
the way they tackled them, and found that those
who are better at mathematics in general were

faster at grasping the essence of a mathematical
situation and seeing the structure through the
particular surface features. They generalised more
easily, omitted intermediate steps of reasoning,
switched between solution methods quickly, tried to
get elegant solutions, and were able to reverse trains
of thought. They remembered relationships and
principles of a problem and its solution rather than
the details and tended to explain their actions rather
than describe them. Krutetskii’s methods were clinical
and grounded and dependent on case studies within
his sample, nevertheless his work over many years
led him to form the view that such ‘abilities’ were
educable as well as innate and drew strongly on
natural propensities to reason spatially, perceptually,
computationally, to make verbal analogies, mental
associations with remembered experiences, and
reasoning. Krutetskii, along with mathematicians
reporting their own experiences, observed the need
to mull, that is to leave unsolved questions alone for
a while after effortful attempts, to sleep, or do other
things, as this often leads to further insights when
returning to them. This commonly observed
phenomenon is studied in neuroscience which is
beyond the scope of this paper, but does have
implications for pedagogy.

Summary
• Successful mathematics learners engage in

mathematical thinking in all aspects of classroom
work. This means, for example, that they see what is
varying and what is invariant, look for relationships,
curtail or reverse chains of reasoning, switch
between representations and solution methods,
switch between examples and generalities, and
strive for elegance.

• Mathematical ‘habits of mind’ draw on abilities or
perception, reasoning, analogy, and mental
association when the objects of study are
mathematical, i.e. spatial, computational, relational,
variable, invariant, structural, symbolic.

• Learners can get better at using typical methods of
mathematical enquiry when these are explicitly
developed over time in classrooms.

• It is a commonplace among mathematicians that
mulling over time aids problem-solving and
conceptualisation.
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Part 2: What learners do when
faced with complex situations 
in mathematics
In this section we collect research findings that
indicate what school students typically do when
faced with situations to model, solve, or make
mathematical sense of.

Bringing outside knowledge to 
bear on mathematical problems

Real-life problems appear to invite solutions which are
within a ‘human sense’ framework rather than a
mathematical frame (Booth 1981). ‘Wrong’
approaches can therefore be seen not as errors, but
as expressing a need for enculturation into what does
and does not count in mathematical problem-solving.
Cooper and Dunne (2000) show that in tests the
appropriate use of outside knowledge and ways of
reasoning, and when and when not to bring it into
play, is easier for socially more advantaged students to
understand than less advantaged students who may
use their outside knowledge inappropriately. This is
also true for students working in languages other
than their first, who may only have access to formal
approaches presented in standard ways. Cooper and
Harries (2002) worked on this problem further and
showed how typical test questions for 11- to 12-year
olds could be rewritten in ways which encourage
more of them to reason about the mathematics,
rather than dive into using handy but inappropriate
procedures. Vicente, Orrantia and Verschaffel (2007)
studied over 200 primary school students’ responses
to word problems and found that elaborated
information about the situation was much less
effective in improving success than elaborating the
conceptual information. Wording of questions, as well
as the test environment, is therefore significant in
determining whether students can or can not solve
unfamiliar word problems in appropriate ways.
Contrary to a common assumption that giving
mathematical problems in some context helps
learners understand the mathematics, analysis of
learners’ responses in these research studies shows
that ‘real-life’ contexts can:
• lead to linguistic confusion 
• create artificial problems that do not fit with their

experience
• be hard to visualise because of unfamiliarity, social

or emotional obstacles
• structure mathematical reasoning in ways which are

different from abstract mathematics

• obscure the intended mathematical generalisation
• invite ad hoc rather than formal solution methods
• confuse students who are not skilled in deciding

what ‘outside’ knowledge they can bring to the
situation.

Clearly students (and their teachers) need to be
clear about how to distinguish between situations in
which everyday knowledge is, or is not, preferable to
formal knowledge and how these relate. In Boaler’s
comparative study of two schools (1997) some
students at the school, in which mathematics was
taught in exploratory ways, were able to recognise
these differences and decisions. However, it is also
true that students’ outside knowledge used
appropriately might:
• enable them to visualise a situation and thus

identify variables and relationships
• enable them to exemplify abstract relationships 

as they are manifested in reality
• enable them to see similar structures in different

situations, and different structures in similar
situations 

• be engaged to generate practical, rather than
formal, solutions 

• be consciously put aside in order to perform as
mathematically expected.

Information processing

In this section we will look at issues about cognitive
load, attention, and mental representations. At the
start of the paper we posed questions about what a
learner has to do at first when faced with a new
situation of any kind. Information processing theories
and research are helpful but there is little research in
this area within mathematics teaching except in
terms of cognitive load, and as we have said before 
it is not helpful for cognitive load to be minimized if
the aim is to learn how to work with complex
situations. For example, Sweller and Leung-Martin
(1997) used four experiments to find out what
combinations of equations and words were more
effective for students to deal successfully with
equivalent information. Of course, in mathematics
learning students have to be able to do both and all
kinds of combinations, but the researchers did find
that students who had achieved fluency with
algebraic manipulations were slowed down by 
having to read text. If the aim is merely to do
algebraic manipulations, then text is an extra load.
Automaticity, such as fluency in algebraic
manipulation, is achievable efficiently if differences
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between practice examples are minimized.
Automaticity also frees up working memory for
other tasks, but as Freudenthal and others have
pointed out, automaticity is not always a suitable goal
because it can lead to thoughtless application of
methods. We would expect a learner to read text
carefully if they are to choose methods meaningfully
in the context. The information-processing tutors
developed in the work of Anderson and his
colleagues (e.g. 1995) focused mainly on
mathematical techniques and processes, but included
understanding the effects of such processes. We are
not arguing for adopting his methods, but we do
suggest that information processing has something 
to offer in the achievement of fluency, and the
generation of multiple examples on which the
learner can then reflect to understand the patterns
generated by mathematical phenomena.

Most of the research on attention in mathematics
education takes an affective and motivational view,
which is beyond the scope of this paper (see NMAP,
2008). However, there is much that can be done
about attention from a mathematical perspective.
The deliberate use of variation in examples offered
to students can guide their focus towards particular
variables and differences. Learners have to know
when to discern parts or wholes of what is offered
and which parts are most critical; manipulation of
variables and layouts can help direct attention. What
is available to be learnt differs if different relations
are emphasised by different variations. For example,
students learning about gradients of straight line
functions might be offered exercises as follows:

Gradient exercise 1: find the gradients between each
of the following pairs of points.

