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3 Key understandings in mathematics learning

Headlines

• Children have greater difficulty in understanding
relations than in understanding quantities. This is
true in the context of both additive and
multiplicative reasoning problems. 

• Primary and secondary school students often 
apply additive procedures to solve multiplicative
reasoning problems and also apply multiplicative
procedures to solve additive reasoning problems. 

• Explicit instruction to help students become aware
of relations in the context of additive reasoning
problems can lead to significant improvement in
children’s performance.

• The use of diagrams, tables and graphs to
represent relations facilitates children’s thinking
about and discussing the nature of the relations
between quantities in problems. 

• Excellent curriculum development work has been
carried out to design instruction to help students
develop awareness of their implicit knowledge of
multiplicative relations. This programme has not
been systematically assessed so far.

• An alternative view is that students’ implicit
knowledge should not be the starting point for
students to learn about proportional relations;
teaching should focus on formalisations rather 
than informal knowledge and seek to connect
mathematical formalisations with applied situations
only later.

• There is no research comparing the results of
these diametrically opposed ideas.

Children need to learn to co-ordinate their
knowledge of numbers with their understanding 
of quantities. This is critical for mathematics 
learning in primary school so that they can use
their understanding of quantities to support their
knowledge of numbers and vice versa. But this is
not all that students need to learn to be able to
use mathematics sensibly. Using mathematics also
involves thinking about relations between
quantities. Research shows quite unambiguously
that it is more difficult for children to solve
problems that involve relations than to solve
problems that involve only quantities.

A simple problem about quantities is: Paul had 5
marbles. He played two games with his friend. In the
first game, he won 6 marbles. In the second game he
lost 4 marbles. How many marbles does he have
now? The same numerical information can be used
differently, making the problem into one which is all
about relations: Paul played three games of marbles.
In the first game, he won 5 marbles. In the second
game, he won 6. In the third game, he lost 4. Did he
end up winning or losing marbles? How many?

The arithmetic that children need to use to solve is
the same in both problems: add 5 and 6 and subtract
4. But the second problem is significantly more difficult
for children because it is all about relations. They don’t
know how many marbles Paul actually had at any time,
they only know that he had 5 more after the first
game than before, and 6 more after the second game,
and 4 fewer after the third game. Some children say
that this problem cannot be solved because we don’t
know how many marbles Paul had to begin with: they
recognise that it is possible to operate on quantities,
but do not recognise that it is possible to operate on
relations. Why should this be so?

Summary of paper 4: 
Understanding relations
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representation
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One possible explanation is the way in which we
express relations. When we speak about quantities, we
say that Paul won marbles or lost marbles; these are
two opposite statements. When we speak about
relations, statements that use opposite words may
mean the same thing: after winning 5 marbles, we can
say that Paul now has 5 more marbles or that before
he had 5 fewer. In order to grasp the concept of
relations fully, students must be able to view these 
two different statements as meaning the same thing.
Research shows that some students are able to treat
these different statements as having the same meaning
but others find this difficult. Students who realise that
the two statements mean the same thing are more
successful in solving problems about relations.

A second plausible explanation is that many children
do not distinguish clearly between quantities and
relations when they use numbers. When they are
given a problem about relations, they interpret the
relations as quantities. If they are given a problem like
‘Tom, Fred, and Rhoda put their apples into a bag.
Tom and Fred together had 17 more apples than
Rhoda. Tom had 7 apples. Rhoda had 5 apples. How
many apples did Fred have?’, they write down that
Tom and Fred had 17 apples together (instead of 
17 more than Rhoda). When they make this
interpretation error, the problem seems very easy: 
if Tom had 7, Fred had 10. The information about
Rhoda seems irrelevant. But of course this is not the
solution. It is possible to teach children to represent
quantities and relations differently, and thus to
distinguish the two: for example, they can be taught
to write ‘plus 17’ to show that this is not a quantity
but a relation. Children aged seven to nine years can
adopt this notation and at the same time improve
their ability to solve relational problems. However,
even after this teaching, they still seem to be tempted
to interpret relations as quantities. So, learning to
represent relations helps children take a step towards
distinguishing relations and quantities but they need
plenty of opportunity to think about this distinction.

A third difficulty is that relational thinking involves
building a model of a problem situation in order to
treat the relations in the problem mathematically. In
primary school, children have little opportunity to
explore situations in their mathematics lessons
before solving a problem. If they make a mistake 
in solving a problem when their computation was
correct, the error is explained as ‘choice of the
wrong operation’, but the wrong choice of
operation is a symptom, not an explanation for
what went wrong during problem solving.

Models of situations are ways of thinking about them,
and more than one way may be appropriate. It all
depends on the question that we want to answer.
Suppose there are 12 girls and 18 boys in a class and
they are assigned to single-sex groups during French
lessons. If there were not enough books for all of
them and the Head Teacher decided to give 4 books
to the girls and 6 books to the boys, would this be
fair? If you give one book to each girl, there are 8
girls left without books; if you give one book to each
boy, there are 12 boys left without books. This seems
unfair. If you ask all the children to share, 3 girls will
share one book and 3 boys will share one book. This
seems fair. The first model is additive: the questions it
answers are ‘How many more girls than books?’ and
‘How many more boys than books?’ The second
model is multiplicative: it examines the ratio between
girls and books and the ratio between boys and
books. If the Head Teacher is planning to buy more
books, she needs an additive model. If the Head
Teacher is not planning to buy more books, the 
ratio is more informative. A model of a situation is
constructed by the problem solver for a purpose;
additive and multiplicative relations answer different
questions about the same situation. 

Children, but also adults, often make mistakes in the
choice of operation when solving problems: they
sometimes use additive reasoning when they should
have used multiplicative reasoning but they can also
make the converse mistake, and use multiplicative
reasoning when additive reasoning would be
appropriate. So, we need to examine research that
explains how children can become more successful in
choosing the appropriate model to answer a question.

Experts often use diagrams, tables and graphs to help
them analyse situations. These resources could support
children’s thinking about situations. But children seem
to have difficulty in using these resources and have to
learn how to use them. They have to become literate
in the use of these mathematical tools in order to
interpret them correctly. A question that has not been
addressed in the literature is whether children can
learn about using these tools and about analysing
situations mathematically at the same time. Research
about interpreting tables and graphs has been carried
out either to assess students’ previous knowledge (or
misconceptions) before they are taught or to test
ways of making them literate in the use of these tools.

A remarkable exception is found in the work of
researchers in the Freudenthal Institute. One of their
explicit aims for instruction in mathematics is to help
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students mathematise situations: i.e. to help them
build a model of a situation and later transform it into
a model for other situations through their awareness
of the relations in the model. They argue that we
need to use diagrams, tables and graphs during the
process of mathematising situations. These are built by
students (with teacher guidance) as they explore the
situations rather than presented to the students ready
made for interpretation. Students are encouraged to
use their implicit knowledge of relations; by building
these representations, they can become aware of
which models they are using. The process of solution
is thus not to choose an operation and calculate but
to analyse the relations in the problem and work
towards solution. This process allows the students to
become aware of the relations that are conserved
throughout the different steps.

Streefland worked out in detail how this process
would work if students were asked to solve Hart’s
famous onion soup recipe problem. In this problem,
students are presented with a recipe of onion soup
for 8 people and asked how much of each ingredient
they would need if they were preparing the soup for
6 people. Many students use their everyday
knowledge of relations in searching for a solution: they
think that you need half of the original recipe (which
would serve 4) plus half of this (which would serve 2
people) in order to have a recipe for 6 people. This
perfectly sound reasoning is actually a mixture of
additive and multiplicative thinking: half of a recipe for
8 serves 4 people (multiplicative reasoning) and half of
the latter serves 2 (multiplicative reasoning); 6 people
is 2 more than 4 (additive); a recipe for 6 is the same
as the recipe for 4 plus the recipe for 2 (additive). 

Streefland and his colleagues suggested that
diagrams and tables provide the sort of
representation that helps students think about the
relations in the problem. It is illustrated here by the
ratio table showing how much water should be used
in the soup. The table can be used to help students
become aware that the first two steps in their
reasoning are multiplicative: they divide the number

of persons in half and also the amount of water 
in half. Additive reasoning does not work: the
transformation from 8 to 4 people would mean
subtracting 4 whereas the parallel transformation 
in the amount of water would be to subtract 1. So
the relation is not the same. If they can discover 
that multiplicative reasoning preserves the relation,
whereas additive reasoning does not, they could be
encouraged to test whether there is a multiplicative
relation that they can use to find the recipe for 6;
they could come up with x3, trebling the recipe for
2. Streefland’s ratio table can be used as a model for
testing if other situations fit this sort of multiplicative
reasoning. The table can be expanded to calculate
the amounts of the other ingredients.

An alternative approach in curriculum development is
to start from formalisations and not to base teaching
on students’ informal knowledge. The aim of this
approach is to establish links between different formal
representations of the same relations. A programme
proposed by Adjiage and Pluvinage starts with lines
divided into segments: students learn how to
represent segments with the same fraction even
though the lengths of the lines differ (e.g. 3/5 of lines
of different lengths). Next they move to using these
formal representations in other types of problems: for
example, mixtures of chocolate syrup and milk where
the number of cups of each ingredient differs but the
ratio of chocolate to total number of cups is the
same. Finally, students are asked to write abstractions
that they learned in these situations and formulate
rules for solving the problems that they solved during
the lessons. An example of generalisation expected is
‘seven divided by four is equal to seven fourths’ or ‘7
÷ 4 = 7/4’. An example of a rule used in problem
solving would be ‘Given an enlargement in which a 4
cm length becomes a 7 cm length, then any length to
be enlarged has to be multiplied by 7/4.’

There is no systematic research that compares these
two very different approaches. Such research would
provide valuable insight into how children come to
understand relations.

5 Key understandings in mathematics learning
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Recommendations

Research about mathematical
learning

Numbers are used to represent quantities
and relations. Primary school children
often interpret statements about relations
as if they were about quantities and thus
make mistakes in solving problems. 

Many problem situations involve both
additive and multiplicative relations; which
one is used to solve a problem depends
on the question being asked. Both children
and adults can make mistakes in selecting
additive or multiplicative reasoning to
answer a question.

Experts use diagrams, tables and graphs to
explore the relations in a problem
situation before solving a problem. 

Some researchers propose that informal
knowledge interferes with students’
learning. They propose that teaching
should start from formalisations which are
only later applied to problem situations.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of children’s difficulties
in distinguishing between quantities and relations during
problem solving.

Teaching The primary school curriculum should include the
study of relations in situations in a more explicit way.
Research Evidence from experimental studies is needed on
which approaches to making students aware of relations in
problem situations improve problem solving.

Teaching The use of tables and graphs in the classroom may
have been hampered by the assumption that students must first
be literate in interpreting these representations before they can
be used as tools. Teachers should consider using these tools as
part of the learning process during problem solving.
Research Systematic research on how students use
diagrams, tables and graphs to represent relations during
problem solving and how this impacts their later learning is
urgently needed. Experimental and longitudinal methods
should be combined.

Teaching Teachers who start from formalisations should try
to promote links across different types of mathematical
representations through teaching.
Research There is a need for experimental and longitudinal
studies designed to investigate the progress that students
make when teaching starts from formalisations rather than
from students’ informal knowledge and the long-term
consequences of this approach to teaching students 
about relations.



Relations and their importance
in mathematics

In our analysis of how children come to understand
natural and rational numbers, we examined the
connections that children need to make between
quantities and numbers in order to understand 
what numbers mean. Numbers are certainly used 
to represent quantities, but they are also used to
represent relations. The focus of this section is on
the use of numbers to represent relations. Relations
do not have to be quantified: we can simply say, for
example, that two quantities are equivalent or
different. This is a qualitative statement about the
relation between two quantities. But relations can 
be quantified also: if there are 20 children in the
class and 17 books, we can say that there are 3
more children than books. The number 3 quantifies
the additive relation between 17 and 20 and so we
can say that 3 quantifies a relation.

When we use numbers to represent quantities, the
numbers are the result of a measurement operation.
Measures usually rely on culturally developed
systems of representation. In order to measure
discrete quantities, we count their units, and in order
to measure continuous quantities, we use systems
that have been set up to allow us to represent them
by a number of conventional units. Measures are
usually described by a number followed by a noun,
which indicates the unit of quantity the number
refers to: 5 children, 3 centimetres, 200 grams. And
we can’t replace the noun with another noun
without changing what we are talking about. When
we quantify a relation, the number does not refer to
a quantity. We can say ‘3 more children than books’
or ‘3 books fewer than children’: it makes no
difference which noun comes after the number

because the number refers to the relation between
the two quantities, how many more or fewer. 

