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3 Key understandings in mathematics learning

Headlines

• Children come to school with a great deal of
knowledge about spatial relations. One of the most
important challenges in mathematical education is
how best to harness this implicit knowledge in
lessons about space.

• Children’s pre-school implicit knowledge of space is
mainly relational. Teachers should be aware of kinds
of relations that young children recognise and are
familiar with, such as their use of stable background
to remember the position and orientation of
objects and lines.

• Measuring of length and area poses particular
problems for children, even though they are 
able to understand the underlying logic of
measurement. Their difficulties concern iteration
of standard units, which is a new idea for them,
and also the need to apply multiplicative reasoning
to the measurement of area.

• From an early age children are able to extrapolate
imaginary straight lines, which allows them to learn
how to use Cartesian co-ordinates to plot specific
positions in space with no difficulty. However, they
need instruction about how to use co-ordinates to
work out the relation between different positions.

• Learning how to represent angle mathematically is a
hard task for young children, even though angles are
an important part of their everyday life. There is
evidence that children are more aware of angle in the
context of movement (turns) than in other contexts
and learn about the mathematics of angle relatively
easily in this context. However, children need a great
deal of help from to teachers to understand how to
relate angles across different contexts.

• An important aspect of learning about geometry 
is to recognise the relation between transformed
shapes (rotation, reflection, enlargement). This 
also can be difficult, since children’s pre-school
experiences lead them to recognise the same
shapes as equivalent across such transformations,
rather than to be aware of the nature of the
transformation. However, there is very little
research on this important question.

• Another aspect of the understanding of shape is the
fact that one shape can be transformed into another,
by addition and subtraction of its subcomponents.
For example, a parallelogram can be transformed
into a rectangle of the same base and height by the
addition and subtraction of equivalent triangles and
adding two equivalent triangles to a rectangle creates
a parallelogram. Research demonstrates that there is
a danger that children might learn about these
transformations only as procedures without
understanding their conceptual basis.

• There is a severe dearth of psychological research
on children’s geometrical learning. In particular we
need long-term studies of the effects of intervention
and a great deal more research on children’s
understanding of transformations of shape.

At school, children often learn formally about matters
that they already know a great deal about in an
informal and often quite implicit way. Sometimes their
existing, informal understanding, which for the most
part is based on experiences that they start to have
long before going to school, fits well with what they
are expected to learn in the classroom. At other
times, what they know already, or what they think
they know, clashes with the formal systems that they
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are taught at school and can even prevent them from
grasping the significance of these formal systems.

Geometry is a good and an obvious example.
Geometry lessons at school deal with the use of
mathematics and logic to analyse spatial relations and
the properties of shapes. The spatial relations and the
shapes in question are certainly a common part of 
any child’s environment, and psychological research 
has established that from a very early age children are
aware of them and quite familiar with them. It has 
been shown that even very young babies not only
discriminate regular geometric shapes but can recognise
them when they see them at a tilt, thus co-ordinating
information about the orientation of an object with
information about the pattern of its contours. 

Babies are also able to extrapolate imaginary straight
lines (a key geometric skill) at any rate in social
situations because they can work out what someone
else is looking at and can thus construct that person’s
line of sight. Another major early achievement by
young children is to master the logic that underlies
much of the formal analysis of spatial relations that
goes on in geometry. By the time they first go to
school young children can make logical transitive
inferences (A > B, B > C, therefore A > C; A = B, B
= C, therefore A = C), which are the logical basis of
all measurement. In their first few years at school
they also become adept at the logic of inversion (A
+ B – B), which is a logical move that is an essential
part of studying the relation between shapes. 

Finally, there is strong evidence that most of the
information about space that children use and
remember in their everyday lives is relational in
nature. One good index of this is that children’s
memory of the orientation of lines is largely based
on the relation between these lines and the
orientation of stable features in the background. For
this reason children find it much easier to remember
the orientation of horizontal and vertical lines than
of diagonal lines, because horizontal and vertical
features are quite common in the child’s stable
spatial environment. For the same reason, young
children remember and reproduce right angles
(perpendicular lines) better than acute or obtuse
angles. The relational nature of children’s spatial
perception and memory is potentially a powerful
resource for learning about geometry, since spatial
relations are the basic subject matter of geometry.

With so much relevant informal knowledge about
space and shape to draw on, one might think that
children would have little difficulty in translating this

knowledge into formal geometrical understanding.
Yet, it is not always that easy. It is an unfortunate and
well-documented fact that many children have
persistent difficulties with many aspects of geometry. 

One evidently successful link between young
children’s early spatial knowledge and their more
formal experiences in the classroom is their learning
how to use Cartesian co-ordinates to plot positions
in two-dimensional space. This causes schoolchildren
little difficulty, although it takes some time for them
to understand how to work out the relation
between two positions plotted in this way. 

Other links between informal and formal knowledge
are harder for young children. The apparently simple act
of measuring a straight line, for example, causes them
problems even though they are usually perfectly able to
make the appropriate logical moves and understand
the importance of one-to-one correspondence, which
is an essential part of relating the units on a ruler to
the line being measured. One problem here is that
they find it hard to understand the idea of iteration:
iteration is about repeated measurements, so that a
ruler consists of a set of iterated (repeated) units like
centimetres. Iteration is necessary when a particular
length being measured is longer than the measuring
instrument. Another problem is that the one-to-one
correspondence involved in measuring a line with a
ruler is asymmetrical. The units (centimetres, inches) are
visible and clear in the ruler but have to be imagined
on the line itself. It is less of a surprise that it also takes
children a great deal of time to come to terms with
the fact that measurement of area usually needs some
form of multiplication, e.g. height x width with
rectangles, rather than addition. 

The formal concept of angle is another serious
stumbling block for children even though they are
familiar enough with angles in their everyday spatial
environments. The main problem is that they find it
hard to grasp that two angles in very different contexts
are the same, e.g. themselves turning 90o and the
corner of a page in a book. Abstraction is an essential
part of geometry but it has very little to do with
children’s ordinary spatial perception and knowledge. 

For much the same reason, decomposing a relatively
complex shape into several simpler component
shapes – again an essential activity in geometry – is
something that many children find hard to do. In their
ordinary lives it is usually more important for them to
see shapes as unities, rather than to be able to break
them up into other shapes. This difficulty makes it hard
for them to work out relationships between shapes.
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For example, children who easily grasp that a + b – b
= a, nevertheless often fail to understand completely
the demonstration that a rectangle and a
parallelogram with the same base and height are
equal in area because you can transform the
parallelogram into the rectangle by subtracting a
triangle from one end of the parallelogram and adding
an exactly equivalent triangle to the other end. 

We know little about children’s understanding of
transformations of shape or of any difficulties that
they might have when they are taught about these
transformations. This is a serious gap in research on
children’s mathematical learning. It is well recognised,
however, that children and some adults confuse scale
enlargements with enlargements of area. They 
think that doubling the length of the contour of a
geometric shape such as a square or a rectangle also
doubles its area, which is a serious misconception.
Teachers should be aware of this potential difficulty
when they teach children about scale enlargements.

Researchers have been more successful in identifying
these obstacles than in showing us how to help
children to surmount them. There are some studies
of ways of preparing children for geometry in the
pre-school period or in the early years at school. This

research, however, concentrated on short-term gains
in children’s geometric understanding and did not
answer the question whether these early teaching
programmes would actually help children when they
begin to learn about geometry in the classroom. 

There has also been research on teaching children
about angle, mostly in the context of computer-
based teaching programmes. One of the most
interesting points to come out of this research is that
teaching children about angle in terms of movements
(turning) is successful, and there is some evidence
that children taught this way are quite likely to
transfer their new knowledge about angle to other
contexts that do not involve movement.

However, there has been no concerted research 
on how teachers could take advantage of children’s
considerable spatial knowledge when teaching them
geometry. We badly need long-term studies of
interventions that take account of children’s
relational approach to the spatial environment and
encourage them to grasp other relations, such as the
relation between shapes and the relation between
shapes and their subcomponent parts, which go
beyond their informal spatial knowledge.
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Recommendations

Research about mathematical
learning

Children’s pre-school knowledge of space
is relational. They are skilled at using stable
features of the spatial framework to
perceive and remember the relative
orientation and position of objects in the
environment. There is, however, no
research on the relation between this
informal knowledge and how well children
learn about geometry. 

Children already understand the logic of
measurement in their early school years.
They can make and understand transitive
inferences, they understand the inverse
relation between addition and subtraction,
and they can recognise and use one-to-
one correspondence. These are three
essential aspects of measurement.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of the research on
children’s considerable spatial knowledge and skills and should
relate their teaching of geometrical concepts to this
knowledge.
Research There is a serious need for longitudinal research
on the possible connections between children’s pre-school
spatial abilities and how well they learn about geometry 
at school.

Teaching The conceptual basis of measurement and not just
the procedures should be an important part of the teaching.
Teachers should emphasise transitive inferences, inversion of
addition and subtraction and also one-to-one correspondence
and should show children their importance.
Research Psychologists should extend their research 
on transitive inference, inversion and one-to-one
correspondence to geometrical problems, such as
measurement of length and area.
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Research about mathematical
learning

Many children have difficulties with the
idea of iteration of standard units in
measurement.

Many children wrongly apply additive
reasoning, instead of multiplicative
reasoning, to the task of measuring area.
Children understand this multiplicative
reasoning better when they first think of it
as the number of tiles in a row times the
number of rows than when they try to
use a base times height formula.

Even very young children can easily
extrapolate straight lines and
schoolchildren have no difficulty in learning
how to plot positions using Cartesian 
co-ordinates, but it is difficult for them to
work out the relation between different
positions plotted in this way.

Research on pre-school intervention
suggests that it is possible to prepare
children for learning about geometry by
enhancing their understanding of space
and shapes. However, this research has not
included long-term testing and therefore
the suggestion is still tentative.

Children often learn about the relation
between shapes (e.g. between a
parallelogram and a rectangle) as a
procedure without understanding the
conceptual basis for these transformations.

There is hardly any research on children’s
understanding of the transformation of
shapes, but there is evidence of confusion
in many children about the effects of
enlargement: they consider that doubling
the length of the perimeter of a square,
for example, doubles its area. 

Recommendations for teaching 
and research 

Teaching Teachers should recognise this difficulty and
construct exercises which involve iteration, not just with
standard units but with familiar objects like cups and hands.

Research Psychologists should study the exact cause of
children’s difficulties with iteration.

Teaching In lessons on area measurement, teachers can
promote children’s use of the reasoning ‘number in a row
times number of rows’ by giving children a number of tiles that
is insufficient to cover the area. They should also contrast
measurements which do, and measurements which do not,
rest on multiplication.

Teaching Teachers, using concrete material, should relate
teaching about spatial co-ordinates to children’s everyday
experiences of extrapolating imaginary straight lines.
Research There is a need for intervention studies on
methods of teaching children to work out the relation
between different positions, using co-ordinates.

Research There will have to be long-term predictive and
long-term intervention studies on this crucial, but neglected,
question

Teaching Children should be taught the conceptual reasons
for adding and subtracting shape components when studying
the relation between shapes.
Research Existing research on this topic was done a very
long time ago and was not very systematic. We need well-
designed longitudinal and intervention studies on children’s
ability to make and understand such transformations.

Teaching Teachers should be aware of the risk that children
might confuse scale enlargements with area enlargements.
Research Psychologists could easily study how children
understand transformations like reflection and rotation but
they have not done so. We need this kind of research.

Recommendations (continued)



From informal understanding to
formal misunderstanding of space
This paper is about children’s informal knowledge of
space and spatial relations and about their formal
learning of geometry. It also deals with the
connection between these two kinds of knowledge.
This connection is much the same as the one
between knowledge about quantitative relations on
the one hand and about number on the other hand,
which we described in Papers 1 and 2. We shall show
how young children build up a large and impressive,
but often implicit, understanding of spatial relations
before they go to school and how this knowledge
sometimes matches the relations that they learn in
geometry very well and sometimes does not.

There is a rich vein of research on children’s 
spatial knowledge – knowledge which they acquire
informally and, for the most part, long before they go
to school – and this research is obviously relevant to
the successes and the difficulties that they have when
they are taught about geometry at school. Yet, with a
few honourable exceptions, the most remarkable of
which is a recent thorough review by Clements and
Sarama (2007 b), there have been very few attempts
indeed to link research on children’s informal, and
often implicit, knowledge about spatial relations to
their ability to carry out the explicit analyses of
space that are required in geometry classes.