(4, 3) and (8, 12) (-2, -1) and (-10, 1)
(7, 4) and (-4, 8) (8, -7) and (11, -1)
(6, -4) and (6, 7) (-5, 2) and (10, 6)
(-5, 2) and (-3, -9) (-6, -9) and (-6, -8)

Gradient exercise 2: 

(4, 3) and (8, 12) (4, 3) and (4, 12)
(4, 3) and (7, 12) (4, 3) and (3, 12)
(4, 3) and (6, 12) (4, 3) and (2, 12)
(4, 3) and (5, 12) (4, 3) and (1, 12)

In the first type, learners will typically focus on the
methods of calculation and dealing with negative
numbers; in the second type, learners typically
gesture to indicate the changes in gradient. Research

in this area shows how learners can be directed
towards different aspects by manipulating variables
(Runesson and Mok, 2004; Chik and Lo, 2003). 

Theories of mental representations claim that
declarative knowledge, procedural knowledge and
conceptual knowledge are stored in different ways in
the brain and also draw distinctions between
verbatim memory and gist memory (e.g. Brainerd
and Reyna, 1993). Such theories are not much help
with mathematics teaching and learning, because
most mathematical knowledge is a combination of all
three kinds, and in a typical mathematical situation
both verbatim and gist memory would be employed.
At best, this knowledge reminds us that providing
‘knowledge’ only in verbatim and declarative form 
is unlikely to help learners become adaptable
mathematical problem-solvers. Learners have to
handle different kinds of representation and know
which different representations represent different
ideas, different aspects of the same ideas, and afford
different interpretations. 

Summary
• Learners’ attention to what is offered depends 

on variation in examples and experiences.

• Learners’ attention can be focused on critical
aspects by deliberate variation. 

• Automaticity can be helpful, but can also hinder
thought.

• If information is only presented as declarative
knowledge then learners are unlikely to develop
conceptual understanding, or adaptive reasoning.

• The form of representation is a critical influence 
on interpretation.

What learners do naturally that
obstructs mathematical
understanding

Most of the research in secondary mathematics is
about student errors. These are persistent over time,
those being found by Ryan and Williams (2007)
being similar to those found by APU in the late
1970s. Errors do not autocorrect because of
maturation, experience or assessment. Rather they
are inherent in the ways learners engage with
mathematics through its formal representations. 
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Persistence of ‘child-methods’ pervades mathematics 
at secondary level (Booth, 1981). Whether ‘child-
methods’ are seen as intuitive, quasi-intuitive,
educated, or as over-generalisations beyond the
domain of applicability, the implication for teaching is
that students have to experience, repeatedly, that
new-to-them formal methods are more widely
applicable and offer more possibilities, and that earlier
ideas have to be extended and, perhaps, abandoned.
If students have to adopt new methods without
understanding why they need to abandon earlier
ones, they are likely to become confused and even
disaffected, but it is possible to demonstrate this need
by offering particular examples that do not yield to
child-methods. To change naïve conceptualisations is
harder as the next four ‘persistences’ show.

Persistence of additive methods 

This ‘child method’ is worthy of separate treatment
because it is so pervasive. The negative effects of
the persistence of additive methods show up again
and again in research. Bednarz and Janvier (1996)
conducted a teaching experiment with 135 12- to
13-year-olds before they had any algebra teaching to
see what they would make of word problems which
required several operations: those with multiplicative
composition of relationships turned out to be much
harder than those which involved composing mainly
additive operations. The tendency to use additive
reasoning is also found in reasoning about ratios and
proportion (Hart, 1981), and in students’
expectations about relationships between variables
and sequential predictions. That it occurs naturally
even when students know about a variety of other
relationships is an example of how intuitive
understandings persist even when more formal
alternatives are available (Fischbein, 1987) 

Persistence of more-more, same-same intuitions 

Research on the interference from intuitive rules gives
varied results. Tirosh and Stavy (1999) found that their
identification of the intuitive rules ‘more-more’ and
‘same-same’ had a strong predictive power for
students’ errors and their deduction accords with the
general finding that rules which generally work at
primary level persist. For example, students assume
that shapes with larger perimeters must have larger
areas; decimals with more digits must be larger than
decimals with fewer digits, and so on. Van Dooren, De
Bok, Weyers and Verschaffel (2004), with a sample of
172 students from upper secondary found that,
contrary to the findings of Tirosh and Stavy, students’
errors were not in general due to consistent
application of an intuitive rule of ‘more-more’ ‘same-

same’. Indeed the more errors a student made the less
systematic their errors were. This was in a multiple-
choice context, and we may question the assumption
that students who make a large number of errors in
such contexts are engaging in any mathematical
reasoning. However, they also sampled written
calculations and justifications and found that errors
which looked as if they might be due to ‘more-more’
and ‘same-same’ intuitions were often due to other
errors and misconceptions. Zazkis, however (1999),
showed that this intuition persisted when thinking
about how many factors a number might have, large
numbers being assumed to have more factors.

Persistence of confusions between different kinds

of quantity, counting and measuring

As well as the persistence of additive approaches 
to multiplication, being taught ideas and being
subsequently able to use them are not immediately
connected. Vergnaud (1983) explains that the
conceptual field of intensive quantities, those
expressed as ratio or in terms of other units 
(see Paper 3, Understanding rational numbers and
intensive quantities), and multiplicative relationship
development continues into adulthood. Nesher and
Sukenik (1991) found that only 10% of students
used a model based on understanding ratio after
being taught to do so formally, and then only for
harder examples. 

Persistence of the linearity assumption 

Throughout upper primary and secondary students 
act as if relationships are always linear, such as believing
that if length is multiplied by m then so is area, or if the
10th term in a sequence is 32, then the 100th must 
be 320 (De Bock,Verschaffel and Janssens1998; Van
Dooren, De Bock, Janssens and Verschaffel, 2004,
2007). Results of a teaching experiment with 93 upper-
primary students in the Netherlands showed that,
while linearity is persistent, a non-linear realistic context
did not yield this error. Their conclusion was that the
linguistic structure of word problems might invite
linearity as a first, flawed response. They also found that
a single experience is not enough to change this habit.
A related assumption is that functions increase as the
independent variable increases (Kieran, Boileau 
and Garancon 1996).Students’ habitual ways of
attacking mathematical questions and problems 
also cause problems.