When we use qualitative statements about the
relations between two quantities, the quantities may
or may not have been expressed numerically. For
example, we can look at the children and the books
in the class and know that there are more children
without counting them, especially if the difference is
quite large. So we can say that there are more
children than books without knowing how many
children or how many books. But in order to quantify
a relation between two quantities, the quantities
need to be measurable, even if, in the case of
differences, we can evaluate the relationship without
actually measuring them. The ability to express the
relationship quantitatively, without knowing the actual
measures, is one of the roots of algebra (see Paper
5). For this reason, we will often use the term
‘measures’ in this section, instead of ‘quantities’, to
refer to quantities that are represented numerically.

It is perfectly possible that when children first appear
to succeed in quantifying relations, they are actually
still thinking about quantities: when they say ‘3
children more than books’, they might be thinking of
the poor little things who won’t have a book when
the teacher shares the books out, not of the relation
between the number of books and the number of
children. This hypothesis is consistent with results of
studies by Hudson (1983), described in Paper 2:
young children are quite able to answer the
question ‘how many birds won’t get worms’ but they
can’t tell ‘how many more birds than worms’. We, as
adults, may think that they understand something

7 Key understandings in mathematics learning
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about relations when they answer the first question,
but they may be talking about quantities, i.e. the
number of birds that won’t get worms.

There is no doubt to us that children must grasp
how numbers and quantities are connected in 
order to understand what numbers mean. But
mathematics is not only about representing
quantities with numbers. A major use of
mathematics is to manipulate numbers that
represent relations and arrive at conclusions 
without having to operate directly on the quantities.
Attributing a number to a quantity is measuring;
quantifying relations and manipulating them is
quantitative reasoning. To quote Thompson (1993):
‘Quantitative reasoning is the analysis of a situation
into a quantitative structure – a network of
quantities and quantitative relationships… A
prominent characteristic of reasoning quantitatively
is that numbers and numeric relationships are of
secondary importance, and do not enter into the
primary analysis of a situation. What is important is
relationships among quantities’ (p. 165). Elsewhere,
Thompson (1994) emphasised that ‘a quantitative
operation is nonnumerical; it has to do with the
comprehension [italics in the original] of a situation.
Numerical operations (which we have termed
measurement operations) are used to evaluate a
quantity’ (p. 187–188). 

In order to reach the right conclusions in
quantitative reasoning, one must use an appropriate
representation of the relations between the
quantities, and the representation depends on what
we want to know about the relation between the
quantities. Suppose you want to know whether you
are paying more for your favourite chocolates at
one shop than another, but the boxes of chocolates
in the two shops are of different sizes. Of course the
bigger box costs more money, but are you paying
more for each chocolate? You don’t know unless you
quantify the relation between price and chocolates.
This relation, price per chocolate, is not quantified in
the same way as the relation ‘more children than
books’. When you want to know how many children
won’t have books, you subtract the number of
books from the number of children (or vice versa).
When you want to know the price per chocolate,
you shouldn’t subtract the number of chocolates
from the price (or vice versa); you should divide the
price by the number of chocolates. Quantifying
relations depends on the nature of the question you
are asking about the quantities. If you are asking how
many more, you use subtraction; if you are asking a

rate question, such as price per chocolate, you use
division. So quantifying relations can be done by
additive or multiplicative reasoning. Additive
reasoning tells us about the difference between
quantities; multiplicative reasoning tells us about the
ratio between quantities. The focus of this section is
on multiplicative reasoning but a brief discussion of
additive relations will be included at the outset to
illustrate the difficulties that children face when they
need to quantify and operate on relations. However,
before we turn to the issue of quantification of
relations, we want to say why we use the terms
additive and multiplicative reasoning, instead of
speaking about the four arithmetic operations.

Mathematics educators (e.g. Behr, Harel, Post and
Lesh, 1994; Steffe, 1994; Vergnaud, 1983) include
under the term ‘additive reasoning’ those problems
that are solved by addition and subtraction and
under the term ‘multiplicative reasoning’ those that
are solved by multiplication and division. This way of
thinking, focusing on the problem structure rather
than on the arithmetic operations used to solve
problems, has become dominant in mathematics
education research in the last three decades or so. 
It is based on some assumptions about how children
learn mathematics, three of which are made explicit
here. First, it is assumed that in order to understand
addition and subtraction properly, children must also
understand the inverse relation between them;
similarly, in order to understand multiplication and
division, children must understand that they also are
the inverse of each other. Thus a focus on specific
and separate operations, which was more typical of
mathematics education thinking in the past, is
justified only when the focus of teaching is on
computation skills. Second, it is assumed that the
links between addition and subtraction, on one
hand, and multiplication and division, on the other,
are conceptual: they relate to the connections
between quantities within each of these domains of
reasoning. The connections between addition and
multiplication and those between subtraction and
division are procedural: you can multiply by carrying
out repeated additions and divide by using repeated
subtractions. Finally, it is assumed that, in spite of the
procedural links between addition and multiplication,
these two forms of reasoning are distinct enough to
be considered as separate conceptual domains. So
we will use the terms additive and multiplicative
reasoning and relations rather than refer to the
arithmetic operations.
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Quantifying additive relations

The literature about additive reasoning consistently
shows that compare problems, which involve
relations between quantities, are more difficult 
than those that involve combining sets or
transformations. This literature was reviewed in
Paper 1. Our aim in taking up this theme again here
is to show that there are three sources of difficulties
for students in quantifying additive relations: 
• to interpret relational statements as such, rather

than to interpret them as statements about
quantities

• to transform relational statements into equivalent
statements which help them think about the
problem in a different way

• to combine two relational statements into a third
relational statement without falling prey to the
temptation of treating the result as a statement
about a quantity.

This discussion in the context of additive reasoning
illustrates the role of relations in quantitative
reasoning. The review is brief and selective, because
the main focus of this section is on multiplicative
reasoning.

Interpreting relational statements as
quantitative statements
Compare problems involve two quantities and a
relation between them. Their general format is: 
A had x; B has y; the relation between A and B is z.
This allows for creating a number of different
compare problems. For example, the simplest
compare problems are of the form: Paul has 8
marbles; Alex had 5 marbles; how many more does
Paul have than Alex? or How many fewer does Alex
have than Paul? In these problems, the quantities are
known and the relation is the unknown.

Carpenter, Hiebert and Moser (1981) observed that
53% of the first grade (estimated age about 6 years)
children that they assessed in compare problems
answered the question ‘how many more does A
have than B’ by saying the number that A has. This 
is the most common mistake reported in the
literature: the relational question is answered as a
quantity mentioned in the problem. The explanation
for this error cannot be children’s lack of knowledge
of addition and subtraction, because about 85% of
the same children used correct addition and
subtraction strategies when solving problems that
involved joining quantities or a transformation of an
initial quantity. Carpenter and Moser report that

many of the children did not seem to know what to
do when asked to solve a compare problem.

Transforming relational statements into
equivalent relational statements
Compare problems can also state how many items
A has, then the value of the relation between A’s
and B’s quantities, and then ask how much B has.
Two problems used by Vershaffel (1994) will be
used to illustrate this problem type. In the problem
‘Chris has 32 books. Ralph has 13 more books than
Chris. How many books does Ralph have?’, the
relation is stated as ‘13 more books’ and the answer
is obtained by addition; this problem type is referred
to by Lewis and Mayer (1987) as involving
consistent language. In the problem ‘Pete has 29
nuts. Pete has 14 more nuts than Rita. How many
nuts does Rita have?’, the relation is stated as ‘14
more nuts’ but the answer is obtained by
subtraction; this problem types is referred to as
involving inconsistent language. Verschaffel found that
Belgian students in sixth grade (aged about 12) gave
82% correct responses to problems with consistent
language and 71% correct responses to problems
with inconsistent language. The operation itself,
whether it was addition or subtraction, did not 
affect the rate of correct responses.

Lewis and Mayer (1987) have argued that the rate
of correct responses to relational statements with
consistent or inconsistent language varies because
there is a higher cognitive load in processing
inconsistent sentences. This higher cognitive load is
due to the fact that the subject of the sentence in
the question ‘how many nuts does Rita have?’ is the
object of the relational sentence ‘Pete has 14 more
nuts than Rita’. It takes more effort to process these
two sentences than other two, in which the subject
of the question is also the subject of the relational
statement. They provided some evidence for this
hypothesis, later confirmed by Verschaffel (1994),
who also asked the students in his study to retell
the problem after the students had already
answered the question. 

In the problems where the language was consistent,
almost all the students who gave the right answer
simply repeated what the researcher had said: there
was no need to rephrase the problem. In the
problems where the language was inconsistent,
about half of the students (54%) who gave correct
answers retold the problem by rephrasing it
appropriately. Instead of saying that ‘Pete has 14 nuts
more than Rita’, they said that ‘Rita has 14 nuts less

9 Key understandings in mathematics learning
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than Pete’, and thus made Rita into the subject of
both sentences. Verschaffel interviewed some of the
students who had used this correct rephrasing by
showing them the written problem that he had read
and asking them whether they had said the same
thing. Some said that they changed the phrase
intentionally because it was easier to think about the
question in this way; they stressed that the meaning
of the two sentences was the same. Other students
became confused, as if they had said something
wrong, and were no longer certain of their answers.
In conclusion, there is evidence that at least some
students do reinterpret the sentences as
hypothesised by Lewis and Mayer; some do this
explicitly and others implicitly. However, almost as
many students reached correct answers without
seeming to rephrase the problem, and may not
experience the extra cognitive load predicted. 

It is likely that, under many conditions, we rephrase
relational statements when solving problems. So two
significant findings arise from these studies:

• rephrasing relational statements seems to be a
strategy used by some people, which may place
extra cognitive demands on the problem solver
but nevertheless helps in the search for a solution

• rephrasing may be done intentionally and explicitly,
as a strategy, but may also be carried out implicitly
and apparently unintentionally, producing
uncertainty in the problem solvers’ minds if they
are asked about the rephrasing. 

Combining relational statements into a
third relational statement
Compare problems typically involve two quantities
and a relation between them but it is possible to
have problems that require children to work with
more quantities and relations than these simpler
problems. In these more complex problems, it may
be necessary to combine two relational statements
to identify a third one.

Thompson (1993) analysed students’ reasoning in
complex comparison problems which involved at
least three quantities and three relations. His aim
was to see how children interpreted complex
relational problems and how their reasoning
changed as they tackled more problems of the same
type. To exemplify his problems, we quote the first
one: ‘Tom, Fred, and Rhoda combined their apples
for a fruit stand. Fred and Rhoda together had 97
more apples than Tom. Rhoda had 17 apples. Tom

had 25 apples. How many apples did Fred have?’ 
(p. 167). This problem includes three quantities
(Tom’s, Fred’s and Rhoda’s apples) and three
relations (how many more Fred and Rhoda have
than Tom; how many fewer Rhoda has than Tom; a
combination of these two relations). He asked six
children who had achieved different scores in a pre-
test (three with higher and three with middle level
scores) sampled from two grade levels, second
(aged about seven) and fifth (aged about nine) to
discuss six problems presented over four different
days. The children were asked to think about the
problems, represent them and discuss them.

On the first day the children went directly to trying
out calculations and represented the relations as
quantities: the statement ‘97 more apples than Tom’
was interpreted as ‘97 apples’. They did not know
how to represent ‘97 more’. This leads to the
conclusion that Fred has 80 apples because Rhoda
has 17. On the second day, working with problems
about marbles won or lost during the games, the
researcher taught the children to use
representations by writing, for example, ‘plus 12’ 
to indicate that someone had won 12 marbles and
‘minus 1’ to indicate that someone had lost 1
marble. The children were able to work with these
representations with the researcher’s support, but
when they combined two statements, for example
minus 8 and plus 14, they thought that the answer
was 6 marbles (a quantity), instead of plus six 
(a relation). So at first they represented relational
statements as statements about quantities,
apparently because they did not know how to
represent relations. However, after having learned
how to represent relational statements, they
continued to have difficulties in thinking only
relationally, and unwittingly converted the result of
operations on relations into statements about
quantities. Yet, when asked whether it would always
be true that someone who had won 2 marbles in a
game would have 2 marbles, the children recognised
that this would not necessarily be true. They did
understand that relations and quantities are different
but they interpreted the result of combining two
relations as a quantity.