The reason for this gap is probably the striking
imbalance in the contribution made by psychologists
and by maths educators to research on geometrical
learning. Although psychologists have studied
children’s informal understanding of space in detail
and with great success, they have virtually ignored
children’s learning about geometry, at any rate in
recent years. Despite Wertheimer’s (1945) and

Piaget, Inhelder and Szeminska’s (1960) impressive
pioneering work on children’s understanding of
geometry, which we shall describe later, psychologists
have virtually ignored this aspect of children’s
education since then. In contrast, mathematics
educators have made steady progress in studying
children’s geometry with measures of what children
find difficult and studies of the effects of different
kinds of teaching and classroom experience. 

One effect of this imbalance in the contribution of
the two disciplines to research on learning about
geometry is that the existing research tells us 
more about educational methods than about the
underlying difficulties that children have in learning
about geometry. Another result is that some
excellent ideas about enhancing children’s
geometrical understanding have been proposed by
educationalists but are still waiting for the kind of
empirical test that psychologists are good at
designing and carrying out.

The central problem for anyone trying to make the
link between children’s informal spatial knowledge
and their understanding of geometry is easy to state.
It is the stark contrast between children’s impressive
everyday understanding of their spatial environment
and the difficulties that they have in learning how 
to analyse space mathematically. We shall start 
our review with an account of the basic spatial
knowledge that children acquire informally long
before they go to school. 

7 Key understandings in mathematics learning
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Early spatial knowledge:
perception

Shape, size, position and extrapolation
of imagined straight lines

Spatial achievements begin early. Over the last 30
years, experimental work with young babies has
clearly shown that they are born with, or acquire
very early on in their life, many robust and effective
perceptual abilities. They can discriminate objects by
their shape, by their size and by their orientation and
they can perceive depth and distinguish differences in
distance (Slater, 1999; Slater and Lewis 2002; Slater,
Field and Hernadez-Reif, 2002; Bremner, Bryant and
Mareschal, 2006). 

They can even co-ordinate information about size and
distance (Slater, Mattock and Brown, 1990), and they
can also co-ordinate information about an object’s
shape and its orientation (Slater and Morrison, 1985).
The first co-ordination makes it possible for them to
recognise a particular object, which they first see close
up, as the same object when they see it again in the
distance, even though the size of the visual impression
that it now makes is much smaller than it was before.
With the help of the second kind of co-ordination,
babies can recognise particular shapes even when
they see them from completely different angles: the
shape of the impression that these objects make on
the visual receptors varies, but babies can still
recognise them as the same by taking the change in
orientation into account.

We do not yet know how children so young are
capable of these impressive feats, but it is quite likely
that the answer lies in the relational nature of the
way that they deal with size (and, as we shall see
later, with orientation), as Rock (1970) suggested
many years ago. A person nearby makes a larger
visual impression on your visual system than a
person in the distance but, if these two people are
roughly the same size as each other, the relation
between their size and that of familiar objects near
each of them, such as cars and bus-stops and
wheelie-bins, will be much the same. 

The idea that children judge an object’s size in terms
of its relation to the size of other objects at the
same distance receives some support from work 
on children’s learning about relations. When four-
year-old children are asked to discriminate and
remember a particular object on the basis of its size,

they do far better when it is possible to solve the
problem on the basis of size relations (e.g. it is
always the smaller one) than when they have to
remember its absolute size (e.g. it is always exactly
so large) (Lawrenson and Bryant, 1972).

Another remarkable early spatial achievement by
infants, which is also relational and is highly relevant
to much of what they later have to learn in
geometry lessons, is their ability to extrapolate
imaginary straight lines in three dimensional space
(Butterworth, 2002). Extrapolation of imagined
straight lines is, of course, essential for the use of
Cartesian co-ordinates to plot positions in graphs
and in maps, but it also is a basic ingredient of very
young children’s social communication (Butterworth
and Cochrane, 1980; Butterworth and Grover, 1988).
Butterworth and Jarrett (1991) showed this in a
study in which they asked a mother to sit opposite
her baby and then to stare at some predetermined
object which was either in front and in full view of
the child or was behind the child, so that he had to
turn his head in order to see it. The question was
whether the baby would then look at the same
object, and to do this he would have to extrapolate
a straight line that represented his mother’s line of
sight. Butterworth and Jarrett found that babies
younger than 12 months manage to do this most of
the time when the object in question was in front of
them. They usually did not also turn their heads to
look at objects behind them when these apparently
caught their mothers’ attention. But 15-month-old
children did even that: they followed their mother’s
line of sight whether it led them to objects already 
in full view or to ones behind them. A slightly later
development that also involves extrapolating
imaginary straight lines is the ability to point and to
look in the direction of an object that someone else
is pointing at, which infants manage do with great
proficiency (Butterworth and Morisette, 1996;
Butterworth and Itakura, 2000).

Orientation and position 

The orientation of objects and surfaces are a
significant and highly regular and predictable part of
our everyday spatial environments. Walls usually are,
and usually have to be, vertical: objects stay on
horizontal surfaces but tend to slide off sloping
surfaces. The surface of still liquid is horizontal: the
opposite edges of many familiar manufactured
objects (doors, windows, television sets, pictures,
book pages) are parallel: we ourselves are vertical
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when we walk, horizontal when we swim. Yet,
children seem to have more difficulty distinguishing
and remembering information about orientation than
information about other familiar spatial variables. 

Horizontals and verticals are not the problem. 
Five-year-old children take in and remember the
orientation of horizontal and vertical lines extremely
well (Bryant 1969, 1974; Bryant and Squire, 2001). In
contrast, they have a lot of difficulty in remembering
either the direction or slope of obliquely oriented
lines. There is, however, an effective way of helping
them over this difficulty with oblique lines. If there are
other obliquely oriented lines in the background that
are parallel to an oblique line that they are asked to
remember, their memory of the slope and direction
for this oblique line improves dramatically (see Figure
5.1). The children use the parallel relation between
the line that they have to remember and stable
features in the background framework to store and
recognise information about the oblique line. 

This result suggests a reason for the initial radical
difference in how good their memory is for vertical
and horizontal features and how poor it is for
obliquely oriented ones. The reason, again, is about

relations. It is that that there are usually ample stable
horizontal and vertical features in the background to
relate these lines to. Stable, background features that
parallel particular lines which are not either vertical
or horizontal are much less common. If this idea is
right, young children are already relying on spatial
relations that are at the heart of Euclidean geometry
to store information about the spatial environment
by the time that they begin to be taught formally
about geometry.

However, children do not always adopt this excellent
strategy of relating the orientation of lines to
permanent features of the spatial environment.
Piaget and Inhelder’s (1963) deservedly famous and
often-repeated experiment about children drawing
the level of water in a tilted container is the best
example. They showed the children tilted glass
containers (glasses, bottles) with liquid in them
(though the containers were tilted, the laws of
nature dictated that the level of the liquid in them
was horizontal). They also gave the children a picture
of an empty, tilted container depicted as just above 
a table top which was an obvious horizontal
background feature. The children’s task was to draw
in the level of the liquid in the drawing so that it was

9 Key understandings in mathematics learning
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exactly like the liquid in the experimenter’s hand. The
question that Piaget and Inhelder asked was whether
they would draw the liquid as parallel to the table
top or, in other words, as horizontal. 

Children below the age of roughly eight years did
not manage to do this. Many of them drew the liquid
as perpendicular to the sides (when the sides were
straight) and parallel to the bottom of the container.
It seems that the children could not take advantage
of the parallel relation between the liquid and the
table top, probably because they were preoccupied
with the glass itself and did not manage to shift their
attention to an external feature.

Piaget and Inhelder treated the young child’s
difficulties in this drawing task as a failure on the
child’s part to notice and take advantage of a basic
Euclidean relation, the parallel relation between 
two horizontal lines. They argued that a child who
makes this mistake does not have any idea about
horizontality: he or she is unaware that horizontal
lines and surfaces are an important part of the
environment and that some surfaces, such as still
liquid, are constantly horizontal. 

Piaget and Inhelder then extended their argument to
verticality. They asked children to copy pictures of

objects that are usually vertical, such as trees and
chimneys. In the pictures that the children had to
copy, these objects were positioned on obliquely
oriented surfaces: the trees stood vertically on the
side of a steeply sloping hill and vertical chimneys
were placed on sloping roofs. In their copies of 
these pictures, children younger than about eight
years usually drew the trees and chimneys as
perpendicular to their baselines (the side of the hill
or the sloping roof) and therefore with an oblique
orientation. Piaget and Inhelder concluded that
children of this age have not yet realised that the
space around them is full of stable vertical and
horizontal features.

There is something of a conflict between the two sets
of results that we have just presented. One (Bryant
1969, 1974; Bryant and Squire, 2001) suggests that
young children detect, and indeed rely on, parallel
relations between objects in their immediate
perception and stable background features. The other
(Piaget and Inhelder, 1963) leads to the conclusion
that children completely disregard these relations.
However, this is not a serious problem. In the first set
of experiments the use that children made of parallel
relations was probably implicit. The second set of
experiments involved drawing tasks, in which the
children had to make explicit judgements about such

10 Paper 5: Understanding space and its representation in mathematics

Figure 5.2: The perpendicular bias

When children see 2-line figure A and are asked to copy in the missing line on B either by placing

or drawing a straight wire, they represent the line as nearer to the perpendicular than it is



relations. Children probably perceive and make use of
parallel relations without being aware of doing so. The
implication for teaching children is an interesting one.
It is that one important task for the teacher of
geometry is to transform their implicit knowledge 
into explicit knowledge.

There is another point to be made about the
children’s mistakes in Piaget and Inhelder’s studies.
One possible reason, or partial reason, for these
mistakes might have been that in every case (the
liquid in a tilted container, trees on the hillside,
chimneys on the sloping roofs) the task was to draw
the crucial feature as non-perpendicular in relation
to its baseline. There is plenty of evidence (Ibbotson
and Bryant, 1976) that, in copying, children find it
quite difficult to draw one straight line that meets
another straight line, the baseline, when the line that
they have to draw is obliquely oriented to that
baseline (see Figure 5.2).

They tend to misrepresent the line that they are
drawing either as perpendicular to the baseline or 
as closer to the perpendicular than it should be.
There are various possible reasons for this
‘perpendicular error’, but at the very least it shows
that children have some difficulty in representing
non-perpendicular lines. The work by Piaget et al.
establishes that the presence of stable, background
features of the spatial environment, like the table 
top, does not help children surmount this bias. 

Early spatial knowledge: 
logic and measurement

Inferences about space and
measurement 

The early spatial achievements that we have
described so far are, broadly speaking, perceptual
ones. Our next task is to consider how young
children reason about space. We must consider
whether young children are able to make logical
inferences about space and can understand other
people’s inferential reasoning about space by the 
age when they first go to school. 

We can start with spatial measurements. These
depend on logical inferences about space.
Measurement allows us to make comparisons between
quantities that we cannot compare directly. We can
work out whether a washing line is long enough to

stretch between posts by measuring the line that we
have and the distance between the posts. We compare
the two lengths, the length of the line and the distance
from one post to the other indirectly, by comparing
both directly to the same measuring instrument – a
tape measure or ruler. We combine two direct
comparisons to make an indirect comparison.

When we put two pieces of information together in
this way in order to produce a new conclusion, we
are making a logical inference. Inferences about
continua, like length, are called transitive inferences.
We, adults, know that if A = B in length and B = C,
then A is necessarily the same length as C, even
though we have never seen A and C together and
therefore have not been able to compare them
directly. We also know, of course, that if A > B and B
> C (in length), then A > C, again without making a
direct comparison between A and C. In these
inferences B is the independent measure through
which A and C can be compared.

Piaget, Inhelder and Szeminska (1960) were the first
to discuss this link between understanding logic and
being able to measure in their well-known book on
geometry. They argued that the main cause of the
difficulties that children have in learning about
measurement is that they do not understand
transitive inferences. These authors’ claim about the
importance of transitive inferences in learning about
measurement is indisputable and an extremely
important one. However, their idea that young
children cannot make or understand transitive
inferences has always been a controversial one, and
it is now clear that we must make a fundamental
distinction between being able to make the inference
and knowing when this inference is needed and how
to put it into effect.

There are usually two consecutive parts to a
transitive inference task. In the first, the child is given
two premises (A = B, B = C) and in the second he
or she has to try to draw an inference from these
premises. For example, in Piaget’s first study of
transitive inferences, which was not about length but
about the behaviour of some fictional people, he first
told the children that ‘Mary is naughtier than Sarah,
and Sarah is naughtier than Jane’ and then asked then
‘Who was the naughtier, Mary or Jane?’ Most children
below the age of roughly nine years found, and still
do find, this an extremely difficult question and often
say that they cannot tell. The failure is a dramatic one,
but there are at least two possible reasons for it. 