Persistence with informal and language-based

approaches

Macgregor and Stacey (1993) tested over 1300
upper-secondary students in total (in a range of
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studies) to see how they mathematised situations.
They found that students tend first of all to try to
express directly from the natural language of a
situation, focusing on in equalities between quantities.
Engaging with the underlying mathematical meaning
is not a natural response. Students wanted the
algebraic expression to be some kind of linguistic
code, rather than a relational expression. Many
researchers claim this is to do with translating word
order inappropriately into symbols (such as ‘there
are six students to each professor, so 6s = p’) but
Macgregor and Stacey suggest that the cause is more
to with inadequate models of multiplicative
relationships and ratio. However, it is easy to see that
this is compounded by an unfortunate choice of
letters as shorthand for objects rather than as
variables. For example, Wollman (1983) and Clement
(1982) demonstrate that students make this classic
‘professor-student’ error because of haste, failure to
check that the meaning of the equation matches the
meaning of the sentence, over-reliance on linguistic
structure, use of non-algebraic symbols (such as p
for professor instead of p for number of professors)
and other reasons. At least one of these is a
processing error which could be resolved with a
‘read out loud’ strategy for algebra.

Persistence of qualitative judgements in modelling

Lesh and Doerr (2003) reported on the modelling
methods employed by students who had not had
specific direction in what to do. In the absence of
specific instructions, students repeat patterns of
learning that have enabled them to succeed in other
situations over time. They tend to start on each
problem with qualitative judgements based on the
particular context, then shift to additive reasoning, then
form relationships by pattern recognition or repeated
addition, and then shift to proportional and relational
thinking. At each stage their students resorted to
checking their arithmetic if answers conflicted rather
than adapting their reasoning by seeing if answers
made sense or not. This repetition of naïve strategies
until they break down is inefficient and not what the
most successful mathematics students do. 

In modelling and problem-solving students confuse
formal methods with contextual methods; they cling
strongly to limited prototypes; they over-generalise;
they read left-to-right instead of interpreting the
meaning of symbolic expressions. In word problems
they misread; miscomprehend; make errors in
transformation into operations; errors in processes;
and misinterpret the solution in the problem context
(see also Ryan and Williams 2007).

Persistent application of procedures.

Students can progress from a manipulative approach
to algebra to understanding it as a tool for problem-
solving over time, but still tend over-rely on
automatic procedures (Knuth, 2000). Knuth’s sample
of 178 first-year undergraduates’ knowledge of the
relationship between algebraic and graphical
representations was superficial, and that they reached
for algebra to do automatised manipulations rather
than use graphical representations, even when the
latter were more appropriate. 

Summary
Learners can create obstacles for themselves by
responding to stimuli in particular ways:
• persistence of past methods, child methods, and

application of procedures without meaning
• not being able to interpret symbols and other

representations
• having limited views of mathematics from their past

experience
• confusion between formal and contextual aspects
• inadequate past experience of a range of examples

and meanings
• over-reliance on visual or linguistic cues, and on

application of procedures
• persistent assumptions about addition, more-

more/same-same, linearity, confusions about
quantities

• preferring arithmetical approaches to those based
on meaning.

What learners do naturally 
that is useful

Students can be guided to explore situations in a
systematic way, learning how to use a typically
mathematical mode of enquiry, although it is hard to
understand phenomena and change in dynamic
situations. Carlson, Jacobs, Coe, Larson and Hsu.
(2002) and Yerushalmy (e.g. 1997) have presented
consistent bodies of work about modelling and
covariation activities and their work, with that of Kaput
(e.g. 1991), has found that this is not an inherently
maturation problem, but that with suitable tools and
representations such as those available in SimCalc
children can learn not only to understand change by
working with dynamic images and models, but also to
create tools to analyse change. Carlson and her
colleagues in teaching experiments have developed a
framework for describing how students learn about
this kind of co-variation. First they learn how to

24 Paper 7: Modelling, problem-solving and integrating concepts



identify variables; then they form an image of how the
variables simultaneously vary. Next, one variable has to
be held still while the change in another is observed.
This last move is at the core of mathematics and
physics, and is essential in constructing mathematical
models of multivariate situations, as Inhelder and
Piaget also argued more generally. 

In these supported situations, students appear to
reason verbally before they can operate symbolically
(Nathan and Koedinger, 2000). The usual ‘order’ of
teaching suggested in most curricula (arithmetic,
algebra, problem-solving) does not match students’
development of competence in which verbal modes
take precedence5. This fits well with Swafford and
Langrall’s study of ten 11-year-olds (2000) in which 
it was clear that even without formal teaching about
algebra, students could identify variables and articulate
the features of situations as equations where they
were familiar with the underlying operations. Students
were asked to work on six tasks in interviews. The
tasks were realistic problems that could be
represented by direct proportion, linear relations in 
a numerical context, linear relations in a geometric
context, arithmetic sequences, exponential relations
and inverse proportion. Each task consisted of
subtasks which progressed from structured
exploration of the situation, verbal description of 
how to find some unknown value, write an equation
to express this given certain letters to represent
variables, and use the equation to find out something
else. The ability to express their verbal descriptions 
as equations was demonstrated across the tasks;
everyone was able to do at least one of these
successfully and most did more than one. The only
situation for which no one produced an equation was
the exponential one. The study also showed that, given
suitably-structured tasks, students can avoid the usual
assumptions of linearity. This shows some intuitive
algebraic thinking, and that formal symbolisation can
therefore be introduced as a tool to express
relationships which are already understood from
situations. Of course, as with all teaching experiments,
this finding is specific to the teaching and task and
would not automatically translate to other contexts,
but as well as supporting the teaching of algebra as
the way to express generality (see Paper 6 Algebraic
reasoning) it contributes to the substantial practical
knowledge of the value of starting with what students
see and getting them to articulate this as a foundation
for learning.