Thompson describes this tension between
interpreting numbers as quantities or relations as the
major difficulty that the students faced throughout
his study. When they seemed to understand
‘difference’ as a relation between two quantities
arrived at by subtraction, they found it difficult to
interpret the idea of ‘difference’ as a relation
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between two relations. The children could correctly
answer, when asked, that if someone has 2 marbles
more than another person, this does not mean that
he has two marbles; however, after combining two
relations (minus 8 and plus 14), instead of saying
that this person ended up with plus 6 marbles, they
said that he now had 6 marbles. 

Summary

1 At first, children have difficulties in using additive
reasoning to quantify relations; when asked about
a relation, they answer about a quantity. 

2 Once they seem to conquer this, they continue to
find it difficult to combine relations and stay within
relational reasoning: the combination of two
relations is often converted into a statement
about a quantity. 

3 So children’s difficulties with relations are not
confined to multiplicative reasoning: they are also
observed in the domain of additive reasoning.

Quantifying multiplicative relations

Research on how children quantify multiplicative
relations has a long tradition. Piaget and his
colleagues (Inhelder and Piaget, 1958; Piaget and
Inhelder, 1975) originally assumed that children first
think of quantifying relations additively and can only
think of relations multiplicatively at a later age. This
hypothesis led to the prediction of an ‘additive
phase’ in children’s solution to multiplicative
reasoning problems, before they would be able to
conceive of two variables as linked by a
multiplicative relation. This hypothesis led to much
research on the development of proportional
reasoning, which largely supported the claim that
many younger students offer additive solutions to
proportions problems (e.g. Hart, 1981 b; 1984;
Karplus and Peterson, 1970; Karplus, Pulos and Stage,
1983; Noelting, 1980 a and b). These results are not
disputed but their interpretation will be examined in
the next sections of this paper because current
studies suggest an alternative interpretation. 

Work carried out mostly by Lieven Verschaffel and
his colleagues (e.g. De Bock, Verschaffel et al., 2002;
2003) shows that students also make the converse
mistake, and multiply when they should be adding in
order to solve some relational problems. This type of

error is not confined to young students: pre-service
elementary school teachers in the United States
(Cramer, Post and Currier, 1993) made the same
sort of mistake when asked to solve the problem:
Sue and Julie were running equally fast around a track.
Sue started first. When she had run 9 laps, Julie had
run 3 laps. When Julie completed 15 laps, how many
laps had Sue run? The relation between Sue’s and
Julie’s numbers of laps should be quantified
additively: because they were running at the same
speed, this difference would (in principle) be
constant. However, 32 of 33 pre-service teachers
answered 45 (15 x 3), apparently using the ratio
between the first two measures (9 and 3 laps) to
calculate Sue’s laps. This latter type of mistake would
not be predicted by Piaget’s theory.

The hypothesis that we will pursue in this chapter,
following authors such as Thompson 1994) and
Vergnaud (1983), is that additive and multiplicative
reasoning have different origins. Additive reasoning
stems from the actions of joining, separating, and
placing sets in one-to-one correspondence.
Multiplicative reasoning stems from the action of
putting two variables in one-to-many
correspondence (one-to-one is just a particular
case), an action that keeps the ratio between the
variables constant. Thompson (1994) made this
point forcefully in his discussion of quantitative
operations: ‘Quantitative operations originate in
actions: The quantitative operation of combining 
two quantities additively originates in the actions of
putting together to make a whole and separating a
whole to make parts; the quantitative operation of
comparing two quantities additively originates in the
action of matching two quantities with the goal of
determining excess or deficits; the quantitative
operation of comparing two quantities
multiplicatively originates in matching and subdividing
with the goal of sharing. As one interiorizes actions,
making mental operations, these operations in the
making imbue one with the ability to comprehend
situations representationally and enable one to draw
inferences about numerical relationships that are not
present in the situation itself ’ (pp. 185–186).

We suggest that, if students solve additive and
multiplicative reasoning problems successfully but
they are guided by implicit models, they will find it
difficult to distinguish between the two models.
According to Fischbein (1987), implicit models 
and informal reasoning provide a starting point 
for learning, but one of the aims of mathematics
teaching in primary school is to help students
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formalize their informal knowledge (Treffers, 1987).
In this process, the models will change and become
more explicitly connected to the systems of
representations used in mathematics.

In this section, we analyse how students establish
and quantify relations between quantities in
multiplicative reasoning problems. We first discuss
the nature of multiplicative reasoning and present
research results that describe how children’s
informal knowledge of multiplicative relations
develops. In the subsequent section, we discuss the
representation of multiplicative relations in tables
and graphs. Next we analyse how children establish
other relations between measures, besides linear
relations. The final section sets out some hypotheses
about the nature of the difficulty in dealing with
relations in mathematics and a research agenda for
testing current hypotheses systematically. 

The development of multiplicative reasoning
Multiplicative reasoning is important in many ways
in mathematics learning. Its role in understanding
numeration systems with a base and place value
was already discussed in Paper 2. In this section,
we focus on a different role of multiplicative
reasoning in mathematics learning, its role in
understanding relations between measures or
quantities, which has already been recognised 
by different researchers (e.g. Confrey, 1994;
Thompson, 1994; Vergnaud, 1983; 1994). 

Additive and multiplicative reasoning problems 
are essentially different: additive reasoning is used 
in one-variable problems, when quantities of the 
same kind are put together, separated or compared,
whereas multiplicative reasoning involves two
variables in a fixed-ratio to each other. Even the
simplest multiplicative reasoning problems involve
two variables in a fixed ratio. For example, in the
problem ‘Hannah bought 6 sweets; each sweet costs
5 pence; how much did she spend?’ there are two
variables, number of sweets and price per sweet. The
problem would be solved by a multiplication 
if, as in this example, the total cost is unknown. The
same problem situation could be presented with 
a different unknown quantity, and would then be
solved by means of a division: ‘Hannah bought some
sweets; each sweet costs 5p; she spent 30p; how
many sweets did she buy?’

Even before being taught about multiplication and
division in school, children can solve multiplication
and division problems such as the one about

Hannah. They use the schema of one-to-many
correspondence. 

Different researchers have investigated the use of
one-to-many correspondences by children to solve
multiplication and division problems before they are
taught about these operations in school. Piaget’s
work (1952), described in Paper 3, showed that
children can understand multiplicative equivalences:
they can construct a set A equivalent to a set B by
putting the elements in A in the same ratio that B
has to a comparison set. 

Frydman and Bryant (1988; 1994) also showed 
that young children can use one-to-many
correspondences to create equivalent sets. 
They used sharing in their study because young
children seem to have much experience with
correspondence when sharing. In a sharing situation,
children typically use a one-for-you one-for-me
procedure, setting the shared elements (sweets) into
one-to-one correspondence with the recipients
(dolls). Frydman and Bryant observed that children
in the age range five to seven years became
progressively more competent in dealing with one-
to-many correspondences and equivalences in this
situation. In their task, the children were asked to
construct equivalent sets but the units in the sets
were of a different value. For example, one doll only
liked her sweets in double units and the second doll
liked his sweets in single units. The children were
able to use one-to-many correspondence to share
fairly in this situation: when they gave a double to
the first doll, they gave two singles to the second.
This flexible use of correspondence to construct
equivalent sets was interpreted by Frydman and
Bryant as an indication that the children’s use of 
the procedure was not merely a copy of previously
observed and rehearsed actions: it reflected an
understanding of how one-to-many
correspondences can result in equivalent sets. They
also replicated one of Piaget’s previous findings:
some children who succeed with the 2:1 ratio found
the 3:1 ratio difficult. So the development of the
one-to-many correspondence schema does not
happen in an all-or-nothing fashion.

Kouba (1989) presented young children in the
United States, in first, second and third grade 
(aged about six to eight years), with multiplicative
reasoning problems that are more typical of those
used in school; for example: in a party, there were 6
cups and 5 marshmallows in each cup; how many
marshmallows were there?
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Kouba analysed the children’s strategies in great
detail, and classified them in terms of the types of
actions used and the level of abstraction. The level 
of abstraction varied from direct representation 
(i.e. all the information was represented by the
children with concrete materials), through partial
representation (i.e. numbers replaced concrete
representations for the elements in a group and the
child counted in groups) up to the most abstract
form of representation available to these children,
i.e. multiplication facts. 

For the children in first and second grade, who 
had not received instruction on multiplication and
division, the most important factor in predicting 
the children’s solutions was which quantity was
unknown. For example, in the problem above, about
the 6 cups with 5 marshmallows in each cup, when
the size of the groups was known (i.e. the number
of marshmallows in each cup), the children used
correspondence strategies: they paired objects (or
tallies to represent the objects) and counted or
added, creating one-to-many correspondences
between the cups and the marshmallows. For
example, if they needed to find the total number of
marshmallows, they pointed 5 times to a cup (or its
representation) and counted to 5, paused, and then
counted from 6 to 10 as they pointed to the
second ‘cup’, until they reached the solution.
Alternatively, the may have added as they pointed 
to the ‘cup’. 

In contrast, when the number of elements in each
group was not known, the children used dealing
strategies: they shared out one marshmallow (or its
representation) to each cup, and then another, until
they reached the end, and then counted the number
in each cup. Here they sometimes used trial-and-
error: they shared more than one at a time and
then might have needed to adjust the number per
cup to get to the correct distribution. 

Although the actions look quite different, their 
aims are the same: to establish one-to-many
correspondences between the marshmallows 
and the cups. 

Kouba observed that 43% of the strategies used 
by the children, including first, second, and third
graders, were appropriate. Among the first and
second grade children, the overwhelming majority 
of the appropriate strategies was based on
correspondences, either using direct representation
or partial representation (i.e. tallies for one variable

and counting or adding for the other); few used
recall of multiplication facts. The recall of number
facts was significantly higher after the children had
received instruction, when they were in third grade.

The level of success observed by Kouba among
children who had not yet received instruction is
modest, compared to that observed in two
subsequent studies, where the ratios were easier.
Becker (1993) asked kindergarten children in the
United States, aged four to five years, to solve
problems in which the correspondences were 2:1 
or 3:1. As reported by Piaget and by Frydman and
Bryant, the children were more successful with 2:1
than 3:1 correspondences, and the level of success
improved with age. The overall level of correct
responses by the five-year-olds was 81%. 

Carpenter, Ansell, Franke, Fennema and Weisbeck
(1993) also gave multiplicative reasoning problems
to U.S. kindergarten children involving
correspondences of 2:1, 3:1 and 4:1. They observed
71% correct responses to these problems. 

The success rates leave no doubt that many young
children start school with some understanding of
one-to-many correspondence, which they can use
to learn to solve multiplicative reasoning problems 
in school. These results do not imply that children
who use one-to-many correspondence to solve
multiplicative reasoning problems consciously
recognise that in a multiplicative situation there is 
a fixed ratio linking the two variables. Their actions
maintain the ratio fixed but it is most likely that this
invariance remains, in Vergnaud’s (1997) terminology,
as a ‘theorem in action’.

The importance of informal knowledge
Both Fischbein (1987) and Treffers (1987) assumed
that children’s informal knowledge is a starting 
point for learning mathematics in school but it is
important to consider this assumption further. If
children start school with some informal knowledge
that can be used for learning mathematics in school,
it is necessary to consider whether this knowledge
facilitates their learning or, quite the opposite, is an
obstacle to learning. The action of establishing one-
to-many correspondences is not the same as the
concept of ratio or as multiplicative reasoning: ratio
may be implicit in their actions but it is possible that
the children are more aware of the methods that
they used to figure out the numerical values of the
quantities, i.e. they are aware of counting or adding. 

13 Key understandings in mathematics learning
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Children’s methods for solving multiplication
problems can be seen as a starting point, if they
form a basis for further learning, but also an obstacle
to learning, if children stick to their counting and
addition procedures instead of learning about ratio
and multiplicative reasoning in school. Resnick
(1983) and Kaput and West (1994) argue that an
important lesson from psychological and
mathematics education research is that, even after
people have been taught new concepts and ideas,
they still resort to their prior methods to solve
problems that differ from the textbook examples on
which they have applied their new knowledge. The
implementation of the one-to-many correspondence
schema to solve problems requires adding and
counting, and students have been reported to resort
to counting and adding even in secondary school,
when they should be multiplying (Booth, 1981). So 
is this informal knowledge an obstacle to better
understanding or does it provide a basis for learning?

It is possible that a precise answer to this question
cannot be found: whether informal knowledge helps
or hinders children’s learning might depend on the
pedagogy used in their classroom. However, it is
possible to consider this question in principle by
examining the results of longitudinal and
intervention studies. If it is found in a longitudinal
study that children who start school with more
informal mathematical knowledge achieve better
mathematics learning in school, then it can be
concluded that, at least in a general manner, informal
knowledge does provide a basis for learning.
Similarly, if intervention studies show that increasing
children’s informal knowledge when they are in their
first year school has a positive impact on their
school learning of mathematics, there is further
support for the idea that informal knowledge can
offer a foundation for learning. In the case of the
correspondence schema, there is clear evidence
from a longitudinal study but intervention studies
with the appropriate controls are still needed.