11 Key understandings in mathematics learning
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One, favoured by Piaget himself, that the failure is a
logical one – that children of this age simply cannot
put two premises about quantity together logically. 
It is worth noting that Piaget thought that the reason
that young children did not make this logical move
was that they could not conceive that the middle
term (B when the premises are A > B and B > C)
could simultaneously have one relation to A and
another, different, relation to C. 

The second possible reason for children not making
the transitive inference is about memory. The
children may be unable to make the inference simply
because they have forgotten, or because they did
not bother to commit to memory in the first place,
one or both of the premises. The implication here is
that they would be able to make the inference if
they could remember both premises at the time that
they were given the inferential question.

One way to test the second hypothesis is to make
sure that the children in the study do remember 
the premises, and also to take the precaution of
measuring how well they remember these premises
at the same time as testing their ability to draw a
transitive inference. Bryant and Trabasso (1971) did
this by repeating the information about the premises
in the first part of the task until the children had
learned it thoroughly, and then in the second 
part checking how well they remembered this
information and testing how well they could answer
the inferential questions at the same time. In this
study even the four-year-olds were able remember
the premises and they managed to put them
together successfully to make the correct transitive
inference on 80% of the trials. The equivalent figure
for the five-year-olds was 89%.

Young children’s success in this inferential task
suggests that they have the ability to make the
inference that underlies measurement, but we still
have to find out how well they apply this ability to
measurement itself. Here, the research of Piaget et
al. (1960) on measurement provides some
interesting suggestions. These researchers showed
children a tower made of bricks of different sizes.
The tower was placed on a small table and each
child was 
asked to build another tower of the same height 
on another lower table that was usually, though 
not always, on the other side of the other side of a
partition, so that the child had to create the replica
without being able compare it directly to the original
tower. Piaget et al. also provided the child with

various possible measurement instruments, such as
strips of paper and a straight stick, to help her with
the task, and the main question that they asked was
whether the child would use any of these as
measures to compare the two towers. 

Children under the age of (roughly) eight years did
not take advantage of the measuring instruments.
Either they tried to do the task by remembering the
original while creating the replica, which did not
work at all well, or they used their hands or their
body as a measuring instrument. For example, some
children put one hand at the bottom and the other
at the top of the original tower and then walked to
the other tower trying at the same time to keep
their hands at a constant distance from each other.
This strategy, which Piaget et al. called ‘manual
transfer’, tended not to be successful either, for the
practical reason that the children also had to use and
move their hands to add and subtract bricks to their
own tower. Older children, in contrast, were happy
to use the strips of paper or the dowel rod as a
makeshift ruler to compare the two towers. Piaget 
et al. claimed that the children who did not use the
measuring instruments failed the task because they
were unable to reason about it logically. They also
argued that children’s initial use of their own body
was a transitional step on the way to true
measurement using an ‘independent middle term’. 

This might be too pessimistic a conclusion. There is
an alternative explanation for the reactions of the
children who did not attempt to use a measure at
all. It is that children not only have to be able to
make an inference to do well in any measuring task:
they also have to realise that a direct comparison
will not do, and thus that instead they should make
an indirect, inferential, comparison with the help of a
reliable intervening measure.

There is some evidence to support this idea. If it is
right, children should be ready to measure in a task
in which it is made completely obvious that direct
comparisons would not work. Bryant and Kopytynska
(1976) devised a task of this sort. First, they gave a
group of five- and six-year-old children a version of
Piaget et al.’s two towers task, and all of them failed.
Then, in a new task, they gave the children two
blocks of wood, each with a hole sunk in the middle
in such a way that it was impossible to see how
deep either hole was. They asked the children to find
out whether the two holes were as deep as each
other or not. The children were also given a rod with
coloured markings. The question was whether the
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children, who did not measure in Piaget et al.’s task,
would start to use a measure in this new task in
which it was clear that a direct comparison would be
useless. 

Nearly all the children used the rod to measure
both holes in the blocks of wood at least once (they
were each given four problems) and over half the
children measured and produced the right answer in
all four problems. It seems that children of five years
or older are ready to use an intervening measure to
make an indirect comparison of two quantities. Their
difficulty is in knowing when to distrust direct
comparisons enough to resort to measurement.

Iteration and measurement 

One interesting variation in the study of measurement
by Piaget et al. (1960) was in the length of the straight
dowel rod, which was the main measuring tool in this
task. The rod’s length equalled the height of the
original tower (R = T) in some problems but in others
the rod was longer (R > T) and in others still it was
shorter (R < T) than the tower. 

The older children who used the rod as a measure
were most successful when R = T. They were slightly
less successful when R > T and they had to mark a
point on the rod which coincided with the summit
of the tower. In contrast, the R < T problems were
particularly difficult, even for the children who tried
to use the rod as a measure. The solution to such
problems is iteration which, in this case, is to apply
the rod more than once to the tower: the child has
to mark a point to represent the length of the ruler
and then to start measuring again from this point.

It is worth noting that iteration also involves a great
deal of care in its execution. You must cover all the
surface that you are measuring, all its length in these
examples, but you must never overlap – never
measure any part of the surface twice.

Iteration in measurement is interesting because 
the people who do it successfully are actually
constructing their own measure and therefore
certainly have a strong and effective understanding
of measurement. Piaget et al. (1960) also argued that
children’s eventual realisation that iteration is the
solution to some measuring problems is the basis 
for their eventual understanding of the role of
standardised units such as centimetres and metres.
We use these units, they argued, in an iterative way:

1 metre is made up of 100 iterations of 1
centimetre, and one kilometre consists of 1000
iterations of 1 metre. Children’s first insight into this
iterative system, according to Piaget et al., comes
from their initial experiences with R < T problems.
This is an interesting causal hypothesis that has some
serious educational implications. It should be tested.

Conclusions about children’s early
spatial knowledge
• Children have a well-developed and effective

relational knowledge of shape, position, distance,
spatial orientation and direction long before they
go to school. This knowledge may be implicit and
non-numerical for the most part, but it is certainly
knowledge that is related to geometry.

• The mistakes that children make in drawing
horizontal and vertical lines are probably due to
preferring to concentrate on relations between
lines close to each other (liquid in a glass is
perpendicular to the sides of the glass) rather than
to separated lines (liquid in a glass is parallel to
horizontal surfaces like table tops). This is a mistake
not in relational perception, but in picking the right
relation.

• Children are also able to understand and to make
transitive inferences, which are the basic logical
move that underlies measurement, several years
before being taught about geometry. 

• We do not yet know how well they can cope with
the notion of iteration in the school years. 

• There is no research on the possible causal links
between these impressive early perceptual and
logical abilities and the successes and difficulties that
children have when they first learn about geometry.
This is a serious gap in our knowledge about
geometrical learning.
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The connections between
children’s knowledge of space
before being taught geometry
and how well they learn when
they are taught about geometry 

To what extent does children’s early spatial
development predict their success in geometry later on?
The question is simple, clear and overwhelmingly
important. If we were dealing with some other
school subject – say learning to read – we would
have no difficulty in finding an answer, perhaps more
than one answer, about the importance of early,
informal learning and experience, because of the
very large amount of work done on the subject.
With geometry, however, it is different. Having
established that young children do have a rich and 
in many ways sophisticated understanding of their
spatial environment, psychologists seem to have
made their excuses and left the room. Literally
hundreds of longitudinal and intervention studies
exist on what children already know about language
and how they learn to read and spell. Yet, as far as
we know, no one has made a systematic attempt, in
longitudinal or intervention research, to link what
children know about space to how they learn the
mathematics of spatial relations, even though there
are some extremely interesting and highly specific
questions to research. 

To take one example, what connections are there
between children’s knowledge of measurement
before they learn about it and how well they learn
to use and understand the use of rulers? To take
another, we know that children have a bias towards
representing angles as more perpendicular than they
are: what connection is there between the extent of
this bias and the success that children have in
learning about angles, and is the relation a positive or
a negative one? These are practicable and immensely
interesting questions that could easily be answered in
longitudinal studies. It is no longer a matter of what
is to be done. The question that baffles us is: why are
the right longitudinal and intervention studies not
being done?

How can we intervene to prepare young children in 
the pre-school period for geometry? If there is a
connection between the remarkable spatial
knowledge that we find in quite young children 
and their successes and failures in learning about
geometry later on, it should be possible to work 

on these early skills and enhance them in various
ways that will help them learn about geometry when
the time comes.

Here the situation is rather different. Educators have
produced systematic programmes to prepare
children for formal instruction in geometry. Some of
these are ingenious and convincing, and they deserve
attention. The problem in some cases is a lack of
empirical evaluation. 

One notable programme comes from the highly
respected Freudenthal Institute in the Netherlands. 
A team of educational researchers there (van den
Heuven-Panhuizen and Buys, 2008) have produced
an ingenious and original plan for enhancing
children’s geometric skills before the age when they
would normally be taught in a formal way about the
subject. We shall concentrate here on the
recommendations that van den Heuven-Panhuizen
and Buys make for introducing kindergarten children
to some basic geometrical concepts. However, we
shall begin with the remark that, though their
recommendations deserve our serious attention, the
Freudenthal team offer us no empirical evidence at
all that they really do work. Neither intervention
studies with pre-tests and post-tests and randomly
selected treatment groups, nor longitudinal predictive
projects, seem to have played any part in this
particular initiative. 

The basic theoretical idea behind the Freudenthal
team’s programme for preparing children for
geometry is that children’s everyday life includes
experiences and activities which are relevant to
geometry but that the geometric knowledge that
kindergarten children glean from these experiences
is implicit and unsystematic. The solution that the
team offers is to give these young children a
systematic set of enjoyable game-like activities with
familiar material and after each activity is finished to
discuss and to encourage the children to reflect on
what they have just done.

Some of these activities are about measurement
(Buys and Veltman, 2008). In one interesting example,
a teacher encourages the children to find out how
many cups of liquid would fill a particular bottle and,
when they have done that, to work out how many
cups of liquid the bottle would provide when the
bottle is not completely full. This leads to the idea of
putting marks on the bottle to indicate when it
contains one or more cups’ worth of liquid. Thus, the
children experience measurement units and also
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iteration. In another measurement activity children
use conventional measures. They are given three
rods each a metre long and are asked to measure
the width of the room. Typically the children start
well by forming the rods into a straight 3-metre line,
but then hit the problem of measuring the remaining
space: their first reaction is to ask for more rods, but
the teacher then provides the suggestion that instead
they try moving the first rod ahead of the third and
then to move the second rod: Buys and Veltman
report that the children readily follow this suggestion
and apparently understand the iteration involved
perfectly well. 

Other exercises, equally ingenious, are about
constructing and operating on shapes (van 
den Heuvel-Panhuizen, Veltman, Janssen and
Hochstenbach, 2008). The Freudenthal team use 
the device of folding paper and then cutting out
shapes to encourage children to think about the
relationship between shapes: cutting an isosceles
triangle across the fold, for example, creates a
regular parallelogram when the paper is unfolded.
The children also play games that take the form of
four children creating a four-part figure between
them with many symmetries: each child produces
the mirror-image of the figure that the previous
child had made (see Figure 5.3). The aim of such
games is to give children systematic experience of
the transformations, rotation and reflection, and to
encourage them to reflect on these transformations.

If this group of researchers is right, children’s early
knowledge of geometric relationships and
comparisons, though implicit and unsystematic, plays
an important part in their eventual learning about
geometry. It is a resource that can be enhanced by
sensitive teaching of the kind that the Freudenthal
group has pioneered. They may be right, but

someone has to establish, through empirical
research, how right they are.

There are a few empirical studies of ways of
improving spatial skills in pre-school children. In these
the children are given pre-tests which assess how
well they do in spatial tasks which are suitable for
children of that age, then go through intervention
sessions which are designed to increase some of
these skills and finally, soon after the end of this
teaching, they are given post-tests to measure
improvement in the same skills. 

Two well designed studies carried out by Casey and
her colleagues take this form (Casey, Erkut, Ceder
and Young, 2008; Casey, Andrews, Schindler, Kersh and
Young, 2008). In both studies the researchers were
interested in how well five- and six-year-old children
can learn to compose geometric shapes by
combining other geometric shapes and how well they
decompose shapes into component shapes, and also
whether it is easier to improve this particular skill
when it is couched in the context of a story than
when the context is a more formal and abstract one. 