It is by looking at the capabilities of successful
students that we learn more about what it takes to

learn mathematics. In Krutetskii’s study of such
students, to which we referred earlier, (1976) he
found that they exhibited what he called a
‘mathematical cast of mind’ which had analytical,
geometric, and harmonic (a combination of the two)
aspects. Successful students focused on structure 
and relationships rather than particular numbers of a
situation. A key result is that memory about past
successful mathematical work, and its associated
structures, is a stronger indicator of mathematical
success than memory about facts and techniques. 
He did not find any common aspects in their
computational ability. 

Silver (1981) reconstructed Krutetskii’s claim that 67
lower-secondary high-achieving mathematics students
remembered structural information about
mathematics rather than contextual information. He
asked students to sort 16 problems into groups that
were mathematically-related. They were then given
two problems to work on and asked to write down
afterwards what they recalled about the problems.
The ‘writing down’ task was repeated the next day,
and again about four weeks later. There was a
correlation between success in solving problems and
a tendency to focus on underlying mathematical
structure in the sorting task. In addition, students
who recalled the structure of the problems were the
more successful ones, but others who had
performed near average on the problems could talk
about them structurally immediately after discussion.
The latter effect did not last in the four-week recall
task however. Silver showed, by these and other
similar tasks, that structural memory aided transfer of
methods and solutions to new, mathematically similar,
situations. A question arises, whether this is teachable
or not, given the results of the four-week recall.
Given that we know that mathematical strategies can
be taught in general (Vos, 1976; Schoenfeld, 1979;
1982, and others) it seems likely that structural
awareness might be teachable, however this may
have to be sustained over time and students also
need knowledge of a repertoire of structures to
look for.

We also know something about how students
identify relationships between variables. While many
will choose a variable which has the most
connections within the problem as the independent
one, and tended also to start by dealing with the
largest values, thus showing that they can anticipate
efficiency, there are some who prefer the least value
as the starting point. Nesher, Hershkovitz and
Novotna, (2003) found these tendencies in the
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modelling strategies of 167 teachers and 132 15-
year-old students in twelve situations which all had
three variables and a comparative multiplication
relationship with an additive constraint. This is a
relatively large sample with a high number of slightly-
varied situations for such studies and could provide a
model for further research, rather than small studies
with a few highly varied tasks.

Whatever the disposition towards identifying
structures, variables and relationships, it is widely
agreed that the more you know, the better equipped
you are to tackle such tasks. Alexander and others
(1997) worked with very young children (26 three-
to five-year-olds) and found that they could reason
analogically so long as they had the necessary
conceptual knowledge of objects and situations to
recognise possible patterns. Analogical reasoning
appears to be a natural everyday power even for
very young children (Holyoak and Thagard, 1995)
and it is a valuable source of hypotheses, techniques,
and possible translations and transformations.
Construction of analogies appears to help with
transfer, since seeking or constructing an analogy
requires engagement with structure, and it is
structure which is then sought in new situations 
thus enabling methods to be ‘carried’ into new 
uses. English and Sharry (1996) provide a good
description of the processes of analogical reasoning:
first seeing or working out what relations are
entailed in the examples or instances being offered
(abductively or inductively), this relational structure 
is extracted and represented as a model, mental,
algebraic, graphical i.e. constructing an analogy in
some familiar, relationally similar form. They observed,
in a small sample, that some students act ‘pseudo
structurally’ i.e. emphasising syntax hindered them
seeking and recognising relational mappings. A critical
shift is from focusing on visual or contextual
similarity to structural similarity, and this has to be
supported. Without this, the use of analogies can
become two things to learn instead of one.

Past experience is also valuable in the interpretation
of symbols and symbolic expressions, as well as what
attracts their attention and the inter-relation
between the two (Sfard and Linchevski, 1994). In
addition to past experience and the effects of layout
and familiarity, there is also a difference in readings
made possible by whether the student perceives 
a statement to be operational (what has to be
calculated), relational (what can be expressed
algebraically) or structural (what can be generalized).
Generalisation will depend on what students see and

how they see it, what they look for and what they
notice. Scheme-theory suggests that what they look
for and notice is related to the ways they have
already constructed connections between past
mathematical experiences and the concept images
and example spaces they have also constructed and
which come to mind in the current situation. Thus
generalisations intended by the teacher are not
necessarily what will be noticed and constructed by
students (Steele and Johanning, 2004).

Summary
There is evidence to show that, with suitable
environments, tools, images and encouragement,
learners can and do:
• generalise from what is offered and experienced
• look for analogies
• identify variables
• choose the most efficient variables, those with most

connections
• see simultaneous variations
• observe and analyse change
• reason verbally before symbolising
• develop mental models and other imagery
• use past experience
• need knowledge of operations and situations to do

all the above successfully
• particularly gifted mathematics students also:

• quickly grasp the essence of a problem
• see structure through surface features
• switch between solution methods
• reverse trains of thought
• remembered the relationships and

principles of a problem 
• do not necessarily display computational

expertise.
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Part 3: What happens with
pedagogic intervention
designed to address typical
difficulties?

We have described what successful and unsuccessful
learners do when faced with new and complex
situations in mathematics. For this section we show
how particular kinds of teaching aim to tackle the
typical problems of teaching at this level. This depends
on reports of teaching experiments and, as with the
different approaches taken to algebra in the earlier
paper, they show what it is possible for secondary
students to learn in particular pedagogic contexts.

It is worth looking at the successes and new
difficulties introduced by researchers and developers
who have explored ways to influence learning
without exacerbating the difficulties described
above. We found broadly five approaches, though
there are overlaps between them: focusing on
development of mathematical thinking; task design;
metacognitive strategies; the teaching of heuristics;
and the use of ICT.

Focusing on mathematical thinking

Experts and novices see problems differently; and
see different similarities and differences between
problems, because experts have a wider repertoire
of things to look for, and more experience about
what is, and is not, worthwhile mathematically.
Pedagogic intervention is needed to enable all
learners to look for underlying structure or
relationships, or to devise subgoals and reflect on the
outcomes of pursuing these as successful students
do. In a three-year course for 12- to 15-year-olds,
Lamon educated learners to understand quantitative
relationships and to mathematise experience by
developing the habits of identifying quantities, making
assumptions, describing relationships, representing
relationships and classifying situations (1998). It is
worth emphasising that this development of habits
took place over three years, not over a few lessons
or a few tasks. 