Nunes, Bryant, Evans, Bell, Gardner, Gardner and
Carraher (2007) carried out the longitudinal study. 
In this study, British children were tested on their
understanding of four aspects of logical-
mathematical reasoning at the start of school; one 
of these was multiplicative reasoning. There were 
five items which were multiplicative reasoning
problems that could be solved by one-to-many
correspondence. The children were also given the
British Abilities Scale (BAS-II; Elliott, Smith and
McCulloch, 1997) as an assessment of their general

cognitive ability and a Working Memory Test,
Counting Recall (Pickering and Gathercole, 2001), 
at school entry. At the beginning of the study, the
children’s age ranged from five years and one month
to six years and six months. About 14 months later,
the children were given a state-designed and
teacher-administered mathematics achievement test,
which is entirely independent of the researchers and
an ecologically valid measure of how much they
have learned in school. The children’s performance 
in the five items on correspondence at school entry
was a significant predictor of their mathematics
achievement, after controlling for : (1) age at the time
of the achievement test; (2) performance on the
BAS-II excluding the subtest of their knowledge of
numbers at school start; (3) knowledge of number
at school entry (a subtest of the BAS-II); (4)
performance on the working memory measure; 
and (5) performance on the multiplicative reasoning,
one-to-many correspondence items. Nunes et al.
(2007) did not report the analysis of longitudinal
prediction based separately on the items that assess
multiplicative reasoning; so these results are
reported here. The results are presented visually in
Figure 4.1 and described in words subsequently.

The total variance explained in the mathematics
achievement by these predictors was 66%; age
explained 2% (non significant), the BAS general
score (excluding the Number Skills subtest)
explained a further 49% (p < 0.001); the sub-test on
number skills explained a further 6% (p < 0.05);
working memory explained a further 4% (p < 0.05),
and the children’s understanding of multiplicative
reasoning at school entry explained a further 6% 
(p = 0.005). This result shows that children’s
understanding of multiplicative reasoning at school
entry is a specific predictor of mathematics
achievement in the first two years of school. It
supports the hypothesis that, in a general way, this
informal knowledge forms a basis for their school
learning of mathematics: after 14 months and after
controlling for general cognitive factors at school
entry, performance on an assessment of
multiplicative reasoning still explained a significant
amount of variance in the children’s mathematics
achievement in school. 

It is therefore quite likely that instruction will be an
important factor in influencing whether students
continue to use the one-to-many schema of action
to solve such problems, even if replacing objects
with numbers but still counting or adding instead of
multiplying, or whether they go on to adopt the use
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of the operations of multiplication and division.
Treffers (1987) and Gravemeijer (1997) argue that
students do and should use their informal
knowledge in the classroom when learning about
multiplication and division, but that it should be one
of the aims of teaching to help them formalise this
knowledge, and in the process develop a better
understanding of the arithmetic operations
themselves. We do not review this work here but
recognise the importance of their argument,
particularly in view of the strength of this informal
knowledge and students’ likelihood of using it even
after having been taught other forms of knowledge
in school. However, it must be pointed out that
there is no evidence that teaching students about
arithmetic operations makes them more aware of
the invariance of the ratio when they use one-to-
many correspondences to solve problems. Kaput
and West (1994) also designed a teaching
programme which aimed at using students’ informal
knowledge of correspondences to promote their
understanding of multiplicative reasoning. In contrast
to the programme designed by Treffers for the
operation of multiplication and by Gravemeijer for
the operation of division, Kaput and West’s
programme used simple calculations and tried to

focus the students’ attention on the invariance of
ratio in the correspondence situations. They used
different sorts of diagrams which treated the
quantities in correspondence as composite units: for
example, a plate and six pieces of tableware formed
a single unit, a set-place for one person. The ideas
proposed in these approaches to instruction are
very ingenious and merit further research with the
appropriate controls and measures. The lack of
control groups and appropriate pre- and post-test
assessments in these intervention studies makes it
difficult to reach conclusions regarding the impact of
the programmes.

Park and Nunes (2001) carried out a brief
intervention study where they compared children’s
success in multiplicative reasoning problems after the
children had participated in one of two types of
intervention. In the first, they were taught about
multiplication as repeated addition, which is the
traditional approach used in British schools and is
based on the procedural connection between
multiplication and addition. In the second
intervention group, the children were taught 
about multiplication by considering one-to-many
correspondence situations, where these
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correspondences were represented explicitly. A third
group of children, the control group, solved addition
and subtraction problems, working with the same
experimenter for a similar period of time. The
children in the one-to-many correspondence group
made significantly more progress in solving
multiplicative reasoning problems than those in the
repeated addition and in the control group. This
study does include the appropriate controls and
provides clear evidence for more successful learning
of multiplicative reasoning when instruction draws
on the children’s appropriate schema of action.
However, this was a very brief intervention with a
small sample and in one-to-one teaching sessions. 
It would be necessary to replicate it with larger
numbers of children and to compare its level of
success with other interventions, such as those used
by Treffers and Gravemeijer, where the children’s
understanding of the arithmetic operations of
multiplication and division was strengthened by
working with larger numbers.

Summary

1 Additive and multiplicative reasoning have their
origins in different schemas of action. There does
not seem to be an order of acquisition, with
young children understanding at first only additive
reasoning and only later multiplicative reasoning.
Children can use schemas of action appropriately
both in additive and multiplicative reasoning
situations from an early age.

2 The schemas of one-to-many correspondence 
and sharing (or dealing) allow young children 
to succeed in solving multiplicative reasoning
problems before they are taught about
multiplication and division in school.

3 There is evidence that children’s knowledge of
correspondences is a specific predictor of their
mathematics achievement and, therefore, that their
informal knowledge can provide a basis for further
learning. However, this does not mean that they
understand the concept of ratio: the invariance of
ratio in these situations is likely to be known only
as a theorem in action.

4 Two types of programmes have been proposed
with the aim of bridging students’ informal and
formal knowledge. One type (Treffers, 1987;
Gravemeijer, 1997) focuses on teaching the
children more about the operations of

multiplication and division, making a transition 
from small to large numbers easier for the
students. The second type (Kaput and West, 1994;
Park and Nunes, 2001) focused on making the
students more aware of the schema of one-to-
many correspondences and the theorems in
action that it represents implicitly. There is
evidence that, with younger children solving small
number problems, an intervention that focuses 
on the schema of correspondences facilitates the
development of multiplicative reasoning. 

Finally, it is pointed out that all the examples
presented so far dealt with problems in which the
children were asked questions about quantities.
None of the problems focused on the relation
between quantities. In the subsequent section, we
present a classification of multiplicative reasoning
problems in order to aid the discussion of how
quantities and relations are handled in the context
of multiplicative reasoning problems.

Different types of multiplicative 
reasoning problems
We argued previously that many children solve
problems that involve additive relations, such as
compare problems, by thinking only about quantities.
In this section, we examine different types of
multiplicative reasoning problems and analyse
students’ problem solving methods with a view to
understanding whether they are considering only
quantities or relations in their reasoning. In order 
to achieve this, it is necessary to think about the
different types of multiplicative reasoning problems.

Classifications of multiplicative reasoning situations
vary across authors (Brown, 1981; Schwartz, 1988;
Tourniaire and Pulos, 1985; Vergnaud, 1983), but
there is undoubtedly agreement on what
characterises multiplicative situations: in these
situations there are always two (or more) variables
with a fixed ratio between them. Thus, it is argued
that multiplicative reasoning forms the foundation
for children’s understanding of proportional relations
and linear functions (Kaput and West, 1994;
Vergnaud, 1983).

The first classifications of problem situations
considered distinct possibilities: for example, rate and
ratio problem situations were distinguished initially.
However, there seemed to be little agreement
amongst researchers regarding which situations
should be classified as rate and which as ratio. Lesh,
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Post and Behr (1988) wrote some time ago: ‘there 
is disagreement about the essential characteristics
that distinguish, for example rates from ratios… In
fact, it is common to find a given author changing
terminology from one publication to another’ (p.
108). Thompson (1994) and Kaput and West (1994)
consider this distinction to apply not to situations,
but to the mental operations that the problem
solver uses. These different mental operations could
be used when thinking about the same situation:
ratio refers to understanding a situation in terms of
the particular values presented in the problem (e.g.
travelling 150 miles over 3 hours) and rate refers to
understanding the constant relation that applies to
any of the pairs of values (in theory, in any of the 3
hours one would have travelled 50 miles). ‘Rate is a
reflectively abstracted constant ratio’ (Thompson,
1994, p. 192).

In this research synthesis, we will work with the
classification offered by Vergnaud (1983), who
distinguished three types of problems.

• In isomorphism of measures problems, there is 
a simple proportional relation between two
measures (i.e. quantities represented by numbers):
for example, number of cakes and price paid for
the cakes, or amount of corn and amount of corn
flour produced.

• In product of measures problems, there is a
Cartesian composition between two measures to
form a third measure: for example, the number 
of T-shirts and number of shorts a girl has can be
composed in a Cartesian product to give the
number of different outfits that she can wear; the
number of different coloured cloths and the
number of emblems determines the number 
of different flags that you can produce.

• In multiple proportions problems, a measure 
is in simple proportion to (at least) two other
measures: for example, the consumption of cereal
in a Scout camp is proportional to number of
persons and the number of days. 

Because this classification is based on measures, it
offers the opportunity to explore the difference
between a quantity and its measure. Although this
may seem like a digression, exploring the difference
between quantities and measures is helpful in this
chapter, which focuses on the quantification of
relations between measures. A quantity, as defined
by Thompson (1993) is constituted when we think

of a quality of an object in such a way that we
understand the possibility of measuring it.
‘Quantities, when measured, have numerical value,
but we need not measure them or know their
measures to reason about them’ (p. 166). Two
quantities, area and volume, can be used here to
illustrate the difference between quantities and
measures. 

Hart (1981 a) pointed out that the square unit can
be used to measure area by different measurement
operations. We can attribute a number to the area
of a rectangle, for example, by covering it with
square units and counting them: this is a simple
measurement operation, based on iteration of the
units. If we don’t have enough bricks to do this (see
Nunes, Light and Mason, 1993), we can count the
number of square units that make a row along the
base, and establish a one-to-many correspondence
between the number of rows that fit along the
height and the number of square units in each row.
We can calculate the area of the rectangle by
conceiving of it as an isomorphism of measures
problem: 1 row corresponds to x units. If we
attribute a number to the area of the rectangle by
multiplying its base by its height, both measured with
units of length, we are conceiving this situation as a
product of measures: two measures, the length of
the base and that of its height, multiplied produce a
third measure, the area in square units. Thus a
quantity in itself is not the same as its measure, and
the way it is measured can change the complexity
(i.e. the number of relations to be considered) of
the situation. 

Nunes, Light and Mason (1993) showed that
children aged 9 to 10 years were much more
successful when they compared the area of two
figures if they chose to use bricks to measure the
areas than if they chose to use a ruler. Because the
children did not have sufficient bricks to cover the
areas, most used calculations. They had three
quantities to consider – the number of rows that
covered the height, the number of bricks in each
row along the base, and the area, and the relation
between number of rows and number of bricks in
the row. These children worked within an
isomorphism of measures situation. 

Children who used a ruler worked within a product
of measures situation and had to consider three
quantities – the value of the base, the value of the
height, and the area; and three relations to consider
– the relation between the base and the height, the
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relation between base and area, and the relation
between the height and the area (the area is
proportional to the base if the height is constant
and proportional to the height if the base is
constant). 

The students who developed an isomorphism 
of measures conception of area were able to use 
their conception to compare a rectangular with 
a triangular area, and thus expanded their
understanding of how area is measured. The
students who worked within a product of measures
situation did not succeed in expanding their
knowledge to think about the area of triangles.
Nunes, Light and Mason speculated that, after 
this initial move, students who worked with an
isomorphism of measures model might subsequently
be able to re-conceptualise area once again and
move on to a product of measures approach, but
they did not test this hypothesis. 

Hart (1981 a) and Vergnaud (1983) make a similar
point with respect to the measurement of volume: it
can be measured by iteration of a unit (how many
litres can fit into a container) or can be conceived as
a problem situation involving the relations between
base, height and width, and described as product of
measures. Volume as a quantity is itself neither a uni-
dimensional nor a three-dimensional measure and
one measure might be useful for some purposes
(add 2 cups of milk to make the pancake batter)
whereas a different one might be useful for other
purposes (the volume of a trailer in a lorry can be
easily calculated by multiplying the base, the height
and the width). Different systems of representation
and different measurement operations allow us to
attribute different numbers to the same quantity, and
to do so consistently within each system.