The results of these two studies showed that the
special instruction did, on the whole, help children to
compose and decompose shapes and did have an
effect on related spatial skills in the children who
were taught in this way. They also showed that the
narrative context added to the effect of teaching
children at this age. Recently, Clements and Sarama
(2007 a) reported a very different study of slightly
younger, nursery children. These researchers were
interested in the effects of a pre-school programme,
called Building Blocks, the aim of which is to prepare
children for mathematics in general including
geometry. This programme is based on a theory
about children’s mathematical development: as far as

15 Key understandings in mathematics learning

Figure 5.3: An activity devised by van den Heuvel-Panhuizen, Veltman, Janssen and Hochstenbach: four children devise a four-part

shape by forming mirror-images.



16 SUMMARY – PAPER 2: Understanding whole numbers

geometry is concerned Clement and Sarama’s
strongest interest is in children’s awareness of the
composition of shapes and the relationship between
different shapes. They also believe that the actual
teaching given to individual children should be
determined by their developmental levels. Thus the
day-to-day instruction in their programme depends
on the children’s developmental trajectories.
Clements and Sarama report that the young children
taught in the Building Blocks programmes improved
from pre-test to post-test more rapidly than children
taught in other ways in tasks that involved
constructing or relating shapes. 

These are interesting conclusions and a good start.
However, research on the question of the effects 
of intervention programmes designed to prepare
children for geometry need to go further than this.
We need studies of the effects of pre-school
interventions on the progress that children make
when they are eventually taught geometry at school
a few years later on. We cannot be sure that the
changes in the children’s skills that were detected in
these studies would have anything to do with their
successes and failures later on in geometry.

Summary

1 Children have a well-developed and effective
relational knowledge of shape, position, distance,
spatial orientation and direction long before they
go to school. This knowledge may be implicit and
non-numerical for the most part, but it is certainly
knowledge that is related to geometry.

2 The mistakes that children make in drawing
horizontal and vertical lines are probably due to
them preferring to concentrate on relations
between lines close to each other (liquid in a glass
is perpendicular to the sides of the glass) rather
than to separated lines (liquid in a glass is parallel
to horizontal surfaces like table tops). This is a
mistake not in relational perception, but in picking
the right relation.

3 Children are also able to understand and to make
transitive inferences, which are the basic logical
move that underlies measurement, several years
before being taught about geometry. 

4 We do not yet know how well they can cope with
the notion of iteration in the school years. 

5 There is little research on the possible causal links
between these impressive early perceptual and
logical abilities and the successes and difficulties
that children have when they first learn about
geometry. This is a serious gap in our knowledge
about geometrical learning.

Learning about geometry
The aim of teaching children geometry is to show
them how to reason logically and mathematically
about space, shapes and the relation between
shapes, using as tools conventional mathematical
measures for size, angle, direction, orientation and
position. In geometry classes children learn to
analyse familiar spatial experiences in entirely new
ways, and the experience of this novel and explicit
kind of analysis should allow them to perceive and
understand spatial relationships that they knew
nothing about before. 

In our view the aspects of analysing space
geometrically that are new to children coming to 
the subject for the first time are:
• representing spatial relations which are already

familiar to them, like length, area and position, in
numbers

• learning about relations that are new to them, at
any rate in terms of explicit knowledge, such as
angle

• forming new categories for shapes, such as
triangles, and understanding that the properties of
a figure depends on its geometric shape

• understanding that there are systematic relations
between shapes, for instance between rectangles
and parallelograms

• understanding the relation between shapes across
transformations, such as rotation, enlargement and
changes in position.

Applying numbers to 
familiar spatial relations 
and forming relations 
between different shapes

Length measurement

Young children are clearly aware of length. They
know that they grow taller as they grow older, and
that some people live closer to the school than
others. However, putting numbers on these changes
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and differences, which is one of their first geometric
feats, is something new to them.

Standard units of measurement are equal subdivisions
of the measuring instrument, and this means that
children have to understand that this instrument, a
ruler or tape measure or protractor, is not just a
continuous quantity but is also subdivided into units
that are exactly the same as each other. The child has
to understand, for example, that by using a ruler, she
can represent an object’s length through an iteration
of measurement units, like the centimetre. 

When children measure, for example, the length of a
straight line, they must relate the units on the ruler to
the length that they are measuring, which is a one-to-
one correspondence, but of a relatively demanding
form. In order to see that the measured length is, for
example, 10 cm long, they have to understand that
the length that they are measuring can also be
divided into the same unit and that ten of the units
on the ruler are in one-to-one correspondence with
ten imaginary but exactly similar units on what is
being measured. This is an active form of one-to-one
correspondence, since it depends on the children
understanding that they are converting a continuous
into a discontinuous quantity by dividing it into
imaginary units. Here, is a good example of how even
the simplest of mathematical analysis of space makes
demands on children’s imagination: they must imagine
and impose divisions on undivided quantities in order
to create the one-to-one correspondence which is
basic to all measurement of length.

Measuring a straight line with a ruler is probably the
simplest form of measurement of all, but children
even make mistakes with this task and their mistakes
suggest that they do not at first grasp that measuring
the line takes the form of imposing one-to-one
correspondence of the units on the measure with
imagined units on the line. This was certainly
suggested by the answers that a large number of
children who were in their first three years of
secondary school (11-, 12-, 13- and 14-year-olds)
gave to a question about the length of a straight line,
which was part of a test devised by Hart, Brown,
Kerslake, Küchemann and Ruddock (1985). The
children were shown a picture of straight line beside
a ruler that was marked in centimetres. One end of
the line was aligned with the 1 cm mark on the ruler
and the other end with the 7 cm mark. The children
were asked how long the line was and, in the
youngest group, almost as many of them (46%) gave
the answer 7 cm as gave the right answer (49%)

which was 6 cm. Thus even at the comparatively late
age of 11 years, after several years experience of
using rulers, many children seemed not to
understand, or at any rate not to understand
perfectly, that it is the number of units on the ruler
that the line corresponded to that decided its length. 

A study by Nunes, Light and Mason (1993) gives us
some insight into this apparently persistent difficulty.
These experimenters asked pairs of six- to eight-
year-old children to work together in a measuring
task. They gave both children in each pair a piece of
paper with a straight line on it, and the pair’s task
was to find out whether their lines were the same
length or, if not whose was longer and whose
shorter. Neither child could see the other’s line
because the two children did the task in separate
rooms and could only talk to each other over a
telephone. Both children in each pair were given a
measure to help them compare these lines and the
only difference between the pairs was in the
measures that the experimenters gave them. 

The pairs of children were assigned to three groups.
In one group, both children in each pair were given a
string with no markings: this therefore was a measure
without units. In a second group, each child in every
pair was given a standard ruler, marked in centimetres.
In the third group the children were also given rulers
marked in centimetres, but, while one of the children
had a standard ruler, the other child in the pair was
given a ‘broken’ ruler: it started at four centimetres.
The child with the broken ruler could not produce
the right answer just by reading out the number from
the ruler which coincided with the end of the line. If
the line was, for example, 7 cm long, that number
would be 11 cm. The children in these pairs had to
pay particular attention to the units in the ruler.

The pairs in the second group did well. They came
up with the correct solution 84% of the time. The
few mistakes that they made were mostly about
placing the ruler or counting the units. Some children
aligned one endpoint with the 1 cm point on the
ruler rather than the 0 cm point and thus
overestimated the length by 1 cm. This suggests that
they were wrongly concentrating on the boundaries
between units rather than the units themselves.
Teachers should be aware that some children have
this misconception. Nevertheless the ruler did, on
the whole, help the children in this study since those
who worked with complete rulers did much better
than the children who were just given a string to
measure with. 
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However, the broken ruler task was more difficult.
The children in the standard ruler group were right
84%, and those in the broken ruler group 63%, of
the time. Those who got it right despite having a
broken ruler either counted the units or read off the
last number (e.g. 11 cm for a 7 cm line) and then
subtracted 4, and since they managed to do this
more often than not, their performance established
that these young children have a considerable
amount of understanding of how to use the units in
a measuring instrument and of what the units mean.
However, on 30% of the trials the children in this
group seemed not to understand the significance of
the missing first four centimetres in the ruler. Either
they simply read off the number that matched the
line’s endpoint (11 cm for 7 cm) or they did not
subtract the right amount from it.

A large-scale American study (Kloosterman, Warfield,
Wearne, Koc, Martin and Strutchens, 2004; Sowder,
Wearne, Martin and Strutchens, 2004) later confirmed
this striking difficulty. In this study, the children had to
judge the length of an object which was pictured just
above a ruler, though neither of its endpoints was
aligned with the zero endpoint on that ruler. Less than
25% of the 4th graders (nine-year-olds) solved the
problem correctly and only about 60% of the 8th

graders managed to find the correct answer. This
strong result, combined with those reported by Nunes
et al., suggests that many children may know how to
use a standard ruler, but do not fully understand the
nature or structure of the measurement units that they
are dealing with when they do measure. Their mistake,
we suggest, is not a misunderstanding of the function
of a ruler: it is a failure in an active form of one-to-one
correspondence – in imagining the same units on the
line as on the ruler and then counting these units.

Summary

1 Measuring a straight line with a ruler is a procedure
and it is also a considerable intellectual feat.

2 The procedure is to place the zero point of the
ruler at one end of the straight line and to read off
the number of standardised units on the ruler that
corresponds to the other end of this line. There is
no evidence that this procedure causes young
children any consistent difficulty.

3 The intellectual feat is to understand that the ruler
iterates a standardised unit (e.g. the centimetre)
and that the length of the line being measured is

the number of units in the part of the ruler that is
in correspondence to the line. Thus measurement
of length is a one-to-one correspondence
problem, and the correspondence is between units
that are displayed on the ruler but have to be
imagined on the line itself. This act of imagination
seem obvious and easy to adults but may not be
so for young children.

4 Tests and experiments in which the line being
measured is not aligned with zero show that
initially children do not completely understand
how measurement is based on imagining one-to-
one correspondence of iterated units. 

Measurement of area: learning about
the relationship between the areas of
different shapes
There is a striking contrast between young children’s
apparently effortless informal discriminations of size
and area and the difficulties that they have in learning
how to analyse and measure area geometrically.
Earlier in this chapter we reported that babies are
able to recognise objects by their size and can do so
even when they see these objects at different
distance on different occasions. Yet, many children find
it difficult at first to measure or to understand the
area of even the simplest and most regular of shapes. 

All the intellectual requirements for understanding
how to measure length, such as knowing about
transitivity, iteration, and standardised units, apply as
well to measuring area. The differences are that: 

• area is necessarily a more complex quantity to
measure than length because now children have to
learn to consider and measure two dimensions and
to co-ordinate these different measurements. The
co-ordination is always a multiplicative one (e.g.
base x height for rectangles; πr2 for circles etc.).

• the standardised units of area – square centimetres
and square metres or square inches etc. – are new
to the children and need a great deal of
explanation. This additional step is usually quite a
hard one for children to take.

Rectangles 

Youngsters are usually introduced to the
measurement of area by being told about the 
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base x height rule for rectangles. Thus, rectangles
provide them with their first experience of square
centimetres. The large-scale study of 11- to 14-year-
old children by Hart et al. (1985), which we have
mentioned already, demonstrates the difficulties that
many children have even with this simplest of area
measurements. In one question the children were
shown a rectangle, drawn on squared paper, which
measured 4 squares (base) by 2½ squares (height)
and then were asked to draw another rectangle of
the same area with a base of 5 squares. Only 44% of
the 11-year-old children got this right: many judged
that it was impossible to solve this problem.

We have to consider the reason for this difficulty.
One reason might be that children find it hard to
come to terms with a new kind of measuring unit,
the square. In order to explain these new units
teachers often give children ‘covering’ exercises. The
children cover a rectangle with squares, usually 1 cm
squares, arranged in columns and rows and the
teacher explains that the total number of squares is
a measure of the rectangle’s area. The arrangement
of columns and rows also provides a way of
introducing children to the idea of multiplying height
by width to calculate a rectangle’s area. If the
rectangle has five rows and four columns of squares,
which means that its height is 5 cm and its width 4
cm, it is covered by 20 squares. 

This might seem like an easy transition, but it has its
pitfalls. These two kinds of computation are based on
completely different reasoning: counting is about
finding out the number that represents a quantity
and involves additive reasoning whereas multiplying
the base by the height involves understanding that
there is a multiplicative relation between each of
these measures and the area. Therefore, practice on
one (counting) will not necessarily encourage the
child to adopt the other formula (multiplying).
Another radical difference is that the covering
exercise provides the unit, the square centimetre,
from the start but when the child uses a ruler to
measure the sides and then to multiply height by
width, she is measuring with one unit, the
centimetre, but creating a new unit, the square
centimetre (for further discussion, see Paper 3). 