• Students can develop habits of identifying quantities
and relationships in situations, given extended
experience.

Research which addresses development of
mathematical thinking in school mathematics

includes: descriptive longitudinal studies of cohorts 
of students who have been taught in ways which
encourage mathematical enquiry and proof and
comparative studies between classes taught in
through enquiry methods and traditional methods.
Most of these studies focus on the development of
classroom practices and discourse, and how social
aspects of the classroom influence the nature of
mathematical knowledge. Other studies are of
students being encouraged to use specific
mathematical thinking skills, such as exemplification,
conjecturing, and proof of the effects of a focus on
mathematical thinking over time. These focused
studies all suffer to some extent from the typical
‘teaching experiment’ problem of being designed to
encourage X and students then are observed to do
X. Research over time would be needed to
demonstrate the effects of a focus on mathematical
thinking on the nature of long-term learning.
Longitudinal studies emphasise development of
mathematical practices, but the value of these is
assumed so they are outside the scope of this paper.
However, it is worth mentioning that the CAME
initiative appeared to influence the development of
analytical and complex thinking both within
mathematics and also in other subjects, evidenced in
national test scores rather than only in study-specific
tests (Johnson, Adhami and Shayer, 1988; Shayer,
Johnson and Adhami, 1999). In this initiative teachers
were trained to use materials which had been
designed to encourage cycles of investigation:
problem familiarity, investigating the problem,
synthesising outcomes of investigation, abstracting
the outcomes, applying this new abstraction to a
further problem, and so on.

• Students can get better at thinking about and
analysing mathematical situations, given suitable
teaching.

Task design

Many studies of the complexity of tasks and the
effect of this on solving appear to us to be the
wrong way round when they state that problems
are easier to solve if the tasks are stated more
simply. For a mathematics curriculum the purpose
of problem-solving is usually to learn how to
mathematise, how to choose methods and
representations, and how to contact big
mathematical ideas – this cannot be achieved by
simplifying problems so that it is obvious what to
do to solve them.
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Students who have spent time on complex
mathematical activity, such as modelling and problem-
solving, are not disadvantaged when they are tested
on procedural questions against students who have
had more preparation for these. This well-known
result arises from several studies, such as that of
Thompson and Senk (2001) in connection with the
University of Chicago School Mathematics Project:
those given a curriculum based on problems and a
variety of exploratory activities did better on open-
ended and complex, multistage tasks, than
comparable groups taught in more conventional
ways, and also did just as well on traditional
questions. Senk and Thompson (2003) went on to
collect similar results from eight mathematics teaching
projects in the United States in which they looked
specifically for students’ development of ‘basic skills’
alongside problem-solving capabilities. The skills they
looked for at secondary level included traditional
areas of difficulty such as fractions computations and
algebraic competence. Each project evaluated its
findings differently, but overall the result was that
students did as well or better than comparative
students in basic mathematical skills at the
appropriate level, and were better at applying their
knowledge in complex situations. Additionally, several
projects reported improved attainment for students
of previously low attainment or who were ‘at risk’ in
some sense. In one case, algebraic manipulation was
not as advanced as a comparison group taught from
a traditional textbook but teachers were able to
make adjustments and restore this in subsequent
cohorts without returning to a more limited
approach. New research applying one of these
curriculum projects in the United Kingdom is showing
similar findings (Eade and Dickenson, 2006 a; Eade
and Dickenson, Hough and Gough, 2006 b). A U.K.
research project comparing two similar schools, in
which the GCSE results of matched samples were
compared, also showed that those who were taught
through complex mathematical activity, solving
problems and enquiring into mathematics, did better
than students who were taught more procedurally
and from a textbook. The GCSE scripts showed that
the former group was more willing to tackle
unfamiliar mathematics questions as problems to be
solved, where the latter group tended to not attempt
anything they had not been taught explicitly (Boaler,
1997). Other research also supports these results
(Hembree, 1992; Watson and De Geest, 2005).

• Students who spend most of their time on
complex problems can also work out how to 
do ‘ordinary’ maths questions.

Recent work by Swan (2006) shows how task
design, based on introducing information which
might conflict with students’ current schema and
which also includes pedagogic design to enable these
conflicts to be explored collaboratively, can make a
significant difference to learning. Students who had
previously been failing in mathematics were able to
resolve conflict through discussion with others in
matching, sorting, relating and generating tasks. This
led directly to improvements in conceptual
understanding in a variety of traditionally problematic
domains.

• Students can sort out conceptual confusions with
others if the tasks encourage them to confront
their confusion through contradiction.

Metacognitive strategies

Success in complex mathematical tasks is associated
with a range of metacognitive orientation and
execution decisions, but mostly with deliberate
evaluating the effects of certain actions (Stillman and
Galbraith, 1998). Reflecting on the effects of activity
(to use Piaget’s articulation) makes sense in the
mathematics context, because often the ultimate
goal is to understand relationships between
independent and dependent variables. It makes
sense, therefore, to wonder if teaching these
strategies explicitly makes a difference to learning.
Kramarski, Mevarech and Arami (2002) showed that
explicitness about metacognitive strategies is
important in success not only in complex authentic
tasks but also in quite ordinary mathematical tasks.
Kramarski (2004) went on to show that explicit
metacognitive instruction to small groups provided
them with ways to question their approach to
graphing tasks. They were taught to discuss
interpretations of the problem, predict the outcomes
of using various strategies, and decide if their
answers were reasonable. The groups who had been
taught metacognitive methods engaged in discussions
that were more mathematically focused, and did
better on post-tests of graph interpretation and
construction, than control groups. Discussion
appeared to be a factor in their success. The value 
of metacognitive prompts also appears to be
stronger if students are asked to write about their
responses; students in a randomized trial tried more
strategies if they were asked to write about them
than those who were asked to engage in think-aloud
strategies (Pugalee, 2004). In both these studies, the
requirement and opportunity to express
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metacognitive observations turned out to be
important. Kapa (2001) studied 441 students in four
computer-instruction environments which offered
different kinds of metacognitive prompting while
they were working on mathematical questions:
during the solution process, during and after the
process, after the process, none at all. Those with
prompts during the process were more successful,
and the prompts made more difference to those
with lower previous knowledge than to others.
While this was an artificial environment with special
problems to solve, the finding appears to support
the view that teaching (in the form of metacognitive
reminders and support) is important and that
students with low prior knowledge can do better if
encouraged to reflect on and monitor the effects of
their activity. An alternative to explicit teaching and
requests to apply metacognitive strategies is to
incorporate them implicitly into the ways
mathematics is done in classrooms. While there is
research about this, it tends to be in studies
enquiring into whether such habits are adopted by
learners or not, rather than whether they lead to
better learning of mathematics.