Vergnaud’s classification of multiplicative reasoning
situations is used here to simplify the discussion in

this chapter. We will focus primarily on isomorphism
of measures situations, because the analysis of how
this type of problem is solved by students of
different ages and by schooled and unschooled
groups will help us understand the operations of
thought used in solving them. 

A diagram of isomorphism of measures situations,
presented in Figure 4.2 and adapted from Vergnaud
(1983), will be used to facilitate the discussion.

This simple schema shows that there are two sets 
of relations that can be quantified in this situation:
• the relation between a and c is the same as that

between b and d; this is the scalar relation, which
links two values in the same measure space

• the relation between a and b is the same as that
between c and d; this is the functional relation, or
the ratio, which links the two measure spaces.

The psychological difference (i.e. the difference 
that it makes for the students) between scalar and
functional relations is very important, and it has
been discussed in the literature by many authors
(e.g. Kaput and West, 1994; Nunes, Schliemann and
Carraher, 1993; Vergnaud, 1983). It had also been
discussed previously by Noelting (1980 a and b) and
Tourniaire and Pulos (1985), who used the terms
within and between quantities relations. This paper
will use only the terms scalar and functional relations
or reasoning.

‘For a mathematician, a proportion is a statement 
of equality of two ratios, i.e., a/b = c/d’ (Tourniaire
and Pulos, 1985, p. 181). Given this definition, there
is no reason to distinguish between what has been
traditionally termed multiplication and division
problems and proportions problems. We think that
the distinction has been based, perhaps only
implicitly, on the use of a ratio with reference to the
unit in multiplication and division problems. So one
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should not be surprised to see that one-to-many
correspondences reasoning is used in the beginning
of primary school by children to solve simple
multiplicative reasoning problems and continues to
be used by older students to solve proportions
problems in which the unit ratio is not given in the
problem description. Many researchers (e.g. Hart,
1981 b; Kaput and West, 1994; Lamon, 1994; Nunes
and Bryant, 1996; Nunes, Schliemann and Carraher,
1993; Piaget, Grize, Szeminska and Bangh, 1977;
Inhelder and Piaget, 1958; 1975; Ricco, 1982; Steffe,
1994) have described students’ solutions based on
correspondence procedures and many different
terms have been used to refer to these, such as
building up strategies, empirical strategies, halving 
or doubling, and replications of a composite unit. In
essence, these strategies consist of using the initial
values provided in the problem and changing them
in one or more steps to arrive at the desired value.
Hart’s (1981 b) well known example of the onion
soup recipe for 4 people, which has to be
converted into a recipe for 6 people, illustrates this
strategy well. Four people plus half of 4 makes 6
people, so the children take each of the ingredients
in the recipe in turn, half the amount, and add this
to the amount required for 4 people. 

Students used yet another method in solving
proportions problems, still related to the idea of
correspondences: they first find the unit ratio and
then use it to calculate the desired value. Although
this method is taught in some countries (see Lave,
1988; Nunes, Schliemann and Carraher, 1993; Ricco,
1982), it is not necessarily used by all students after
they have been taught; many students rely on
building up strategies which change across different
problems in terms of the calculations that are used,
instead of using a single algorithm that aims at
finding the unit ratio. Hart (1981 b) presented the
following problem to a large sample of students
(2257) aged 11 to 16 years in 1976: 14 metres of
calico cost 63p; find the price of 24 metres. She
reported that no child actually quoted the unitary
method in their explanation, even though some
children did essentially seek a unitary ratio. Ricco
(1982), in contrast, found that some students
explicitly searched for the unit ratio (e.g. ‘First I need
to know how much one notebook will cost and
then we will see’, p. 299, our translation) but others
seem to search for the unit ratio without making
explicit the necessity of this step in their procedure. 

Building up methods and finding the unit ratio may
be essentially an extension of the use of the one-to-

many correspondence schema, which maintains the
ratio invariant without necessarily bringing with it an
awareness of the fixed relation between the
variables. Unit ratio is a mathematical term but it is
not clear whether the children who were explicitly
searching for the price of one notebook in Ricco’s
study were thinking of ratio as the quantification of
the relation between notebooks and money. When
the child says ‘1 notebook costs 4 cents’, the child is
speaking about two quantities, not necessarily about
the relation between them. A statement about the
relation between the quantities would be ‘the
number of notebooks times 4 tells me the total cost’.

The use of these informal strategies by students in the
solution of proportions problems is consistent with
the hypothesis that multiplicative reasoning develops
from the schema of one-to-many correspondences:
students may be simply using numbers instead of
objects when reasoning about the quantities in these
problems. In the same way that they build up the
quantities with objects, they can build up the quantities
with numbers. It is unlikely that students are thinking of
the scalar relation and quantifying it when they solve
problems by means of building up strategies. We think
that it can be concluded with some certainty that
students realise that whatever transformation they
make, for example, to the number of people in Hart’s
onion soup problem, they must also make to the
quantities of ingredients. It is even less likely that they
have an awareness of the ratio between the two
domains of measures and have reached an
understanding of a reflectively abstracted constant
ratio, in Thompson’s terms.

These results provoke the question of the role of
teaching in developing students’ understanding of
functional relations. Studies of high-school students
and adults with limited schooling in Brazil throw some
light on this issue. They show that instruction about
multiplication and division or about proportions per
se is neither necessary for people to be able to solve
proportions problems nor sufficient to promote
students’ thinking about functional relations. Nunes,
Schliemann and Carraher (1993) have shown that
fishermen and foremen in the construction industry,
who have little formal school instruction, can solve
proportions problems that are novel to them in three
ways: (a) the problems use values that depart from
the values they normally work with; (b) they are
asked to calculate in a direction which they normally
do not have to think about; or (c) the content of the
problem is different from the problems with which
they work in their everyday lives. 
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Foremen in the construction industry have to work
with blue-prints as representations of distances in
the buildings under construction. They have
experience with a certain number of conventionally
used scales (e.g. 1:50, 1:100 and 1:1000). When they
were provided with a scale drawing that did not fit
these specifications (e.g. 1:40) and did not indicate
the ratio used (e.g. they were shown a distance on
the blue-print and its value in the building), most
foremen were able to use correspondences to
figure out what the scale would be and then
calculate the measure of a wall from its measure on
the blueprint. They were able to do so even when
fractions were involved in the calculations and the
scale had an unexpected format (e.g. 3 cm:1 m uses
different units whereas scales typically use the same
unit) because they have extensive experience in
moving across units (metres, centimetres and
millimetres). Completely illiterate foremen (N = 4),
who had never set foot in a school due to their life
circumstances, showed 75% correct responses to
these problems. In contrast, students who had been
taught the formal method known as the rule of
three, which involves writing an equation of the
form a/b = c/d and solving for the unknown value,
performed significantly worse (60% correct). Thus
schooling is not necessary for multiplicative
reasoning to develop and proportions problems to
be solved correctly, and teaching students a general
formula to solve the problem is not a guarantee that
they will use it when the opportunity arises.

These studies also showed that both secondary
school students and adults with relatively little

schooling were more successful when they could
use building up strategies easily, as in problems of
the type A in Figure 4.3. Problem B uses the same
numbers but arranged in a way that building up
strategies are not so easily implemented; the relation
that is easy to quantify in problem B is the functional
relation.

The difference in students’ rate of success across the
two types of problem was significant: they solved
about 80% of type A problems correctly and only
35% of type B problems. For the adults (fishermen),
there was a difference between the rate of correct
responses (80% correct in type A and 75% correct
in type B) but this was not statistically significant.
Their success, however, was typically a result of
prowess with calculations when building up a
quantity, and very few answers might have resulted
from a quantification of the functional relation.

These results suggest three conclusions.

• Reasoning about quantities when solving
proportional problems seems to be an extension
of correspondence reasoning; schooling is not
necessary for this development.

• Most secondary school students seem to use the
same schema of reasoning as younger students;
there is little evidence of an impact of instruction
on their approach to proportional problems.

• Functional reasoning is more challenging and is not
guaranteed by schooling; teaching students a
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Figure 4.3: For someone who can easily think about scalar or functional relations, there should be no difference in the level of difficulty of

the two problems. For those who use building up strategies and can only work with quantities, problem A is significantly easier.
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formal method, which can be used as easily for
both problem types, does not make functional
reasoning easier (see Paper 6 for further
discussion). 

The results observed with Brazilian students do
not differ from those observed by Vergnaud
(1983) in France, and Hart (1981 b; 1984) in the
United Kingdom. The novelty of these studies is
the demonstration that the informal knowledge
of multiplicative reasoning and the ability to solve
multiplicative reasoning problems through
correspondences develop into more abstract
schemas that allow for calculating in the absence
of concrete forms of representation, such as
maniputatives and tallies. Both the students and
the adults with low levels of schooling were able
to calculate, for example, what should the actual
distances in a building be from their size in
blueprint drawings. Relatively unschooled adults
who have to think about proportions in the
course of their occupations and secondary
school students seem to rely on these more
abstract schemas to solve proportions problems.
The similarity between these two groups, rather
than the differences, in the forms of reasoning
and rates of success is striking. These results
suggest that informal knowledge of
correspondences is a powerful thinking schema
and that schooling does not easily transform it
into a more powerful one by incorporating
functional understanding into the schema.

Different hypotheses have been considered in the
explanation of why this informal knowledge seems
so resistant to change. Hart (1981 b) considered the
possibility that this may rest on the difficulty of the
calculations but the comparisons made by Nunes,
Schliemann and Carraher (1993) rule out this
hypothesis: the difficulty of the calculations was held
constant across problems of type A and type B, and
quantitative reasoning on the basis of the functional
relation remained elusive. 

An alternative explanation, explored by Vergnaud
(1983) and Hart (personal communication), is that
informal strategies are resistant to change because
they are connected to reasoning about quantities,
and not about relations. It makes sense to say that if
I buy half as much fish, I pay half as much money:
these are manipulations of quantities and their
representations. But what sense does it make to
divide kilos of fish by money? 

There has been some discussion of the difference
between reasoning about quantities and relations in
the literature. However, we have not been able to
find studies that establish whether the difficulty of
thinking about relations might be at the root of
students’ difficulties in transforming their informal into
formal mathematics knowledge. The educational
implications of these hypotheses are considerable but
there is, to our knowledge, no research that
examines the issue systematically enough to provide
a firm ground for pedagogical developments. The
importance of the issue must not be underestimated,
particularly in the United Kingdom, where students
seem do to well enough in the international
comparisons in additive reasoning but not in
multiplicative reasoning problems (Beaton, Mullis,
Martin, Gonzalez, Kelly AND Smith, 1996, p. 94–95). 

Summary

We draw some educational implications from these
studies, which must be seen as hypotheses about
what is important for successful teaching of
multiplicative reasoning about relations.

1 Before children are taught about multiplication 
and division in school, they already have schemas
of action that they use to solve multiplicative
reasoning problems. These schemas of action
involve setting up correspondences between 
two variables and do not appear to develop 
from the idea of repeated addition. This informal
knowledge is a predictor of their success in
learning mathematics and should be drawn upon
explicitly in school.

2 Students’ schemas of multiplicative reasoning
develop sufficiently for them to apply these
schemas to numbers, without the need to use
objects or tallies to represent quantities. But they
seem to be connected to quantities, and it
appears that students do not focus on the
relations between quantities in multiplicative
reasoning problems. This informal knowledge
seems to be resistant to change under current
conditions of instruction.

3 In many previous studies, researchers drew the
conclusion that students’ problems in understanding
proportional relations were explained by their
difficulties in thinking multiplicatively. Today, it seems
more likely that students’ problems are based on
their difficulty in thinking about relations, and not
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about quantities, since even young children succeed
in multiplicative reasoning problems.

4 Teaching approaches might be more successful in
promoting the formalisation of students’ informal
knowledge if: (a) they draw on the students’
informal knowledge rather than ignore it; (b) they
offer the students a way of representing the
relations between quantities and promote an
awareness of these relations; and (c) they use a
variety of situational contexts to help students
extend their knowledge to new domains of
multiplicative reasoning.

We examine now the conceptual underpinnings of
two rather different teaching approaches to the
development of multiplicative reasoning in search 
for more specific hypotheses regarding how greater
levels of success can be achieved by U.K. students. 