This could be an obstacle. The French psychologist,
Gerard Vergnaud (1983), rightly distinguishes
problems in which the question and the answer are
about the same units (‘A plant is 5 cm high at the
beginning of the week and by the end of the week 
it is 2 cm higher. How high is it at the end of the

week?’) and those in which the question is couched
in one unit and the answer in another (‘The page on
your book is 15 cm high and 5 cm wide. What is 
the area of this page?’). The answer to the second
question must be in square centimetres even though
the question itself is couched only in terms of
centimetres. Vergnaud categorised the first kind of
problem as ‘isomorphism of measures’ and the
second as ‘product of measures’. His point was that
product of measures problems are intrinsically the
more difficult of the two because, in order to solve
such problems, the child has to understand how one
kind of unit can be used to create another.

At first, even covering tasks are difficult for many
young children. Outhred and Mitchelmore (2000)
gave young children a rectangle to measure and just
one 1 cm2 square tile to help them to do this. The
children also had pencils and were encouraged to
draw on the rectangle itself. Since the children had
one tile only to work with, they could only ‘cover’ the
area by moving that tile about. Many of the younger
children adopted this strategy but carried it out
rather unsuccessfully. They left gaps between their
different placements of the tile and there were also
gaps between the squares in the drawings that they
made to represent the different positions of the tiles. 

These mistakes deserve attention, but they are hard
to interpret because there are two quite different
ways of accounting for them. One is that these
particular children made a genuinely conceptual
mistake about the iteration of the measuring unit.
They may not have realised that gaps are not allowed
– that the whole area must be covered by these
standardised units. The alternative account is that 
this was an executive, not a conceptual, failure. The
children may have known about the need for
complete covering, and yet may have been unable 
to carry it out. Moving a tile around the rectangle, 
so that the tile covers every part of it without any
overlap, is a complicated task, and children need a
great deal of dexterity and a highly organised
memory to carry it out, even if they know exactly
what they have to do. These ‘executive’ demands may
have been the source of the children’s problems.
Thus, we cannot say for sure what bearing this study
has on Vergnaud’s distinction between isomorphism
and product of measures until we know whether the
mistakes that children made in applying the measure
were conceptual or executive ones.

Vergnaud’s analysis, however, fits other data that we
have on children’s measurement of area quite well.

19 Key understandings in mathematics learning
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Nunes et al. (1993) asked pairs of eight- and 
nine-year-old children to work out whether two
rectangles had the same area or not. The dimensions
of the two rectangles were always different, even
when their areas were the same (e.g. 5 x 8 and 
10 x 4 cm). The experimenters gave all the children
standard rulers, and also 1 cm3 bricks to help them
solve the problem. 

The experimenters allowed the pairs of children to
make several attempts to solve each problem until
they agreed with each other about the solution.
Most pairs started by using their rulers, as they had
been taught to at school, but many of them then
decided to use the bricks instead. Overall the
children who measured with bricks were much more
successful than those who relied entirely on their
rulers. This clear difference is a demonstration of
how difficult it is, at first, for children to use one
measurement unit (centimetres) to create another
(square centimetres). At this age they are happier
and more successful when working just with direct
representation of the measurement units that they
have to calculate than when they have to use a ruler
to create these units. 

The success of the children who used the bricks was
not due to them just counting these bricks. They
hardly ever covered the area and then laboriously
counted all the bricks. Much more often, they
counted the rows and the columns of bricks and
then either multiplied the two figures or used
repeated addition or a mixture of the two to come
up with the correct solution (A: ‘Eight bricks in a row.
And 5 rows. What’s five eights?’ B: ‘Two eights is 16 and
16 is 32. Four eights is 32. 32. 40’). In fact, the children
who used bricks multiplied in order to calculate the
area more than three times as often as the children
who used the ruler. Those who used rulers often
concentrated on the perimeter: they measured the
length of the sides and added lengths instead.

This confusion of area and perimeter is a serious
obstacle. It can be traced back in time to a
systematic bias in judgements that young children
make about area long before they are taught the
principles of area measurement. This bias is towards
judging the area of a figure by its perimeter.

The bias was discovered independently in studies by
Wilkening (1979) in Germany and Anderson and
Cuneo (1978) and Cuneo (1983) in America. Both
groups of researchers asked the same two questions
(Wilkening and Anderson, 1982).

1 If you ask people to judge the area of different
rectangles that vary both in height and in width,
will their judgement be affected by both these
dimensions? In other words, if you hold the width
of two rectangles constant will they judge the
higher of the two as larger, and if you hold their
height constant will they judge the wider one as
the larger? It is quite possible that young children
might attend to one dimension only, and indeed
Piaget’s theory about spatial reasoning implies that
this could happen.

2 If people take both dimensions into account, do
they do so in an additive or a multiplicative way?
The correct approach is the multiplicative one,
because the area of a rectangle is its height
multiplied by its width. This means that the
difference that an increase in the rectangle’s height
makes to the area of the rectangle depends on its
width, and vice versa. An increase of 3 cm in the
height of a 6 cm wide rectangle adds another 18
cm2 to its area, but the same increase in height to
an 8 cm wide rectangle adds another 24 cm2. The
additive approach, which is wrong, would be to
judge that an equal change in height to two
rectangles has exactly the same effect on their
areas, even if their widths differ. This is not true of
area, but it is true of perimeter. To increase the
height of a rectangle by 3 cm has exactly the same
effect on the perimeter of a 6 cm and an 8 cm
wide rectangle (and increase of 6 cm) and the
same goes for increases to the width of rectangles
with different heights. Also, the same increase in
width has exactly the same effect on the two
rectangles’ perimeters, but very different effects on
their area. It follows that anyone who persistently
makes additive judgements about area is probably
confusing area with perimeter.

The tasks that these two teams of experimenters
gave to children and adults in their studies were
remarkably similar, and so we will describe only
Wilkening’s (1979) experiment. He showed 5-, 8-
and 11-year-old children and a group of adults a
series of rectangles that varied both in height (6, 12
and 18 cm) and in width (again 6, 12 and 18 cm). He
told the participants that these could be broken into
pieces of a particular size, which he illustrated by
showing them also the size of one of these pieces.
The children’s and adults’ task was to imagine what
would happen if each rectangle was broken up and
the pieces were arranged in a row. How long would
this row be?
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The most striking contrast in the pattern of these
judgments was between the five-year-old children
and the adults. To put it briefly, five-year-old children
made additive judgements and adults made
multiplicative judgements.

The five-year-olds plainly did take both height and
width into account, since they routinely judged
rectangles of the same height but different widths as
having different areas and they did the same with
rectangles of the same widths but different heights.
This is an important result, and it must be reassuring
to anyone who has to teach young schoolchildren
about how to measure area. They are apparently
ready to take both dimensions into account.

However, the results suggest that young children
often co-ordinate information about height and
width in the wrong way. The typical five-year-old
judged, for example, that a 6 cm difference in height
would have the same effect on 12 cm and 18 cm
wide rectangles. In contrast, the adults’ judgements
showed that they recognised that the effect would
be far greater on the 18 cm than on the 12 cm wide
figures. This is evidence that young children rely on
the figures’ perimeters, presumably implicitly, in order
to judge their area. As have already seen, when
children begin to use rulers many of them fall into
the trap of measuring a figure’s perimeter in order to
work out its area, (Nunes, Light and Mason, 1993).
Their habit of concentrating on the perimeter when
making informal judgements about area may well be
the basis for this later mistake. The existence among
schoolchildren of serious confusion between area
and perimeter was confirmed in later research by
Dembo, Levin and Siegler (1997).

We can end this section with an interesting question.
One obvious possible cause of the radical difference
in the patterns of 5-year-olds’ and adults’ judgements
might be that the 5-year-olds had not learned how
to measure area while the adults had. In other
words, mathematical learning could alter this aspect
of people’s spatial cognition. The suggestion does not
seem far-fetched, especially when one also considers
the performance of the older children in Wilkening’s
interesting study. The 5-year-olds had not been
taught about measurement at all: the 8-year-olds had
had some instruction, but not a great deal: the 12-
year-olds were well-versed in measurement, but
probably still made mistakes. Wilkening found some
signs of a multiplicative pattern in the responses of
the 8-year-olds, but this was slight: he found stronger
signs of this pattern among the 12-year-olds, though

not as pronounced as in the adult group. These
changes do not prove that being taught how 
to measure and then becoming increasingly
experienced with measuring led to this difference
between the age groups, but they are certainly
consistent with that idea. There is an alternative
explanation, which is that adults and older children
have more informal experience than 8-year-olds do
of judging and comparing areas, as for example when
they have to judge how much paint they need to
cover different walls. Here is a significant and
interesting question for research: do teachers alone
change our spatial understanding of area or does
informal experience play a part as well? 

Summary

1 Measuring area is a multiplicative process: we
usually multiply two simple measurements (e.g.
base by height for rectangles) to produce a total
measure of an area. The process also produces a
different unit (i.e. product of measures): measuring
the base and height in centimetres and then
multiplying them produces a measure in terms of
square centimetres.

2 Producing a new measure is a difficult step for
children to make. They find it easier to measure a
rectangle when they measure with units which
directly instantiate square centimetres than when
they use a ruler to measure its base and height in
centimetres.

3 The multiplicative aspect of area measurement is
also a problem for young children who show a
definite bias to judge the area of a rectangle by
adding its base and height rather than by
multiplying them. They confuse, therefore,
perimeter and area. 

Parallelograms: forming relations
between rectangles and
parallelograms
The measurement of parallelograms takes us into 
one of the most exciting aspects of learning about
geometry. The base-by-height rule applies to these
figures as well as to rectangles. One way of justifying
the base by height rule for parallelograms is that any
parallelogram can be transformed into a rectangle with
the same base and height measurements by adding
and subtracting congruent areas to the parallelogram.

21 Key understandings in mathematics learning



22 SUMMARY – PAPER 2: Understanding whole numbers

Figure 5.4 presents this justification which is a
commonplace in geometry classes. It is based on the
inversion principle (see Paper 2). Typically the teacher
shows children a parallelogram and then creates two
congruent triangles (A and S) by dropping vertical
lines from the top two corners of the parallelogram
and then extending the baseline to reach the new
vertical that is external to the parallelogram. Triangle
A falls outside the original parallelogram, and
therefore is an addition to the figure. Triangle S falls
inside the original parallelogram, and the nub of the
teacher’s demonstration is to point out that the
effect of adding Triangle A and subtracting Triangle S
would be to transform the figure into a rectangle
with the same base and height as the original
parallelogram. Triangles A and S are congruent and 
so their areas are equal. Therefore, adding one and
subtracting the other triangle must produce a new
figure (the rectangle) of exactly the same size as the
original one (the parallelogram).

This is a neat demonstration, and it is an important
one from our point of view, because it is our first
example of the importance in geometry of
understanding that there are systematic relations
between shapes. Rectangles and parallelograms are
different shapes but they are measured by the same
base-by-height rule because one can transform any
rectangle into any parallelogram, or vice versa, with
the same base and height without changing the
figure’s area. 

Some classic research by the well-known Austrian
psychologist Max Wertheimer (1945) suggests that
many children learn the procedure for transforming
parallelograms into rectangles quite easily, but apply it
inflexibly. Wertheimer witnessed a group of 11-year-
old children learning from their teacher why the
same base-by-height rule applied to parallelograms
as well. The teacher used the justification that we
have already described, which the pupils appeared to
understand. However, Wertheimer was not certain
whether these children really had understood the
underlying idea. So, he gave them another
parallelogram whose height was longer than its base
(diagram 3 in Figure 5.4). When a parallelogram is
oriented in this way, dropping two vertical lines from
its top two corners does not create two congruent
triangles. Wertheimer found that most of the
children tried putting in the two vertical lines, but
were at a loss when they saw the results of doing so.
A few, however, did manage to solve the problem by
rotating the new figure so that the base was longer
than its height, which made it possible for them to
repeat the teacher’s demonstration. 

The fact that most of the pupils did not cope with
Wertheimer’s new figure was a clear demonstration
that they had learned more about the teacher’s
procedure than about the underlying idea about
transformation that he had hoped to convey.
Wertheimer argued that this was probably because
the teaching itself concentrated too much on the
procedural sequence and too little on the idea of
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Figure 5.4: Demonstrating by transforming a parallelogram into a rectangle that the base-by-height rule applies to

parallelograms as well as to rectangles.
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Figure 5.6: Piaget et al.’s irregular polygon whose area could be measured by decomposition.