• Students can sometimes do better if they are
helped to use metacognitive strategies.

• Use of metacognitive strategies may be enhanced:
in small group discussion; if students are asked to
write about them; and/or if they are prompted
throughout the work.

Teaching problem-solving heuristics

The main way in which educators and researchers
have explored the question of how students can 
get better at problem solving is by constructing
descriptions of problem-solving heuristics, teaching
these explicitly, and comparing the test performance
of students who have and have not received this
explicit teaching. In general, they have found that
students do learn to apply such heuristics, and
become better at problem-solving than those who
have not had such teaching (e.g. Lucas, 1974). This
should not surprise us. 

A collection of clinical projects in the 1980s (e.g.
Kantowski, 1977; Lee, 1982) which appear to show
that students who are taught problem-solving
heuristics get better at using them, and those who
use problem-solving heuristics get better at problem
solving. These results are not entirely tautologous if

we question whether heuristics are useful for solving
problems. The evidence suggests that they are (e.g.
Webb, 1979 found that 13% of variance among 40
students was due to heuristic use), yet we do not
know enough about how these help or hinder
approaches to unfamiliar problems. For example, a
heuristic which involves planning is no use if the
situation is so unfamiliar that the students cannot
plan. For this situation, a heuristic which involves
collecting possible useful knowledge together (e.g.
‘What do I know? What do I want?’ Mason, Burton
and Stacey , 1982) may be more useful but requires
some initiative and effort and imagination to apply.
The ultimate heuristic approach was probably
Schoenfeld’s (1982) study of seven students in which
he elaborated heuristics in a multi-layered way, thus
showing the things one can do while doing
mathematical problem-solving to be fractal in nature,
impossible to learn as a list, so that true
mathematical problem-solving is a creative task
involving a mathematical cast of mind (Krutetskii,
1976) and range of mathematical habits of mind
(Cuoco, Goldenberg and Mark, 1997) rather than a
list of processes.

Schoenfeld (1979; 1982) and Vos (1976) found that
learners taught explicit problem-solving strategies are
likely to use them in new situations compared to
similar students who are expected to abstract
processes for themselves in practice examples. There
is a clear tension here between explicit teaching and
the development of general mathematical awareness.
Heuristics are little use without knowledge of when,
why and how to use them. What is certainly true is
that if learners perform learnt procedures, then we
do not know if they are acting meaningfully or not.
Vinner (1997) calls this ‘the cognitive approach fallacy’
– assuming that one can analyse learnt behavioural
procedures as if they are meaningful, when perhaps
they are only imitative or gap-filling processes. 

Application of learnt heuristics can be seen as
merely procedural if the heuristics do not require
any interpretation that draws on mathematical
repertoire, example spaces, concept images and so
on. This means that too close a procedural approach
to conceptualization and analysis of mathematical
contexts is merely what Vinner calls ‘pseudo’. There is
no ‘problem’ if what is presented can be processed
by heuristics which are so specific they can be
applied like algorithmically. For example, finding
formulae for typical spatial-numeric sequences (a
common feature of the U.K. curriculum) is often
taught using the heuristic ‘generate a sequence of
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specific examples and look for patterns’. No initial
analysis of the situation, its variables, and relevant
choice of strategy is involved. 

On the other hand, how are students to learn how
to tackle problems if not given ideas about tactics
and strategies? And if they are taught, then it is likely
that some will misapply them as they do any learnt
algorithm. This issue is unresolved, but working with
unfamiliar situations and being helped to reflect on
the effects of particular choices seem to be useful
ways forwards.

There is little research evidence that students taught
a new topic using problems with the explicit use of
taught heuristics learn better, but Lucas (1974) did
this with 30 students learning early calculus and they
did do significantly better that a ‘normal’ group when
tested. Learning core curriculum concepts through
problems is under-researched. A recent finding
reported by Kaminski, Sloutsky and Heckler (2006;
2008) is that learning procedurally can give faster
access to underlying structure than working through
problems. Our reading of their study suggests that
this is not a robust result, since the way they
categorise contextual problems and formal
approaches differs from those used by the research
they seek to refute.

• Students can apply taught problem-solving
heuristics, but this is not always helpful in unfamiliar
situations if their learning has been procedural.

One puzzle which arose in the U.S. Task Panel’s
review of comparative studies of students taught in
different ways (NMAP, 2008) is that those who have
pursued what is often called a ‘problem-solving
curriculum’ turn out to be better at tackling
unfamiliar situations using problem-solving strategies,
but not better at dealing with ‘simple’ given word
problems. How students can be better at
mathematising real world problems and resolving
them, but not better at solving given word problems?
This comment conceals three important issues: firstly,
‘word problems’, as we have shown, can be of a
variety of kinds, and the ‘simple’ kinds call on different
skills than complex realistic situations; secondly, that
according to the studies reported in Senk and
Thompson (2003) performance on ‘other aspects’ of
mathematics such as solving word problems may not
have improved, but neither did it decline; thirdly, that
interpretation of these findings as good or bad
depends on curriculum aims6. Furthermore, the panel
confined its enquiries to the U.S. context and did not

take into account the Netherlands research in which
the outcomes of ‘realistic’ activity are scaffolded
towards formality. The familiar phrase ‘use of real
world problems’ is vague and can include a range 
of practices. 

The importance of the difference in curriculum aims
is illustrated by Huntley, Rasmussen, Villarubi, Sangtog
and Fey (2000) who show, along with other studies,
that students following a curriculum focusing on
algebraic problem solving are better at problem
solving, especially with support of graphical
calculators, but comparable students who have
followed a traditional course did better in a test for
which there were no graphical calculators available
and were also more fluent at manipulating
expressions and working algebraically without a
context. In the Boaler (1997) study, one school
educated students to take a problem-solving view 
of all mathematical tasks so that what students
‘transferred’ from one task to another was not
knowledge of facts and methods but a general
approach to mathematics. We described earlier how
this helped them in examinations.