The challenge in attempting a synthesis of results is
that there are many ways of classifying teaching
approaches and there is little systematic research that
can provide unambiguous evidence. The difficulty is
increased by the fact that by the time students are
taught about proportions, some time between their
third and their sixth year in school, they have
participated in a diversity of pedagogical approaches
to mathematics and might already have distinct
attitudes to mathematics learning. However, we
consider it plausible that systematic investigation of
different teaching approaches would prove invaluable
in the analysis of pathways to help children
understand functional relations. In the subsequent
section, we explore two different pathways by
considering the types of representations that are
offered to students in order to help them become
aware of functional relations.

Representing 
functional relations
The working hypothesis we will use in this section 
is that in order to become explicitly aware of
something, we need to represent it. This hypothesis
is commonplace in psychological theories: it is part
of general developmental theories, such as Piaget’s
theory on reflective abstraction (Piaget, 1978; 2001;
2008) and Karmiloff-Smith’s theory of
representational re-descriptions in development
(Karmiloff-Smith, 1992; Karmiloff-Smith and Inhelder,
1977). It is also used to describe development in
specific domains such as language and literacy

(Gombert, 1992; Karmiloff-Smith, 1992), memory
(Flavell, 1971) and the understanding of others
(Flavell, Green and Flavell, 1990). It is beyond the
scope of this work to review the literature on
whether representing something does help us
become more aware of the represented meaning;
we will treat this as an assumption.

The hypothesis concerning the importance of
representations will be used in a different form here.
Duval (2006) pointed out that ‘the part played by
signs in mathematics, or more exactly by semiotic
systems of representation, is not only to designate
mathematical objects or to communicate but also to
work on mathematical objects and with them.’ (p.
107). We have so far discussed the quantification of
relations, and in particular of functional relations, as if
the representation of functional relations could only be
attained through the use of numbers. Now we wish to
make explicit that this is not so. Relations, including
functional relations, can be represented by numbers
but there are many other ways in which relations can
be represented before a number is attributed to them;
to put it more forcefully, one could say that relations
can be represented in different ways in order to
facilitate the attribution of a number to them.

When students are taught to write an equation 
of the form a/b = c/x, for example, to represent a
proportions problem in order to solve for x, this
formula can be used to help them quantify the
relations in the problem. Hart (1981 b) reports that
this formula was taught to 100 students in one
school where she carried out her investigations of
proportions problems but that it was only used by
20 students, 15 of whom were amongst the high
achievers in the school. This formula can be used 
to explore both scalar and functional relations in a
proportions problem but it can also be taught as a
rule to solve the problem without any exploration
of the scalar or functional relations that it
symbolises. In some sense, students can learn to use
the formula without developing an awareness of the
nature of the relations between quantities that are
assumed when the formula is applied.

Researchers in mathematics education have been
aware for at least two decades that one needs to
explore different forms of representation in order to
seek the best ways to promote students’ awareness
of reasoning about the relations in a proportions
problem. It is likely that the large amount of research
on proportional reasoning, which exposed students’
difficulties as well as their reliance on their own
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methods even after teaching, played a crucial role in
this process. It did undoubtedly raise teachers’ and
researchers’ awareness that the representation
through formulae (a/b = c/x) or algorithms did not
work all that well. In this section, we will seek to
examine the underlying assumptions of two very
different approaches to teaching students about
proportions.

Two approaches to the
representation of functional relations
Kieren (1994) suggested that there are two
approaches to research about, and to the teaching
of, multiplicative reasoning in school. The first is
analytic-functional: it is human in focus, and
investigates actions, action schemes and operations
used in giving meaning to multiplicative situations.
The second is algebraic: this focuses on mathematical
structures, and investigates structures used in this
domain of mathematics. Although the investigation
of mathematics structures is not incompatible with
the analytic-functional approach, these are
alternatives in the choice of starting point for
instruction. They delineate radically distinct pathways
for guiding students’ learning trajectories. 

Most of the research carried out in the past about
students’ difficulties did not describe what sort of
teaching students had participated in; one of the
exceptions is Hart’s (1981 b) description of the
teaching in one school, where students were taught
the a/b = c/d, algebraic approach: the vast majority of
the students did not use this formula when they were
interviewed about proportions in her study, and its
use was confined to the higher achievers in their tests.
It is most urgent that a research programme that
systematically compares these two approaches should
be carried out, so that U.K. students can benefit from
better understanding of the consequences of how
these different pathways contribute to learning of
multiplicative reasoning. In the two subsequent
sections, we present one well developed programme
of teaching within each approach.

The analytic-functional approach:
from schematic representations of
quantities in correspondence to
quantifying relations
Streefland and his colleagues (Streefland, 1984; 1985
a and b; van den Brink and Streefland, 1979)

highlighted the role that drawing and visualisation
can play in making children aware of relations. In an
initial paper, van den Brink and Streefland (1979)
analysed a boy’s reactions to proportions in
drawings and also primary school children’s
reactions in the classroom when visual proportions
were playfully manipulated by their teacher. 

The boy’s reactions were taken from a discussion
between the boy and his father. They saw a poster
for a film, where a man is bravely standing on a
whale and trying to harpoon it. The whale’s size is
exaggerated for the sake of sensation. The father
asked what was wrong with the picture and the boy
eventually said: ‘I know what you mean. That whale
should be smaller. When we were in England we
saw an orca and it was only as tall as three men’
(van den Brink and Streefland, 1979, p. 405). In line
with Bryant (1974), van den Brink and Streefland
argued that visual proportions are part of the basic
mechanisms of perception, which can be used in
learning in a variety of situations, and suggested that
this might be an excellent start for making children
aware of relations between quantities. 

Van den Brink and Streefland then developed
classroom activities where six- to eight-year-old
children explored proportional relations in drawings.
Finally, the teacher showed the children a picture of
a house and asked them to mark their own height
on the door of the house. The children engaged in
measurements of themselves and the door of the
classroom in order to transpose this size relation to
the drawing and mark their heights on the door. This
activity generated discussions relevant to the
question of proportions but it is not possible to
assess the effect of this activity on their
understanding of proportions, as no assessments
were used. The lesson ended with the teacher
showing another part of the same picture: a girl
standing next to the house. The girl was much taller
than the house and the children concluded that this
was actually a doll house. Surprise and playfulness
were considered by Streefland an important factor
in children’s engagement in mathematics lessons. 

Van den Brink and Streefland suggested that children
can use perceptual mechanisms to reflect about
proportions when they judge something to be out of
proportion in a picture. They argued that it is not only
of psychological interest but also of mathematical-
didactical interest to discover why children can reason
in ratio and proportion terms in such situations,
abstracting from perceptual mechanisms. 
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Streefland (1984) later developed further activities
in a lesson series with the theme ‘with a giant’s
regard’, which started with activities that explored
the children’s informal sense of proportions and
progressively included mathematical representations
in the lesson. The children were asked, for example,
to imagine how many steps would a normal man
take to catch up with one of the giant’s steps; later,
they were asked to represent the man’s and the
giant’s steps on a number line and subsequently by
means of a table. Figure 4.4 presents one example
of the type of diagram used for a visual comparison. 

In a later paper, Streefland (1985 a and b) pursued
this theme further and illustrated how the diagrams
used to represent visual meanings could be used in
a progressively more abstract way, to represent
correspondences between values in other problems
that did not have a visual basis. This was illustrated
using, among others, Hart’s (1981 b) onion soup
problem, where a recipe for onion soup for 8
people is to be adapted for 4 or 6 people. The
diagram proposed by Streefland, which the teacher
should encourage the pupils to construct, shows
both (a) the correspondences between the values,
which the children can find using their own, informal
building up strategies, and (b) the value of the scalar
transformation. See Figure 4.5 for an example.

Streefland suggested that these schematic
representations could be used later in Hart’s onion
soup problem in a vertical orientation, more
common for tables than the above diagram, and
with all ingredients listed on the same table in
different rows. The top row would list the number
of people, and the subsequent rows would list each
ingredient. This would help students realise that the
same scalar transformation is applied to all the

ingredients for the taste to be preserved when the
amounts are adjusted. Streefland argued that ‘the
ratio table is a permanent record of proportion as
an equivalence relation, and in this way contributes
to acquiring the correct concept. Applying the ratio
table contributes to the detachment from the
context… In this quality the ratio table is, as it were,
a unifying model for a variety of ratio contexts, as
well as for the various manifestations of ratio… 
The ratio table can contribute to discovering, 
making conscious and applying all properties that
characterise ratio-preserving mappings and to their
use in numerical problems’ (Streefland, 1985, a, p.
91). Ratio tables are then related to graphs, where
the relation between two variables can be discussed
in a new way. 

Streefland emphasises that ‘mathematizing reality
involves model building’ (Streefland, 1985a, p. 86); so
students must use their intuitions to develop a
model and then learn how to represent it in order
to assess its appropriateness. He (Streefland, 1985 b;
in van den Heuvel-Panhuizen, 2003) argued that
children’s use of such schematic models of situations
that they understand well can become a model for
new situations that they would encounter in the
future. The representation of their knowledge in
such schematic form helps them understand what is
implied in the model, and make explicit a relation
that they had used only implicitly before. 

This hypothesis is in agreement with psychological
theories that propose that reflection and
representation help make implicit knowledge explicit
(e.g. Karmiloff-Smith, 1992; Piaget, 2001). However,
the concept proposes a pedagogical strategy in
Streefland’s work: the model is chosen by the
teacher, who guides the student to use it and adds
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Figure 4.4: The giant’s steps and the man’s steps on a line; this drawing can be converted into a number line and a table which displays the

numerical correspondences between the giant’s and the man’s steps.



elements, such as the explicit representation of the
scalar factor. The model is chosen because it can be
easily stripped of the specifics in the situation and
because it can help the students move from thinking
about the context to discussing the mathematical
structures (van den Heuvel-Panhuizen, 2003). So
children’s informal knowledge is to be transformed
into formal knowledge through changes in
representation that highlight the mathematical
relations that remain implicit when students focus
on quantities.

Finally, Streefland also suggested that teaching
children about ratio and proportions could start
much earlier in primary school and should be seen
as a longer project than prescribed by current
practice. Starting from children’s informal knowledge
is a crucial aspect of his proposal, which is based 
on Freudenthal’s (1983) and Vergnaud’s (1979)
argument that we need to know about children’s
implicit mathematical models for problem situations,
not just their arithmetic skills, when we want to
develop their problem solving ability. Streefland
suggests that, besides the visual and spatial relations
that he worked with, there are other concepts
which children aged eight to ten years can grasp in
primary school, such as comparisons between the
density (or crowdedness) of objects in space and
probabilities. Other concepts, such as percentages
and fractions, were seen by him as related to
proportions, and he argued that connections should
be made across these concepts. However, Streefland
considered that they merited their own analyses in
the mathematics classroom. He argued, citing
Vergnaud (1979) that ‘different properties, almost
equivalent to the mathematician, are not all
equivalent for the child (Vergnaud, 1979, p. 264). So
he also developed programmes for the teaching of

percentages (Streefland and van den Heuvel-
Panhuizen, 1992; van den Heuvel-Panhuizen, 2003)
and fractions (Streefland, 1993; 1997). Marja van den
Heuvel-Panhuizen and her colleagues (Middleton
and van den Heuvel-Panhuizen, 1995; Middleton, van
den Heuvel-Panhuizen and Shew, 1998) detailed the
use of the ratio table in teaching students in their
3rd year in school about percentages and
connecting percentages, fractions and proportions. 

In all these studies, the use of the ratio table is seen
as a tool for computation and also for discussion of
the different relations that can be quantified in the
problem situations. Their advice is that teachers
should allow students to use the table at their 
own level of understanding but always encourage
students to make their reasoning explicit. In this way,
students can compare their own reasoning with
their peers’ approach, and seek to improve their
understanding through such comparisons.

Streefland’s proposal is consistent with many of the
educational implications that we drew from previous
research. It starts from the representation of the
correspondences between quantities and moves to
the representation of relations. It uses schematic
drawings and tables that bring to the fore of each
student’s activity the explicit representation of the
two (or more) measures that are involved in the
problem. It is grounded on students’ informal
knowledge because students use their building up
solutions in order to construct tables and schematic
drawings. It systematizes the students’ solutions in
tables and re-represents them by means of graphs.
After exploring students’ work on quantities,
students’ attention is focused on scalar relations,
which they are asked to represent explicitly using the
same visual records. It draws on a variety of contexts
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that have been previously investigated and which
students have been able to handle successfully. Finally,
it uses graphs to explore the linear relations that are
implied in proportional reasoning.