Figure 5.5: An example of Wertheimer’s A and B figures. A figures could be easily transformed into a simple rectangle. B figures could not.

transformation. In later work, that is only reported
rather informally (Luchins and Luchins, 1970),
Wertheimer showed children two figures at a time,
one of which could be easily transformed into a
measurable rectangle while the other could not 
(for example, the A and B figures in Figure 5.5).
Wertheimer reported that this is an effective way 
of preparing children for understanding the relation
between the area of parallelograms and rectangles.

It is a regrettable irony that this extraordinarily
interesting and ingenious research by a leading
psychologist was done so long ago and is so widely
known, and yet few researchers since then have
studied children’s knowledge of how to transform
one geometric shape into another to find its area. 

In fact, Piaget et al. (1960) did do a relevant study,
also a long time ago. They asked children to measure

the area of an irregular polygon (Figure 5.6). 
One good way to solve this difficult problem is 
to partition the figure by imaging the divisions
represented by the dotted lines in the right hand
figure. This creates the Triangle x and also a rectangle
which includes another Triangle y. Since the two
triangles are congruent and Triangle x is part of the
original polygon while Triangle y is not, the area of
the polygon must add up to the area of the
rectangle (plus Triangle x minus Triangle y). 

Piaget et al. report that the problem flummoxed
most of the children in their study, but report that
some 10-year-olds did come up with the solution
that we have just described. They also tell us that
many children made no attempt to break up the
figure but that others, more advanced, were ready to
decompose the figure into smaller shapes, but did
not have the idea of in effect adding to the figure by
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imagining the BD line which was external to the
figure. Thus, the stumbling block for these relatively
advanced children was in adding to the figure. This
valuable line of research, long abandoned, needs to
be restarted.

Triangles: forming relations between
triangles and parallelograms 
Other transformations from one shape to another
are equally important. Triangles can be transformed
into parallelograms, or into rectangles if they are
right-angle triangles, simply by being doubled (see
Figure 5.7). Thus the area of a triangle is half that of 
a parallelogram with the same base and height. 

Hart et al.’s (1985) study shows us that 11- to 
14-year-old children’s knowledge of the (base x
height)/2 rule for measuring triangles is distinctly
sketchy. Asked to calculate the area of a right-angle
triangle with a base of 3 cm and a height of 4 cm,
only 48% of the children in their third year in
secondary school (13- and 14-year-olds) gave the
right answer. Only 31% of the first year secondary
school children (11-year-olds) succeeded, while
almost an equal number of them – 29% – gave the
answer 12, which means that they correctly
multiplied base by height but forgot to halve the
product of that multiplication.

Children are usually taught about the relationship
between triangles, rectangles and parallelograms quite
early on in their geometry lessons. However, we know
of no direct research on how well children understand
the relationships between different shapes or on the
best way to teach them about these relations. 

Summary

1 Learning about the measurement of the area of
different shapes is a cumulative affair which is
based not just on formulas for measuring particular
shapes but on grasping the relationships, through
transformations, of different shapes to each other.
Parallelograms can be transformed into rectangles
by adding and subtracting congruent triangles:
triangles can be transformed into parallelograms
by being doubled. 

2 There is little direct research on children’s
understanding of the importance of the
relationships between shapes in their
measurement. Wertheimer’s observations suggest
very plausibly that their understanding depends
greatly on the quality of the teaching.

3 We need more research on what are the most
effective ways to teach children about these
relationships.
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Figure 5.7: A demonstration that any two congruent triangles add up to a measurable

parallelogram and any two congruent right angle triangles add up to a measurable rectangle.



Understanding new
relationships: the case 
of angle

Angle is an abstract relation. Sometimes it is the
difference between the orientations of two lines or
rays, sometimes the change in your orientation from
the beginning of a turn that you are making to its
end, and sometimes the relation between a figure or
a movement to permanent aspects of the
environment: the angle at which an aeroplane rises
after take-off is the relation between the slope of its
path and the spatial horizontal. Understanding that
angles are a way of describing such a variety of
contexts is a basic part of learning plane geometry.
Yet, research by psychologists on this important and
fascinating topic is remarkably thin on the ground. 

Most of the relatively recent studies of children’s and
adults’ learning about angles are about the
effectiveness of computer-based methods of
teaching. This is estimable and valuable work, but we
also need a great deal more information about
children’s basic knowledge about angles and about
the obstacles, which undoubtedly do exist, to
forming an abstract idea of what angles are.

In our everyday lives we experience angles in many
different contexts, and it may not at first be easy for
children to connect information about angles
encountered in different ways. The obvious distinction
here is between perceiving angles as configurations,
such as the difference between perpendicular and
non-perpendicular lines in pictures and diagrams, and
as changes in movement, such as changing direction
by making a turn. These forms of experiencing angles
can themselves be subdivided: it may not be obvious
to school children that we make the same angular
change in our movements when we walk along a
path with a right-angle bend as when we turn a
door-knob by 90o (Mitchelmore, 1998). 

Another point that children might at first find hard to
grasp is that angles are relational measures. When we
say that the angles in some of the figures in Figure
5.8a are 90o ones and in others 45o, we are making a
statement about the relation between the
orientations of the two lines in each figure and not
about the absolute orientation of any of the
individual lines, which vary from each other. Also,
angles affect the distance between lines, but only in
relation to the distance along the lines: in Figure 5.8b
the distance between the lines in the figure with the
larger angle is greater than in the other figure when
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Figure 5.8: Angles as relations
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the distance is measured at equivalent points along
lines in the two figures, but not necessarily otherwise.

A third possible obstacle is that children might find
some representations of angle more understandable
than others. Angles are sometimes formed by the
meeting of two clear lines, like the peak of a roof or
the corner of a table. With other angles, such as the
inclination of a hill, the angle is clearly represented by
one line – the hill itself, but the other, a notional
horizontal, is not so clear. In still other cases, such as
the context of turning, there are no clearly defined
lines at all: the angle is the amount of turning.
Children may not see the connection between these
very different perceptual situations, and they may
find some much easier than others.

There are few theories of how children learn 
about angles, despite the importance of the topic.
The most comprehensive and in many ways the
most convincing of the theories that do exist was
produced by Mitchelmore and White (2000). The
problem that these researchers tried to solve is how
children learn to abstract and classify angles despite
the large variety of situations in which they
experience them. They suggest that children’s
knowledge of angles develops in three steps:

1 Situated angle concepts Children first register
angles in completely specific ways, according to
Mitchelmore and White. They may realise that a
pair of scissors, for example, can be more open or
less open, and that some playground slides have
steeper slopes than others but they make no link
between the angles of scissors and of slides, and
would not even recognise that a slide and a roof
could have the same slope. 

2 Contextual angle concepts  The next step that
children take is to realise that there are similarities
in angles across different situations, but the
connections that they do make are always
restricted to particular, fairly broad, contexts. Slope,
which we have mentioned already, is one of these
contexts; children begin to be able to compare the
slopes of hills, roofs and slides, but they do not
manage to make any connection between these
and the angles of, for instance, turns in a road. They
begin to see the connection between angles in
very different kinds of turns – in roads and in a
bent nail, for example – but they do not link these
to objects turning round a fixed point, like a door
or a door-knob.

3 Abstract angle concepts  Mitchelmore and
White’s third step is itself a series of steps. They
claim that children begin to compare angles across
contexts, for example, between slopes and turns,
but that initially these connections across contexts
are limited in scope; for example, these
researchers report that even at the age of 11
years many children cannot connect angles in
bends with angles in turns. So, children form one
or more restricted abstract angle ‘domains’ (e.g. a
domain that links intersections, bends, slopes and
turns) before they finally develop this into a
completely abstract concept of standard angles.

To test this theoretical framework, Mitchelmore and
White gave children of 7, 9 and 11 years pictures of
a wide range of situations (doors, scissors, bends in
roads etc.) and asked them to represent the angles
in these, using a bent pipe cleaner to do so, and also
to compare angles in pairs of different situations. The
study certainly showed different degrees of
abstraction among these children and provided some
evidence that abstraction about angles increases with
age. This is a valuable contribution, 
but we certainly need more evidence about this
developmental change for at least two reasons. 

One is methodological. The research that we have just
described was cross-sectional: the children in the
different age groups were different children. A much
better way of testing any hypothesis about a series of
developmental cognitive changes is to do a
longitudinal study of the ideas that the same children
hold and then change over time as they get older. If
the hypothesis is also about what makes the changes
happen, one should combine this longitudinal research
with an intervention study to see what provokes the
development in question. We commented on the
need for combining longitudinal and intervention
studies in Paper 2. Once again, we commend this all-
too-rarely adopted design to anyone planning to do
research on children’s mathematics.

The second gap in this theory is its concentration on
children learning what is irrelevant rather than what
is relevant to angle. The main claim is that children
eventually learn, for example, that the same angles
are defined by two clear lines in some cases but not
in others, that some angular information is about
static relations and some about movement, but that
it is still exactly the same kind of information. This
claim is almost certainly right, but it does not tell us
what children learn instead.
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One possibility, suggested by Piaget, Inhelder and
Szeminska (1960), is that children need to be able to
relate angles to the surrounding Euclidean framework
in order to reproduce them and compare them to
other angles. In one study they asked children to copy
a triangle like the one in Figure 5.9.

They gave the children some rulers, strips of paper
and sticks (but apparently no protractor) to help
them do this. Piaget et al. wanted to find out how
the children set about reproducing the angles CAB,
ABC and ACB. In the experimenters’ view the best
solution was to measure all three lines, and also
introduce an additional vertical line (KB in Figure 5.9)
or to extend the horizontal line and then introduce
a new vertical line (CK’ in Figure 5.9). It is not at all
surprising that children below the age of roughly ten
years did not think of this Euclidean solution. Some
tried to copy the triangle perceptually. Others used
the rulers to measure the length of the lines but did
not take any other measures. Both strategies tended
to lead to inaccurate copies.

The study is interesting, but it does not establish that
children have to think of angles in terms of their
relationship to horizontal and vertical lines in order
to be able to compare and reproduce particular
angles. The fact that the children were not given the
chance to use the usual conventional measure for
angles – the protractor – either in this study or in
Mitchelmore and White’s study needs to be noted.
This measure, despite being quite hard to use, may
play a significant and possibly even an essential part
in children’s understanding of angle.

Another way of approaching children’s understanding
of angles is through what Mitchelmore and White

called their situated angle concepts. Magina and
Hoyles (1997) attempted to do this by investigating
children’s understanding of angle in the context of
clocks and watches. They asked Brazilian children,
whose ages ranged from 6 to 14 years, to show
them where the hands on a clock would be in half
an hour’s time and also half an hour before the time
it registered at that moment. Their aim was to find
out if the children could judge the correct degree 
of turn. Magina and Hoyles report that the younger
children’s responses tended to be either quite
unsystematic or to depend on the initial position 
of the minute hand: these latter children, mostly 8-
to 11-year-olds, could move the minute hand to
represent half an hour’s difference well enough when
the hand’s initial position was at 6 (half past) on the
clock face, but not when it was at 3 (quarter past).
Thus, even in this highly familiar situation, many
children seem to have an incomplete understanding
of the angle as the degree of a turn. This rather
disappointing result suggests that the origins of
children’s understanding may not lie in their informal
spatial experiences.

One way in which children may learn about angles is
through movement. The idea of children learning
about spatial relations by monitoring their own actions
in space fits well with Piaget’s framework, and it is the
basis for Logo, the name that Papert (1980) gave to
his well-known computer-system that has often been
used for teaching aspects of geometry. In Logo,
children learn to write programmes to move a ‘turtle’
around a spatial environment. These programmes
consist of a series of instructions that determine a
succession of movements by the turtle. The
instructions are about the length and direction of 
each movement, and the instructions about direction
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Figure 5.9: The triangle (represented by the continuous lines) that Piaget, Inhelder and Szeminska asked children to copy,

with the vertical and horizontal (dotted) lines which some of the children created to help them to solve this problem.
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take the form of angular changes e.g. L90 is an
instruction for the turtle to make a 90o turn to the
left. Since the turtle’s movements leave a trace,
children effectively draw shapes by writing these
programmes. 

There is evidence that experience with Logo does
have an effect on children’s learning about angles,
and this in turn supports the idea that
representations of movement might be one effective
way of teaching this aspect of geometry. Noss
(1988) gave a group of 8- to 11-year-old children,
some of whom had attended Logo classes over a
whole school year, a series of problems involving
angles. On the whole the children who had been to
the Logo classes solved these angular problems
more successfully than those who had not. The
relative success of the Logo group was particularly
marked in a task in which the children had to
compare the size of the turn that people would have
to make at different points along a path, and this is
not surprising since this specific task resonated 
with the instructions that children make when
determining the direction of the turtle’s movements
(see Figure 5.10). 