• There is no unique answer to the questions of why
and when students can or cannot solve problems –
it depends on the type of problem, the curriculum
aim, the tools and resources, the experience, and
what the teacher emphasises.

How can students become more systematic at
identifying variables and applying operations and
inverses to solve problems? One aspect is to be
clear about whether the aim is for a formal method
of solution or not. Another is experience so that
heuristics can be used flexibly because of exposure
to a range of situations in which this has to be done
– not just being given equations to be solved; not
just constructing general expressions from
sequences; etc. The value of repeated experience
might be what is behind a finding from Blume and
Schoen (1988) in which 27 14-year-old students
who had learnt to programme in Basic were tested
against 27 others in their ability to solve typical
mathematical word problems in a pen and paper
environment. Their ability to write equations was 
no different but their ability to solve problems
systematically and with frequent review was
significantly stronger for the Basic group. Presumably
the frequent review was an attempt to replicate the
quick feedback they would get from the computer
activity. However, another Basic study which had
broader aims (Hatfield and Kieren, 1972) implied
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that strengths in problem-solving while using Basic 
as a tool were not universal across all kinds of
mathematics or suitable for all kinds of learning goal.

A subset of common problem-solving heuristics are
those that relate specifically to modelling, and
modelling can be used as a problem-solving strategy.
Verschaffel and De Corte (1997) working with 11-
year-olds show that rather than seeing modelling-of
and modelling-for as two separate kinds of activity, a
combination of the two, getting learners to frame
real problems as word problems through modelling,
enables learners to do as well as other groups in
both ‘realistic’ mathematical problem-solving and with
word problems when compared to other groups.
Their students developed a disposition towards
modelling in all situational problems.

• Students may understand the modelling process
better if they have to construct models of
situations which then are used as models for 
new situations.

• Students may solve word problems more easily 
if they have experience of expressing realistic
problems as word problems themselves.

Using ICT

Students who are educated to use available
handheld technology appear to be better problem
solvers. The availability of such technology removes
the need to do calculations, gives immediate
feedback, makes reverse checking less tedious, allows
different possibilities to be explored, and gives more
support for risk taking. If the purpose of complex
tasks is to show assessors that students can ‘do’
calculations than this result is negative; if the purpose
is to educate students to deal with non-routine
mathematical situations, then this result is positive.

Evidence of the positive effects of access to and use
of calculators is provided by Hembree and Dessart
(1986) whose meta-analysis of 79 research studies
showed conclusively that students who had sustained
access to calculators had better pencil-and-paper
and problem-solving skills and more positive
attitudes to mathematics than those without. The
only years in which this result was not found was
grade 4 in the United States, and we assume that
this is because calculator use may make students
reluctant to learn some algorithmic approaches
when this is the main focus of the curriculum. In the

United Kingdom, these positive results were also
found in the 1980s in the CAN project, with the
added finding that students who could choose which
method to use, paper, calculator or mental, had
better mental skills than others.

We need to look more closely at why this is, what
normal obstacles to learning are overcome by using
technology and what other forms of learning are
afforded? Doerr and Zangor (2000) recognized that
handheld calculators offered speed and facility in
computation, transformation of tasks, data collection
and analysis, visualisation, switching representations,
checking at an individual level but hindered
communication between students. Graham and
Thomas (2000) achieved significant success using
graphical calculators in helping students understand
the idea of variable. The number of situations,
observation of variation, facility for experimentation,
visual display, instant feedback, dynamic
representation and so on contributed to this. 

• Students who can use available handheld
technology are better at problem solving and have
more positive views of mathematics.

We do not know if it is only in interactive computer
environments that school students can develop a
deep, flexible and applicable knowledge of functions,
but we do know that the affordances of such ICT
environments allow all students access to a wide
variety of examples of functions, and gives them 
the exploratory power to see what these mean in
relation to other representations and to see the
effects on one of changing the other. These
possibilities are simply not available within the
normal school time and place constraints without
hands-on ICT. For example, Godwin and
Beswetherick (2002) used graphical software to
enhance learners’ understanding of quadratic
functions and point out that the ICT enables the
learning environment to be structured in ways that
draw learners’ attention to key characteristics and
variation. Schwarz and Hershkowitz (1999) find that
students who have consistent access to such tools
and tasks develop a strong repertoire of prototypical
functions, but rather than being limited by these can
use these as levers to develop other functions, apply
their knowledge in other contexts and learn about
the attributes of functions as objects in themselves. 

Software that allows learners to model dynamic
experiences was developed by Kaput (1999) and the
integration of a range of physical situations,
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represented through ICT, with mental modelling
encouraged very young students to use algebra to
pose questions, model and solve questions. Entering
algebraic formulae gave them immediate feedback
both from graphs and from the representations of
situations. In extended teaching experiments with
upper primary students, Yerushalmy encouraged them
to think in terms of the events and processes inherent
in situations. The software she used emphasised
change over small intervals as well as overall shape.
This approach helped them to understand
representations of quantities, relationships among
quantities, and relationships among the
representations of quantities in single variable
functions (Yerushalmy, 1997). Yerushalmy claims that
the shifts between pointwise and holistic views of
functions are more easily made in technological
environments because, perhaps, of the easy availability
of several examples and feedback showing translation
between graphs, equations and data sets. She then
gave them situations which had more than one input
variable, for example the cost of car rental which is
made up of a daily rate and a mileage rate. This kind
of situation is much harder to analyse and represent
than those which have one independent and one
dependent variable. To describe the effects of the first
variable the second variable has to be invariant, and
vice versa. In discussion, a small sample of students
tried out relations between various pairs of variables
and decided, for themselves, that two of the variables
were independent and the final cost depended on
both of them. They then tried to draw separate
graphs in which one of the variables was controlled.
We are not claiming that all students can do this by
themselves, but that these students could do it, is
remarkable. This study suggests that students for
whom the ideas of variables, functions, graphs and
situations are seen as connected have the skills to
analyse unfamiliar and more complex situations
mathematically. Nemirovsky (1996) suggests another
reason is that students can relate different
representations to understand the story the graph is
representing. He undertook a multiple representation
teaching experiment with 15- and 16-year-olds in
which graphs were generated using a toy car and a
motion detector. Having seen the connection between
one kind of movement and the graph, students were
then asked to predict graphs for other movements,
showing how their telling of the story of the
movement related to the graphs they were drawing.
Students could analyse continuous movement that
varied in speed and direction by seeing it to be a
sequence of segments, then relate segments of
movement to time, and then integrate the segments