To our knowledge, there is no systematic
investigation of how this proposal actually works
when implemented either experimentally or in 
the classroom. The work by Treffers (1987) and
Gravemeijer (1997) on the formalisation of students’
understanding of multiplication and division focused
on the transition from computation with small to
large numbers. The work by van den Heuvel-
Panhuizen and colleagues focused on the use of
ratio tables in the teaching of percentages and
equivalence of fractions. In these papers, the authors
offer a clear description of how teachers can guide
students’ transition from their own intuitions to a
more formal mathematical representation of the
situations. However, there is no assessment of how
the programmes work and limited systematic
description of how students’ reasoning changes 
as the programmes develop.

The approach by researchers at the Freudenthal
Institute is described as developmental research and
aims at constructing a curriculum that is designed 
and improved on the basis of students’ responses
(Gravemeijer, 1994). This work is crucial to the
development of mathematics education. However, it
does not allow for the assessment of the effects of
specific teaching approaches, as more experimental
intervention research does. It leaves us with the sense
that the key to formalising students’ multiplicative
reasoning may be already to hand but we do not
know this yet. Systematic research at this stage would
offer an invaluable contribution to the understanding
of how students learn and to education.

Streefland was not the only researcher to propose
that teaching students about multiplicative relations
should start from their informal understanding of
the relations between quantities and measures.
Kaput and West (1994) developed an experimental
programme that took into account students’ building
up methods and sought to formalise them through
connecting them with tables. Their aim was to help
students create composite units of quantity, where
the correspondences between the measures were
represented iconically on a computer screen. For
example, if in a problem the quantities are 3
umbrellas for 2 animals, the computer screen would
display cells with images for 3 umbrellas and 2
animals in each cell, so that the group of umbrellas

and animals became a higher-level unit. The cells in
the computer screen were linked up with tables,
which showed the values corresponding to the cells
that had been filled with these composite units: for
example, if 9 cells had been filled in with the iconic
representations, the table displayed the values for 1
through 9 of the composite units in columns headed
by the icons for umbrellas and animals. Subsequently,
students worked with non-integer values for the
ratios between the quantities: for example, they
could be asked to enlarge a shape and the
corresponding sides of the two figures had a non-
integer ratio between them (e.g. one figure had a
side 21 cm long and the other had the
corresponding side 35 cm long).

Kaput and West’s programme was delivered over 11
lessons in two experimental classes, which included
31 students. Two comparison classes, with a total of
29 students, followed the instruction previously used
by their teachers and adopted from textbooks. One
comparison class had 13 lessons: the first five lessons
were based on a textbook and covered exercises
involving ratio and proportion; the last eight
consisted of computer-based activities using function
machines with problems about rate and profit. The
second comparison class had only three lessons; the
content of these is not described by the authors.
The classes were not assigned randomly to these
treatments and it is not clear how the teachers
were recruited to participate in the study. 

At pre-test, the students in the experimental and
comparison classes did not differ in the percentage
of correct solutions in a multiplicative reasoning test.
At post-test, the students in the experimental group
significantly out-performed those in both comparison
classes. They also showed a larger increase in the 
use of multiplicative strategies than students in the
comparison classes. It is not possible from Kaput and
West’s report to know whether these were building
up, scalar or functional solutions, as they are
considered together as multiplicative solutions. 

In spite of the limitations pointed out, the study
does provide evidence that students benefit from
teaching that develops their building up strategies
into more formalised approaches to solution, by
linking the quantities represented by icons of objects
to tables that represent the same quantities. This
result goes against the view that informal methods
are an obstacle to students’ learning in and of
themselves; it is more likely that they are an obstacle
if the teaching they are exposed to does not build
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on the students’ informal strategies and does not
help students connect what they know with the
new forms of mathematical representation that 
the teacher wants them to learn.

The algebraic approach:
representing ratios and equivalences
In contrast to the functional approach to the
teaching of proportions that was described in the
previous section, some researchers have proposed
that teaching should not start from students’
understanding of multiplicative reasoning, but from a
formal mathematical definition of proportions as the
equality of two ratios. We found the most explicit
justification for this approach in a recent paper by
Adjiage and Pluvinage (2007). Adjiage and Pluvinage,
citing several authors (Hart, 1981 b); Karplus, Pulos
and Stage, 1983; Lesh, Post, and Behr, 1988), argue
that building up strategies are a weak indicator of
proportionality reasoning and that the link between
‘interwoven physical and mathematical
considerations, present in the build-up strategy’
(2007, p. 151) should be the representation of
problems through rational numbers. For example, a
mixture that contains 3 parts concentrate and 2
parts water should be represented as 3/5, using
numbers or marks on a number line. The level 1,
which corresponds to an iconic representation of the
parts used in the mixture, should be transformed
into a level 2, numerical representation, and students
should spend time working on such transformations.
Similarly, a scale drawing of a figure where one side is
reduced from a length of 5 cm to 3 cm should be
represented as 3/5, also allowing for the move from
an iconic to a numerical representation. Finally, the
representation by means of an equivalence of ratios,
as in 3/5 = 6/10, should be introduced, to transform
the level 2 into a level 3 representation. The same
results could be obtained by using decimals rather
than ordinary fractions representations.

In brief, level 1 allows for an articulation between
physical quantities: the students may realise that a
mixture with 3 parts concentrate and 2 parts water
tastes the same as another with 6 parts concentrate
and 4 parts water. Level 2 allows for articulations
between the physical quantities and a mathematical
representation: students may realise that two different
situations are represented by the same number. Level
3 allows for articulations within the mathematical
domain as well as conversions from one system of
representation to another: 3/5 = 0.6 or 6/10. 

Adjiage and Pluvinage (2007) argue that it is
important to separate the physical from the
mathematical initially in order to articulate them
later, and propose that three rational registers
should be used to facilitate students’ attainment of
level 3: linear scale (a number line with resources
such as subdividing, sliding along the line, zooming),
fractional writing, and decimal writing should be
used in the teaching of ratio and proportions.

It seems quite clear to us that this proposal does
not start from students’ intuitions or strategies for
solving multiplicative reasoning problems, but rather
aims to formalise the representation of physical
situations from the start and to teach students how
to work with these formalisations. The authors
indicate that their programme is inspired by Duval’s
(1995) theory of the role of representations in
mathematical thinking but we believe that there is
no necessary link between the theory and this
particular approach to teaching students about 
ratio and proportions.

In order to convey a sense for the programme,
Adjiage and Pluvinage (2007) describe five moments
experienced by students. The researchers worked
with two conditions of implementation, which 
they termed the full experiment and the partial
experiment. Students in the partial experiment 
did not participate in the first moment using a
computer; they worked with pencil and paper tasks
in moments 1 and 2.

• Moment 1The students are presented with three
lines, divided into equal spaces. They are told that
the lines are drawn in different scales. The lines
have different numbers of subdivisions – 5, 3 and 4,
respectively. Points equivalent to 3/5, 2/3 and 1/4
are marked on the line. The students are asked to
compare the segments from the origin to the point
on the line. This is seen as a purely mathematical
question, executed in the computer by students in
the full experiment condition. The computer has
resources such as dividing the lines into equal
segments, which the students can use to execute
the task.

• Moment 2 A similar task is presented with paper
and pencil.

• Moment 3The students are shown two pictures
that represent two mixtures: one is made with 
3 cups of chocolate and 2 of milk (the cups are
shown in the pictures in different shades) and the
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other with 2 cups of chocolate and 1 of milk. The
students are asked which mixture tastes more
chocolaty. This problem aims to link the physical
and the mathematical elements. 

• Moment 4The students are asked in what way are
the problems in moments 2 and 3 similar. Students
are expected to show on the segmented line
which portion corresponds to the cups of
chocolate and which to the cups of milk.

• Moment 5This is described as institutionalization in
Douady’s (1984) sense: the students are asked to
make abstractions and express rules. For instance,
expressions such as these are expected: ‘7 divided
by 4 is equal to seven fourths (7 ÷ 4 = 7/4)’;
‘Given an enlargement in which a 4 cm length
becomes a 7 cm length, then any length to be
enlarged has to be multiplied by 7/4.’ (Adjiage and
Pluvinage, 2007, pp. 160–161).

The teaching programme was implemented over
two school years, starting when the students were
in their 6th year (estimated age about 11 years) in
school. A pre-test was given to them before they
started the programme; the post-test was carried
out at the end of the students’ 7th year (estimated
age about 12 years) in school.

Adjiage and Pluvinage (2007) worked with an
experienced French mathematics teacher, who
taught two classes using their experimental
programme. In both classes, the students solved 
the same problems but in one class, referred to as 
a partial experimental, the students did not use the
computer-based set of activities whereas in the
other one, referred to as full experimental, they 
had access to the computer activities. The teacher
modified only his approach to teaching ratio and
proportions; other topics in the year were taught as
previously, before his engagement in the experiment. 

The performance of students in these two
experimental classes was compared to results
obtained by French students in the same region (the
baseline group) in a national assessment and also to
the performance of non-specialist, prospective
school-teachers on a ratio and proportions task. The
tasks given to the three groups were not the same
but the researchers considered them comparable.

Adjiage and Pluvinage reported positive results
from their teaching programme. When the pupils in
the experimental classes were in grade 6 they had a

low rate of success in ratio and proportions
problems: about 13%. At the end of grade 7, they
attained 39% correct answers whereas the students
in the sample from the same region (baseline
group) attained 15% correct responses in the
national assessment. The students in the full
experimental classes obtained significantly better
results than those in the partial experimental
classes but the researchers did not provide separate
percentages for the two groups. Prospective
teachers attained 83% on similar problems. The
researchers were not satisfied with these results
because, as they point out, the students performed
significantly worse than the prospective teachers,
who were taken to represent educated adults.

Although there are limitations to this study, it
documents some progress among the students 
in the experimental classes. However, it is difficult 
to know from their report how much time was
devoted to the teaching programme over the two
years and how this compares to the instruction
received by the baseline group.

In brief, this approach assumes that students’ main
difficulties in solving proportions problems result from
their inability to co-ordinate different forms of
mathematical representations and to manipulate them.
There is no discussion of the question of quantities
and relations and there is no attempt to make
students aware of the relations between quantities 
in the problems. The aims of teaching are to:
• develop students’ understanding of how to use

number line and numerical representations
together in order to compare rational numbers

• promote students’ reflection on how the numerical
and linear representations relate to problem
situations that involve physical elements 
(3 cups of chocolate and 2 of milk)

• promote students’ understanding of the relations
between the different mathematical
representations and their use in solving problems. 

A comparison between this example of the
algebraic approach and the functional approach as
exemplified by Streefland’s work suggests that this
algebraic approach does not offer students the
opportunity to distinguish between quantities and
relations. The three forms of representation offered
in the Adjiage and Pluvinage programme focus on
quantities; the relations between quantities are left
implicit. Students are expected to recognise that
mixtures of concentrate that are numerically
represented as 3/5 and 6/10 are equivalent. In the
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number line, they are expected to manipulate the
representations of quantities in order to compare
them. We found no evidence in the description of
their teaching programme that students were asked
to think about their implicit models of the situations
and explicitly discuss the transformations that would
maintain the equivalences. 

Summary

1 It is possible to identify in the literature two rather
different views of how students can best be taught
about multiplicative reasoning. Kieren identified
these as the functional and the algebraic approach. 

2 The functional approach proposes that teaching
should start from students’ understanding of
quantities and seek to make their implicit models
of relations between quantities explicit. 

3 The algebraic approach seeks to represent
quantities with mathematical symbols and lead
students to work with symbols as soon as
possible, disentangling physical and mathematical
knowledge. 

4 There is no systematic comparison between these
two approaches. Because their explicit description
is relatively recent, this paper is the first detailed
comparison of their characteristics and provides 
a basis for future research. 

Graphs and 
functional relations
The previous sections focused on the visual 
and numerical representations of relations. This
section will briefly consider the question of the
representation of relations in the Cartesian plane.
We believe that this is a form of representation that
merits further discussion because of the additional
power that it can add to students’ reflections, if
properly explored. 

Much research on how students interpret graphs
has shown that graph reading has to be learned, just
as one must learn how to read words or numbers.
Similarly to other aspects of mathematics learning,
students have some ideas about reading graphs
before they are taught, and researchers agree that
these ideas should be considered when one designs
instruction about graph reading. Several papers can

be of interest in this context but this research is 
not reviewed here, as it does not contribute to the
discussion of how graphs can be used to help
students understand functional relations (for
complementary reviews, see Friel, Curcio and Bright,
2001; Mevarech and Kramarsky, 1997). We focus
here on the possibilities of using graphs to help
students understand functional relations.