However, the Logo group also did better than the
comparison in more static angular problems. This is
an interesting result because it suggests that the
children may have generalised what they learned
about angles and movement to other angular tasks

which involve no movement at all. We need more
research to be sure of this conclusion and, as far as
studies of the effects of Logo and other computer-
based programmes are concerned, we need studies
in which pre-tests are given before the children go
through these programmes as well as post-tests that
follow these classes.

Children do not just learn about single angles in
isolation from each other. In fact, to us, the most
interesting question in this area is about their
learning of the relations between different angles.
These relations are a basic part of geometry lessons:
pupils learn quite early on in these lessons that, for
example, when two straight lines intersect opposite
angles are equal and that alternate angles in a Z-
shape figure are equal also, but how easily this
knowledge comes to them and how effectively they
use it to solve geometric problems are interesting
but unanswered questions (at any rate, unanswered
by psychologists). Some interesting educational
research by Gal and Vinner (1997) on 14-year-old
students’ reaction to perpendicular lines suggests that
they have some difficulties in understanding the
relation between the angles made by intersecting
lines when the lines are perpendicular to each other.
Many of the students did not realise at first that if
one of the four angles made by two intersecting
lines is a right angle the other three must be so as
well. The underlying reason for this difficulty needs
investigation.
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Figure 5.10: The judgement about relative amount of turns in Noss’s study.

You are walking along this path. You start at point A and you finish at point G.

• At which point would you have to turn most?

• At which point would you have to turn least?

finish



Summary

1 Although young children are aware of orientation,
they seem to know little about angle (the relation
between orientations) when they start on
geometry.

2 The concept of angle is an abstract one that cuts
across very different contexts. This is difficult for
children to understand at first.

3 There is some evidence, mainly from work on
Logo, that children can learn about angle through
movement.

4 Children’s understanding of the relation between
angles within figures (e.g. when straight lines intersect,
opposite angles are equivalent) is a basic part of
geometry lessons, but there seems to be no research
on their understanding of this kind of relation. 

Spatial frameworks

Horizontal and vertical lines 

Most children’s formal introduction to geometry is 
a Euclidean one. Children are taught about straight
lines, perpendicular lines, and parallel lines, and they
learn how a quite complex system of geometry can
be derived from a set of simple, comprehensible,
axioms. It is an exercise in logic, and it must, for 
most children, be their first experience of a formal
and explicit account of two-dimensional space. 
The principal feature of this account is the relation
between lines such as parallel and perpendicular and
intersecting lines.

These fundamental spatial relations are probably
quite familiar, but in an implicit way, to the seven- and
eight-year-old children when they start classes in
geometry. In spatial environments, and particularly in
‘carpentered’ environments, there are obvious
horizontal and vertical lines and surfaces, and these
are at right angles (perpendicular) to each other. We
reviewed the evidence on children’s awareness of
these spatial relations in an earlier part of this paper,
when we reached the following two conclusions.

1 Although quite young children can relate the
orientation of lines to stable background features and
often rely on this relation to remember orientations,
they do not always do this when it would help them

to do so. Thus, many young children and some adults
too (Howard, 1978) do not recognise that the level
of liquid is parallel to horizontal features of the
environment like a table top.

2 Part of the difficulty that they have in Piaget’s
horizontality and verticality tasks is that these
depend on children being able to represent acute
and obtuse angles (i.e. non-perpendicular lines). They
tend to do this inaccurately, representing the line
that they draw as closer to perpendicular than it
actually is. This bias towards the perpendicular may
get in the way of children’s representation of angle.

The role of horizontal and vertical
axes in the Cartesian system 
The Euclidean framework makes it possible to pinpoint
any position in a two-dimensional plane. We owe this
insight to René Descartes, the 17th century French
mathematician and philosopher, who was interested in
linking Euclid’s notions with algebra. Descartes devised
an elegant way of plotting positions by representing
them in terms of their position along two axes in a
two dimensional plane. In his system one axis was
vertical and the other horizontal, and so the two axes
were perpendicular to each other. Descartes pointed
out that all that you need to know in order to find a
particular point in two-dimensional space is its position
along each of these two axes. With this information
you can plot the point by extrapolating an imaginary
straight perpendicular line from each axis. The point at
which these two lines intersect is the position in
question. Figure 5.11 shows two axes, x and y, and
points which are expressed as positions on these axes.

This simple idea has had a huge impact on science
and technology and on all our daily lives: for
example, we rely on Cartesian co-ordinates to
interpret maps, graphs and block diagrams. The
Cartesian co-ordinate system is a good example of 
a cultural tool (Vygotsky, 1978) that has transformed
all our intellectual lives. 

To understand and to use the Cartesian system to
plot positions in two-dimensional space, one has to
be able to extrapolate two imaginary perpendicular
straight lines, and to co-ordinate the two in order to
work out where they intersect. Is this a difficult or
even an impossible barrier for young children?
Teachers certainly need the answer to this question
because children are introduced to graphs and block
diagrams in primary school, and as we have noted
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these mathematical representations depend on the
use of Cartesian co-ordinates.

Earlier in this section we mentioned that, in social
contexts, very young children do extrapolate
imaginary straight lines. They follow their mother’s
line of sight in order, apparently, to look at whatever
it is that is attracting her attention at the time
(Butterworth, 1990). If children can extrapolate
straight lines in three-dimensional space, we can
quite reasonably expect them to be able to do so 
in two-dimensional space as well. The Cartesian
requirement that these extrapolated lines are
perpendicular to their baselines should not be a
problem either, since, as we have seen already,
children usually find it easier to create perpendicular
than non-perpendicular lines. The only requirement
that this leaves is the ability to work out where the
paths of the two imaginary straight lines intersect. 

A study by Somerville and Bryant (1985) established
that children as young as six years usually have this
ability. In the most complex task in this study, young
children were shown a fairly large square space on a
screen and 16 positions were clearly marked within
this space, sometimes arranged in a regular grid and
sometimes less regularly than that. On the edge of

the square waited two characters, each just about to
set off across the square. One of these characters
was standing on a vertical edge (the right or left side
of the square) and the other on a horizontal edge 
of the square. The children were told that both
characters could only walk in the direction they
were facing (each character had a rather prominent
nose to mark this direction, which was perpendicular
to the departure line, clear), and that the two would
eventually meet at one particular position in the
square. It was the child’s task to say which position
that would be. 

The task was slightly easier when the choices were
arranged in a grid than when the arrangement was
irregular, but in both tasks all the children chose the
right position most of the time. The individual
children’s choices were compared to chance (if a
child followed just one extrapolated line instead of
co-ordinating both, he or she would be right by
chance 25% of the time) and it turned out that 
the number of correct decisions made by every
individual child was significantly above chance. Thus,
all of these 6-year-old children were able to plot the
intersection of two extrapolated, imaginary straight
lines, which means that they were well equipped to
understand Cartesian co-ordinates.

30 Paper 5: Understanding space and its representation in mathematics

Figure 5.11: Descartes’ co-ordinates: three points (8, 8), (-3, 5) and (-9, -4) are plotted by their positions on the x- and y-axes



Piaget et al. (1960) were less optimistic about
children’s grasp of co-ordinates, which they tested
with a copying task. They gave each child two
rectangular sheets of paper, one with a small circle
on it and the other a complete blank. They also
provided the children with a pencil and a ruler and
strips of paper, and then they asked them to put a
circle on the blank sheet in exactly the same position
as the circle on the other sheet. Piaget et al.’s
question was whether any of the children would use
a co-ordinate system to plot the position of the
existing circle and would then use the co-ordinates
to position the circle that they had to draw on the
other sheet. This was a difficult task, which children 
of six and seven years tended to fail. Most of them
tried to put the new circle in the right place simply
by looking from one piece of paper to the other, and
this was a most unsuccessful strategy. 

There is no conflict between the success of all the
children in the Somerville and Bryant study, and the
grave difficulties of children of the same age in the
Piaget et al. task. In the Piaget et al. task the children
had to decide that co-ordinates were needed and
then had to measure in order to establish the
appropriate position on each axis. In the Somerville
and Bryant study, the co-ordinates were given and all
that the child had to do was to use them in order to
find the point where the two extrapolated lines met.
So, six- and seven-year-old children can establish a
position given the co-ordinates but often cannot set
up these co-ordinates in the first place.

Some older children in Piaget et al.’s study (all the
successful children given as examples in the book
were eight- or-nine-years-old) did apparently
spontaneously use co-ordinates. It seems unlikely 
to us that these children managed to invent the
Cartesian system for themselves. How could eight-
and nine-year-old children come up, in one
experimental session, with an idea for which mankind
had had to wait till Descartes had his brilliant insight
in the middle of the 17th century? 
A more plausible reason for these children’s success
is that, being among the older children in Piaget et
al.’s sample, they had been taught about the use of
Cartesian co-ordinates in maps or graphs already. 

It appears that this success is not universal. Many
children who have been taught about Cartesian co-
ordinates fail to take advantage of them or to use
them properly. Sarama, Clements, Swaminathan,
McMillen and Gomez (2003) studied a group of
nine-year-old children while they were being given

intensive instruction, which the researchers
themselves designed. In the tasks that they gave to
the children Sarama et al. represented the x and y
co-ordinates as numbers, which was a good thing 
to include because it is a fundamental part of the
Cartesian system, and they also imposed a
rectangular grid on many of the spaces that they
gave the children to work with. Thus, one set of
materials was a rectangular grid, presented as a map
of a grid-plan city with ‘streets’ as the vertical and
‘avenues’ as the horizontal lines. 

The children were given various tasks before, during
and after the instruction. Some of these involved
relating locations to x and y co-ordinates: the
children had to locate positions given the co-
ordinates and also to work out the co-ordinates of
particular positions. Sarama et al. reported that most
of the children learned about this relation quickly
and well, as one might expect given their evident
ability to co-ordinate extrapolated lines in a
rectangular context (Somerville and Bryant, 1985).
However, when they had to co-ordinate information
about two or more locations, they were in greater
difficulty. For example, some children found it hard to
work out the distance between two locations in the
grid-like city, because they thought that the number
of turns in a path affected its distance, and some did
not realise that the numerical differences in the x
and y co-ordinate addresses between the two
locations represents the distance between them. 

Thus, the children understood how to find two
locations, given their coordinates, but struggled with
the idea that a comparison between the two pairs 
of co-ordinates told them about the spatial relation
between these locations. Further observations
showed that the problem that some of the children
had in working out the relations between two co-
ordinate pairs was created by a certain tension
between absolute and relative information. The 
two co-ordinate pairs 10,30 and 5,0 represent two
absolute positions: however, some children, who
were given first 10,30 and then 5,0 and asked to
work out a path between the two, decided that 5,0
represented the difference between the first and the
second location and plotted a location five blocks to
the right of 10,30. They treated absolute information
about the second position as relative information
about the difference between the two positions.
However, most of the children in this ingenious and
important study seem to have overcome this
difficulty during the period of instruction, and to 
have learned reasonably well that co-ordinate pairs
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represent the relation between positions as well as
the absolute positions themselves.

Finally, we should consider children’s understanding of
the use of Cartesian co-ordinates in graphs. Here,
research seems to lead to much the same conclusion
as we reached in our discussion of the use of co-
ordinates to plot spatial positions. With graphs, too,
children find it easy to locate single positions, but
often fail to take advantage of the information that
graphs provide that is based on the relation between
different positions. Bryant and Somerville (1986) 
gave six- and nine-year-old children a graph that
represented a simple linear function. Using much 
the same technique as in their previous research on
spatial co-ordinates, these researchers measured the
children’s ability to plot a position on x-axis given the
position on the y-axis and vice versa. This was quite an
easy task for the children in both age groups, and so
the main contribution of the study was to establish
that children can co-ordinate extrapolated straight
lines in a graph-like task fairly well even before they
have had any systematic instruction about graphs.

The function line in a graph is formed from a series
of positions, each of which is determined by
Cartesian co-ordinates. As in the Sarama et al. study,
it seems to be hard for children to grasp what the
relation between these different positions means. An
interesting study by Knuth (2000) showed that
American students ‘enrolled in 1st-year algebra’
(Knuth does not say how old these students were)
are much more likely to express linear functions as
equations than graphically. We do not yet know the
reasons for this preference

Summary

1 Cartesian co-ordinates seem to pose no basic
intellectual difficulty for young children. They are
able to extrapolate imaginary straight lines that are
perpendicular to horizontal and vertical axes and
to work out where these imaginary lines would
meet in maps and in graphs.