to construct a continuous graph. Additionally,
comparing the real movement, their descriptions of it,
and graphs also enabled them to correct and adjust
their descriptions. Nemirovsky found that switching
between these representations helped them to see
that graphs told a continuous story about situations.
Rather than expressing instances of distance at
particular times, the students were talking about
speed, an interpretation of rate from the graph rather
than a pointwise use of it. Using a similar approach
with nine- and ten-year-olds Nemirovsky found that
these students were more likely to ‘read’ symbolic
expressions as relationships between variables rather
than merely reading them from left to right as children
taught traditionally often do.

Students at all levels can achieve deep understanding
of concepts and also learn relevant graphing and
function skills themselves, given the power to see the
effects of changes in multiple representations, taking
much less time than students taught only skills and
procedures through pencil-and-paper methods
(Heid, 1988; Ainley and her colleagues, e.g. 1994).

• Computer-supported multiple representational
contexts can help students understand and use
graphs, variables, functions and the modelling
process.
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Recommendations

For curriculum and practice

The following recommendations for secondary
mathematics teaching draw on the conclusions
summarized above.

Learning new concepts
• Teaching should take into account students’ natural

ways of dealing with new perceptual and verbal
information (see summaries above), including those
ways that are helpful for new mathematical ideas
and those that obstruct their learning. 

• Schemes of work and assessment should allow
enough time for students to adapt to new
meanings and move on from earlier methods and
conceptualisations; they should give time for new
experiences and mathematical ways of working to
become familiar in several representations and
contexts before moving on.

• Choice of tasks and examples should be
purposeful, and they should be constructed to 
help students shift towards understanding new
variations, relations and properties. Such guidance
includes thinking about learners’ initial perceptions
of the mathematics and the examples offered.
Students can be guided to focus on critical aspects
by the use of controlled variation, sorting and
matching tasks, and multiple representations.

• Students should be helped to balance the need for
fluency with the need to work with meaning.

Applications, problem-solving, modelling,
mathematical thinking
• As above, teaching should take into account

students’ natural ways of dealing with new
perceptual and verbal information (see summaries
above), including those ways that are helpful for 
new mathematical ideas and those that obstruct
their learning. 

• Schemes of work should allow for students to have
multiple experiences, with multiple representations,
over time to develop mathematically appropriate
‘habits of mind’.

• The learning aims and purpose of tasks should be
clear : whether they are to develop a broader
mathematical repertoire; to learn modelling and

problem-solving skills; to understand the issues
within the context better etc.

• Students need help and experience to know when
to apply formal, informal or situated methods.

• Students need a repertoire of appropriate
functions, operations, representations and
mathematical methods in order to become good
applied mathematicians. This can be gained through
multiple experiences over time.

• Student-controlled ICT supports the development
of knowledge about mathematics and its
applications; student-controlled ICT also provides
authentic working methods. 

For policy

• These recommendations indicate a training
requirement based on international research about
learning, rather than merely on implementation of a
new curricula.

• There are resource implications about the use of
ICT. Students need to be in control of switching
between representations and comparisons of
symbolic expression in order to understand the
syntax and the concept of functions. The United
Kingdom may be lagging behind the developed
world in exploring the use of spreadsheets,
graphing tools, and other software to support
application and authentic use of mathematics.

• The United Kingdom is in the forefront of new
school mathematics curricula which aim to prepare
learners better for using mathematics in their
economic, intellectual and social lives. Uninformed
teaching which focuses only on methods and test-
training is unlikely to achieve these goals.

• Symbolic manipulators, graph plotters and other
algebraic software are widely available and used to
allow people to focus on meaning, application and
implications. Students should know how to use
these and how to incorporate them into
mathematical explorations and extended tasks.

• A strong message emerging about learning
mathematics at this level is that students need
multiple experiences over time for new-to-them
ways of thinking and working to become habitual.
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For research

• There are few studies focusing on the introduction 
of specific new ideas, based on students’ existing
knowledge and experience, at the higher secondary
level. This would be a valuable research area. This
relates particularly to topics which combine concepts
met earlier in new ways, such as: trigonometry,
quadratics and polynomials, and solving simultaneous
equations. (There is substantial research about
calculus beyond the scope of this paper.)

• There are many studies on the development of
modelling and problem-solving skills, but a valuable
area for research, particularly in the new U.K.
context at 14–19, would be the relationship
between these and mathematical conceptual
development which, as we have shown above,
involves similar – not separate – learning processes
if it is to be more than trial-and-error.

• There is little research which focuses on the
technicalities of good mathematics teaching, and 
it would be valuable to know more about: use of
imagery, the role of visual and verbal presentations,
development of mathematical thinking,
development of geometrical reasoning, how
representations commonly used in secondary
mathematics influence learning, and how and why
some students manage to avoid over-generalising
about facts, methods, and approaches.

• There is very little research on statistical reasoning,
non-algebraic modelling, and learning mathematics
with and without symbolic manipulators.

Endnotes
1 ‘Induction’ here is the process of devising plausible

generalisations from several examples, not mathematical
inductive reasoning.

2 They claimed that the post-test was contextual because objects
were used, but the relations between the objects were
spurious so the objects functioned as symbols rather than as
contextual tools.

3 There a little research on interpreting problems in statistical
terms, but this is beyond the scope of this paper.

4 Modelling has other meanings as well in mathematics
education, such as the provision or creation of visual and tactile
models of mathematical ideas, but here we are sticking to what
mathematicians mean by modelling.

5 Also, as is recognised in the Realistic Mathematics Education
and some other projects, students are able to engage in ad hoc
problem solving from a young age.

6 Meta-analysis of the studies they used is beyond the scope of
this review.
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