As reported earlier in this chapter, Lieven Verschaffel
and his colleagues have shown that students make
multiplicative reasoning errors in additive situations
as well as additive errors in multiplicative situations,
and so there is a need for students to be offered
opportunities to reflect on the nature of the relation
between quantities in problems. Van Dooren, Bock,
Hessels, Janssens and Verschaffel (2004) go as far as
suggesting that students fall prey to what they call an
illusion of linearity, but we think that they have
overstated their case in this respect. In fact, some of
the examples that they use to illustrate the so-called
illusion of linearity are indeed examples of linear
functions, but perhaps not as simple as the typical
linear functions used in school. In two examples of
their ‘illusion of linearity’ discussed here, there is a
linear function connecting the two variables but the
problem situation is more complex than many of
the problems used in schools when students are
taught about ratio and proportions. In our view,
these problems demonstrate the importance of
working with students to help them reflect about
the relations between the quantities in the
situations.

In one example, taken from Cramer, Post and
Currier (1993) and discussed earlier on in this
paper, two girls, Sue and Julie, are supposed to be
running on a track at the same speed. Sue started
first. When she had run 9 laps, Julie had run 3 laps.
When Julie completed 15 laps, how many laps had
Sue run? Although prospective teachers wrongly
quantified the relation between the number of laps
in a multiplicative way, we do not think that they fell
for the ‘illusion of linearity’, as argued by De Bock,
Verschaffel et al., (2002; 2003). The function actually
is linear, as illustrated in Figure 4.6. However, the
intercept between Sue’s and Julie’s numbers of laps
is not at zero, because Sue must have run 6 laps
before Julie starts. So the prospective teachers’ error
is not an illusion of linearity but an inability to deal
with intercepts different from zero. 

Figure 4.6 shows that three different curves would
be obtained: (1) if the girls were running at the
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same speed but one started before the other, as 
in the Cramer, Post and Currier problem; (2) if 
one were running faster than the other and this
difference in speed were constant; and (3) if they
started out running at the same speed but one girl
became progressively more tired whereas the other
was able to speed up as she warmed up. Students
might hypothesise that this latter example is better
described by a quadratic than a linear function, if the
girl who was getting tired went from jogging to
walking, but they could find that the quadratic
function would exaggerate the difference between
the girls: how could the strong girl run 25 laps while
the weak one ran 5? 

The aim of this illustration is to show that relations
between quantities in the same context can vary and
that students can best investigate the nature of the
relation between quantities is if they have a tool to
do so. Streefland suggested that tables and graphs
can be seen as tools that allow students to explore
relations between quantities; even though they could
be used to help students’ reasoning in this problem,
we do not know of research where it has been used. 

Van Dooren, et al. (2004) used graphs and tables in
an intervention programme designed to help

student overcome the ‘illusion of linearity’ in a
second problem, which we argue also involve
mislabelling of the phenomenon under study. In
several studies, De Bock, Van Dooren and their
colleagues (De Bock, Verschaffel and Janssens, 1998;
De Bock, Van Dooren, Janssens and Verschaffel, 2002;
De Bock, Verschaffel and Janssens, 2002; De Bock,
Verschaffel, Janssens, Van Dooren and Claes, 2003)
claim to have identified this illusion in questions
exemplified in this problem: ‘Farmer Carl needs
approximately 8 hours to manure a square piece of
land with a side of 200 m. How many hours would
he need to manure a square piece of land with a
side of 600 m?’ De Bock, Van Dooren and colleagues
worked with relatively large numbers of Belgian
students across their many studies, in the age range
12 to 16 years. They summarise their findings by
indicating that ‘the vast majority of students (even
16-year-olds) failed on this type of problem because
of their alarmingly strong tendency to apply linear
methods’ (Van Dooren, Bock, Hessels, Janssens and
Verschaffel, 2004, p. 487) and that even with
considerable support many students were not 
able to overcome this difficulty. Some students 
who did become more cautious about over-using a
linear model, subsequently failed to use it when it
was appropriate. 
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We emphasise here that in this problem, as in the
previous one, students were not falling prey to an
illusion of linearity. The area of a rectangular figure is
indeed proportional to its side when the other side is
held constant; this is a case of multiple proportions
and thus the linear relation between the side and
the area can only be appreciated if the other side
does not change. Because the rectangle in their
problem is the particular case of a square, if one
side changes, so does the other; with both measures
changing at the same time, the area is not a simple
linear function of one of the measures.

Van Dooren et al. (2004) describe an intervention
programme, in which students used graphs and
tables to explore the relation between the measure
of the side of a square, its area and its perimeter. The
intervention contains interesting examples in which
students have the opportunity to examine diagrams
that display squares progressively larger by 1 cm, in
which the square units (1 cm2) are clearly marked.
Students thus can see that when the side of a square
increases, for example, from 1 cm to 2 cm, its area
increases from 1 cm2 to 4 cm2, and when the
increase is from 2 cm to 3 cm, the area increases to
9 cm2. The graph associated with this table displays a
quadratic function whereas the graph associate with
the perimeter displays a linear function.

Their programme was not successful in promoting
students’ progress: the experimental group significantly
decreased the rate of responses using simple
proportional reasoning to the area problems but also
decreased the rate of correct responses to perimeter
problems, although the perimeter of a square is
connected to its sides by a simple proportion. 

We believe that the lack of success of their
programme may be due not to a lack of
effectiveness of the use of graphs and tables in
promoting students’ reasoning but from their use 
of an inadequate mathematical analysis of the
problems. Because the graphs and tables used only
two variables, measure of the side and measure of
the area, the students had no opportunity to
appreciate that in the area problem there is a
proportional relation between area and each the
two sides. The two sides vary at the same time in
the particular case of the square but in other
rectangular figures there isn’t a quadratic relation
between side and area. The relation between sides
and perimeter is additive, not multiplicative: it
happens to be multiplicative in the case of the
square because all sides are equal; so to each

increase by 1 cm in one side corresponds a 4 cm
increase in the perimeter. 

We think that it would be surprising if the students
had made significant progress in understanding the
relations between the quantities through the
instruction that they received in these problems:
they were not guided to an appropriate model of
the situation, and worked with one measure, side,
instead of two measures, base and height. One of
the students remarked at the end of the
intervention programme, after ten experimental
lessons over a two week period: ‘I really do
understand now why the area of a square increases
9 times if the sides are tripled in length, since the
enlargement of the area goes in two dimensions. But
suddenly I start to wonder why this does not hold
for the perimeter. The perimeter also increases in
two directions, doesn’t it?’ (Van Dooren et al., 2004,
p. 496). This student seems to have understood that
the increase in one dimension of the square implies
a similar increase along the other dimension and
that these are multiplicatively related to the area but
apparently missed the opportunity to understand
that sides are additively related to the perimeter.

In spite of the shortcomings of this study, the
intervention illustrates that it is possible to relate
problem situations to tables and graphs
systematically to stimulate students’ reflection about
the implicit models. It is a current hypothesis by
many researchers (e.g. Carlson, Jacobs, Coe, Larsen
and Hsu, 2002; Hamilton, Lesh, Lester and Yoon,
2007; Lesh, Middleton, Caylor and Gupta, 2008) 
that modelling data, testing the adequacy of models
through graphs, and comparing different model fits
can make an important contribution to students’
understanding of the relations between quantities. It
is consistently acknowledged that this process must
be carefully designed: powerful situations must be
chosen, clear means of hypothesis testing must be
available, and appropriate teacher guidance should
be provided. Shortcomings in any of these aspects
of teaching experiments could easily result in
negative results.

The hypothesis that modelling data, testing the
adequacy of models through graphs, and comparing
different model fits can promote student’s
understanding of different types of relations
between quantities seems entirely plausible but, to
our knowledge, there is no research to provide clear
support to it. We think that there are now many
ideas in the literature that can be implemented to
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assess systematically how effective the use of 
graphs and tables is as tools to support students’
understanding of the different types of relation that
can exist between measures. This research has the
potential to make a huge contribution to the
improvement of mathematics education in the
United Kingdom.

Conclusions 
and implications
This review has identified results in the domain of
how children learn mathematics that have significant
implications for education. The main points are
highlighted here.

1 Children form concepts about quantities from
their everyday experiences and can use their
schemas of action with diverse representations 
of the quantities (iconic, numerical) to solve
problems. They often develop sufficient awareness
of quantities to discuss their equivalence and
order as well as how they can be combined.

2 It is significantly more difficult for them to become
aware of the relations between quantities and
operate on relations. Even after being taught how
to represent relations, they often interpret the
results of operations on relations as if they 
were quantities. Children find both additive and
multiplicative relations significantly more difficult
than understanding quantities.

3 There is little evidence that the design of
instruction has so far taken into account the
importance of helping students become aware 
of the difference between quantities and relations.
Some researchers have carried out experimental
teaching studies that suggest that it is possible to
promote students’ awareness of relations. Further
research must be carried out to analyse how this
knowledge affects mathematics learning. If positive
results are found, there will be strong policy
implications.

4 Previous research had led to the conclusion that
students’ problems with proportional reasoning
stemmed from their difficulties with multiplicative
reasoning. However, there is presently much
evidence to show that, from a relatively early age
(about five to six years in the United Kingdom),
children already have informal knowledge that

allows them to solve multiplicative reasoning
problems. We suggest that students’ problems with
proportional reasoning stems from their difficulties
in becoming explicitly aware of relations between
quantities. This awareness would help them
distinguish between situations that involve different
types of relations: additive, proportional or
quadratic, for example.

5 Multiplicative reasoning problems are defined 
by the fact that they involve two (or more)
measures linked by a fixed ratio. Students’ informal
knowledge of multiplicative reasoning stems from
the schema of one-to-many correspondence,
which they use both in multiplication and division
problems. When the product is unknown, children
set the elements in the two measures in
correspondence (e.g. 1 sweet costs 4p) and figure
out the product (how much 5 sweets will cost).
When the correspondence is unknown (e.g. if you
pay 20p for 5 sweets, how much does each sweet
cost), the children share out the elements (20p
shared in 5 groups) to find what the
correspondence is. 

6 This informal knowledge is currently ignored in
U.K. schools, probably due to the theory that
multiplication is essentially repeated addition and
division is repeated subtraction. However, the
connections between addition and multiplication,
on one hand, and subtraction and division, on the
other hand, are procedural and not conceptual. 
So students’ informal knowledge of multiplicative
reasoning could be developed in school from an
earlier age.

7 A considerable amount of research carried out
independently in different countries has shown
that students sometimes use additive reasoning
about relations when the appropriate model is 
a multiplicative one. Some recent research has
shown that students also use multiplicative
reasoning in situations where the appropriate
model is additive. These results suggest that
children use additive and multiplicative models
implicitly and do not make conscious decisions
regarding which model is appropriate in a specific
situation. The educational implication from these
findings is that schools should take up the task of
helping students become more aware of the
models that they use implicitly and of ways of
testing their appropriateness to particular
situations.
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8 Proportional reasoning stems from children’s use
of the schema of one-to-many correspondences,
which is expressed in calculations as building-up
strategies. Evidence suggests that many students
who use these strategies are not aware of
functional relations that characterises a linear
function. This result reinforces the importance of
the role that schools could play in helping students
become aware of functional relations in
proportions problems.

9 Two radically different approaches to teaching
proportions and linear functions in schools can be
identified in the literature. One, identified as
functional and human in focus, is based on the
notion that students’ schemas of action should be
the starting point for this teaching. Through
instruction, they should become progressively
more aware of the scalar and functional relations
that can be identified in such problems. Diagrams,
tables and graphs are seen as tools that could help
students understand the models that they are
using of situations and make them into models for
other situations later. The second approach,
identified as algebraic, proposes that there should
be a sharp separation between students’ intuitive
knowledge, in which physical and mathematical
knowledge are intertwined, and mathematical
knowledge. Students should be led to
formalisations early on in instruction and re-
establish the connections between mathematical
structures and physical knowledge at a later point.
Representations using fractions, ordinary and
decimal, and the number line are seen as the tools
that can allow students to abstract early on from
the physical situations. There is no unambiguous
evidence to show how either of these approaches
to teaching succeeds in promoting students’
progress, nor that either of them is more
successful than the less clearly articulated ideas
that are implicit in current teaching in the
classroom. Research that can clarify this issue is
urgently needed and could have a major impact by
promoting better learning in U.K. students.

10 Students need to learn to read graphs in order
to be able to use them as tools for thinking
about functions. Research has shown that
students have ideas about how to read graphs
before instruction and that these ideas should be
taken into account when graphs are used in the
classroom. It is possible to teach students to read
graphs and to use them in order to think about

relations but much more research is needed to
show how students’ thinking changes if they do
learn to use graphs in order to analyse the type
of relation that is most relevant in specific
situations.
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