2 However, it is harder for children to work out the
relation between two or more positions that are
plotted in this way, either in an map-like or in a
graph-like task.

3 Students prefer expressing functions as equations
to representing them graphically.

4 Thus, although children have the basic abilities to
understand and use co-ordinates well, there seem
to be obstacles that prevent them using these
abilities in tasks which involve two or more plotted
positions. We need research on how to teach
children to surmount these obstacles.

Categorising, composing and
decomposing shapes
We have chosen to end this chapter on learning
about space and geometry with the question of
children’s ability to analyse and categorise shapes, but
we could just as easily have started the section with
this topic, because children are in many ways experts
on shape from a very early age. They are born,
apparently, with the ability to distinguish and
remember abstract, geometric shapes, like squares,
triangles, and circles, and with the capacity to
recognise such shapes as constant even when they
see them from different angles on different occasions
so that the shape of the retinal image that they make
varies quite radically over time. We left shape to the
end because much of the learning that we have
discussed already, about measurement and angle and
spatial co-ordinates, undoubtedly affects and changes
schoolchildren’s understanding of shape. 

There is nearly complete agreement among those
who study mathematics education that children’s
knowledge about shapes undergoes a series of
radical changes during their time at school. Different
theories propose different changes but many of
these apparent disagreements are really only
semantic ones. Most claim, though in different terms,
that school-children start by being able to distinguish
and classify shapes in a perceptual and implicit way
and eventually acquire the ability to analyse the
properties of shapes conceptually and explicitly. 

The model developed by the Dutch educationalist
van Hiele (1986) is currently the best known
theoretical account of this kind of learning. This is a
good example of what we called a ‘pragmatic theory’
in our opening paper. Van Hiele claimed that children
have to take a sequence of steps in a fixed order in
their geometric learning about shape. There are five
such steps in van Hiele’s scheme, but he agreed that
not all children get to the end of this sequence:
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Level 1: Visualization/recognition Students
recognise and learn to name certain geometric
shapes but are usually only aware of shapes as a
wholes, and not of their properties or of their
components.

Level 2: Descriptive/analytic Students begin to
recognise shapes by their properties.

Level 3: Abstract/relational Students begin to form
definitions of shapes based on their common
properties, and to understand some proofs.

Level 4: Formal deduction Students understand the
significance of deduction as a way of establishing
geometric theory within an axiomatic system, and
comprehend the interrelationships and roles of
axioms, definitions, theorems, and formal proof.

Level 5: Rigour  Students can themselves reason
formally about different geometric systems. 

There have been several attempts to elaborate and
refine this system. For example, Clements and Sarama
(2007 b) argue that it would better to rename the
Visual/recognition stage as Syncretic, given its
limitations. Another development was Guttierez’s
(1992) sustained attempt to extend the system to 3-
D figures as well as 2-D ones. However, although van
Hiele’s steps provide us with a useful and interesting
way of assessing improvements in children’s
understanding of geometry, they are descriptive. The
theory tells us about changes in what children do and
do not understand, but not about the underlying
cognitive basis for this understanding, nor about the
reasons that cause children to move from one level 
to the next. We shall turn now to what is known and
what needs to be known about these cognitive bases.

Composing and decomposing 

If van Hiele is right, one of the most basic changes in
children’s analysis of shape is the realisation that
shapes, and particularly complex shapes, can be
decomposed into smaller shapes. We have already
discussed one of the reasons why children need to
be able to compose and decompose shapes, which is
that it is an essential part of understanding the
measurement of the area of different shapes.
Children, as we have seen, must learn, for example,
that you can compose a parallelogram by putting
together two identical triangles (and thus that you

can decompose any parallelogram into two identical
triangles) in order to understand how to measure
the area of triangles. As far as we know, there has
been no direct research on the relationship between
children’s ability to compose and decompose shapes
and their understanding of the rules for measuring
simple geometric figures, though such research
would be easy to do.

The Hart et al. (1985) study included two items
which dealt with shapes that were decomposed into
two parts and these parts were then re-arranged. In
one item the re-arranged parts were a rectangle and
two triangles, which are simple and familiar geometric
shapes, and in the other they were unfamiliar and
more complex shapes. In both cases the children
were asked about the effect of the re-arrangement
on the figure’s total area: was the new figure’s area
bigger or smaller or the same as the area of the
original one? A large proportion of the 11- to 14-
year-old students in the study (over 80% in each
group) gave the correct answer to the first of these
two questions but the second was far harder: only
60% of the 11-year-old group understood that the
area was the same after the rearrangement of parts
as before it. There are two reasons for being
surprised at this last result. The first is that it is hard
to see why there was such a large difference in the
difficulty of the two problems when the logic for
solving both was exactly the same. The second is that
the mistakes which the children made in such
abundance with the harder problem are in effect
conservation failures, and yet these children are well
beyond the age when conservation of area should
pose any difficulty for them. This needs further study.

The insight that understanding composition and
decomposition may be a basic part of children’s
learning about shapes has been investigated in
another way. Clements, Wilson and Sarama (2004)
looked at a group of three- to seven-year-old
children’s ability to assemble target patterns, like the
figure of a man, by assembling the right component
wooden shapes. This interesting study produced
evidence of some sharp developmental changes: the
younger children tended to create the figures bit by
bit whereas the older children tended to create units
made out of several bits (an arm unit for example)
and the oldest dealt in units made out of other units.
The next step in this research should be to find out
whether there is a link between this development
and the eventual progress that children make in
learning about geometry. Once again we have to
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make a plea for longitudinal studies (which are far
too rare in research on children’s geometry) and
intervention studies as well.

Summary

1 Although young school children are already very
familiar with shapes, they have some difficulty with
the idea of decomposing these into parts, e.g. a
parallelogram decomposed into two congruent
triangles or an isosceles triangle decomposed into
two right-angle triangles, and also with the inverse
process of composing new shapes by combining
two or more shapes to make a different shape.

2 The barrier here may be that these are unusual
tasks for children who might learn how to carry
them out easily given the right experience. This is 
a subject for future research. 

Transforming shapes: enlargement,
rotation and reflection 
We have already stressed the demands that
measurement of length and angle make on children’s
imagination, and the same holds for their learning
about the basic transformations of shapes –
translation, enlargement, rotation and reflection.
Children have to learn to imagine how shapes would
change as a result of each of these transformations
and we know that this is not always easy. The work
by Hart (1981) and her colleagues on children’s
solutions to reflection and rotation problems
suggests that these transformations are not always
easy for children to work out. They report that there
is a great deal of change in between the ages of 11
and 16 years in students’ understanding of what
changes and what stays constant as a result of these
two kinds of transformation. 

One striking pattern reported by this research group
was that the younger children in the group being
studied were much more successful with rotation
and reflection problems that involved horizontal and
vertical figures than with sloping figures: this result
may be related to the evidence, mentioned earlier,
that much younger children discriminate and
remember horizontal and vertical lines much better
than sloping ones.

Psychologists, in contrast to educationalists, have not
thrown a great deal light on children’s learning about

transformations, even though some research on
perceptual development has come close to doing 
so. They have shown that children remember
symmetrical figures better than asymmetrical figures
(Bornstein, Ferdinandsen and Gross, 1981), and 
there are observations of pre-school children
spontaneously constructing symmetrical figures in
informal play (Seo and Ginsburg, 2004). However,
the bulk of the psychological work on rotation and
reflection has treated these transformations in a
negative sense. The researchers (Bomba, 1984;
Quinn, Siqueland and Bomba, 1985; Bryant,
1969,1974) were concerned with children’s
confusions between symmetrical, mirror-image
figures (usually reflections around a vertical axis):
they studied the development of children’s ability to
tell symmetrical figures apart, not to understand the
relation between them. Here is another bridge still
to be crossed between psychology and education.

Enlargement raises some interesting issues about
children’s geometric understanding. We know of no
direct research on teaching children or on children
learning about this transformation, at any rate in the
geometrical sense of shapes being enlarged by a
designated scale factor. These scale factors of course
directly affect the perimeter of the shapes: the
lengths of the sides of, for example, a right-angle
triangle enlarged by a factor of 2 are twice those of
the original triangle. But, of course, the relation
between the areas of the two triangles is different:
the area of the larger triangle is 4 times that of the
smaller one.

There is a danger that some children, and even some
adults, might confuse these different kinds of relation
between two shapes, one of which is an enlargement
of the other. Piaget et al. (1960) showed children a 3
cm x 3 cm square which they said represented a
field with just enough grass for one cow, and then
they asked each child to draw a larger field of the
same shape which would produce enough for two
cows. Since this area measured 9 cm2 the new
square would have to have an area of 18 cm.2 and
therefore sides of roughly 4.24 cm. since 4.24 is very
nearly the square root of 18. In this study most of
the children under the age of 10 years either acted
quite unsystematically or made the mistake of
doubling the sides of the original square in the new
figure that they drew, which meant that their new
square (an enlargement of the original square by a
scale factor of two) had 6 cm sides and an area of
around 36 cm2 which is actually 4 times the area of
the first square. Older children, however, recognised

34 Paper 5: Understanding space and its representation in mathematics



the problem as a multiplicative one and calculated
each of the two squares’ areas my multiplying its
height by its width. The younger children’s difficulties
echoed those of the slave who, in Plato’s Meno, was
lucky enough to be instructed about measuring area
by Socrates himself.

The widespread existence of this apparently
prevailing belief that doubling the length of the sides
of a shape will double its area as well was recently
confirmed by a team of psychologists in Belgium
((De Bock, Verschaffel and Janssens, 1998, 2002; De
Bock, Van Dooren, Janssens and Verschaffel, 2002; De
Bock, Verschaffel, Janssens, Van Dooren and Claes,
2003). There could be an educational conflict here
between teaching children about scale factors on the
one hand and about proportional changes in area on
the other. It is possible that the misconceptions
expressed by students in the studies by Piaget et al.
(1960) and also by the Belgian team may actually
have been the result of confusion between the use
of scale factors in drawing and effect of doubling the
sides of figures. In Paper 4 we discussed in detail the
difficulties of the studies carried out by the Belgian
team but we still need to find out, by research,
whether scale drawing does provoke this confusion.
It would be easy to do such research. 

Summary

1 Understanding, and being able to work out, the
familiar transformations of reflection, rotation and
enlargement are a basic part of the geometry that
children learn at school. They are another instance
of the importance of grasping the relations
between shapes in learning geometry.

2 Psychology tells us little about children’s
understanding of these relations, though it would
be easy enough for psychologists to do empirical
research on this basic topic. The reason for
psychologists’ neglect of transformations is that
they have concentrated on children distinguishing
between shapes rather than on their ability to
work out the relations between them.

3 There is the possibility of a clash between learning
about scale factors in enlargement and about the
measurement of area. This should be investigated.

General conclusions on
learning geometry

1 Geometry is about spatial relations.

2 Children have become highly familiar with some of
these relations, long before they learn about them
formally in geometry classes: others are new to
them.

3 In the case of the spatial relations that they know
about already, like length, orientation and position
relations, the new thing that children have to learn
is to represent them numerically. The process of
making these numerical representations is not
always straightforward.

4 Representing length in standard units depends on
children using one-to-one correspondence
between the units on the ruler and imagined units
on the line being measured. This may seem to be
easy to do to adults, but some children find it
difficult to understand.

5 Representing the area of rectangles in standard
units depends on children understanding two
things: (a) why they have to multiply the base with
the height in centimetres (b) why this
multiplication produces a measure in different
units, square centimetres. Both ideas are difficult
ones for young children.

6 Understanding how to measure parallelograms and
triangles depends on children learning about the
relation between these shapes and rectangles.
Learning about the relations between shapes is a
significant part of learning about geometry and
deserves attention in research done by
psychologists.

7 The idea of angle seems to be new to most
children at the time that they begin to learn about
geometry. Research suggests that it takes children
some time to a form an abstract concept of angle
that cuts across different contexts. More research
is needed on children’s understanding of the
relations between angles in particular figures.

8 Children seem well-placed to learn about the
system of Cartesian co-ordinates since they are, on
the whole, able to extrapolate imaginary
perpendicular lines from horizontal and vertical co-
ordinates and to work out where they intersect.
They do, however, often find co-ordinate tasks
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which involve plotting and working out the
relationship between two or more positions quite
difficult. We need research on the reasons for this
particular difficulty.

9 There is a serious problem about the quality of the
research that psychologists have done on children
learning geometry. Although psychologists have
carried out good work on children’s spatial
understanding, they have done very little to extend
this work to deal with formal learning about the
mathematics of space. There is a special need for
longitudinal studies, combined with intervention
studies, of the link between informal spatial
knowledge and success in learning geometry.
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