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In 2007, the Nuffield Foundation commissioned a
team from the University of Oxford to review the
available research literature on how children learn
mathematics. The resulting review is presented in a
series of eight papers:

Paper 1: Overview
Paper 2: Understanding extensive quantities and

whole numbers
Paper 3: Understanding rational numbers and

intensive quantities
Paper 4: Understanding relations and their graphical

representation
Paper 5: Understanding space and its representation

in mathematics
Paper 6: Algebraic reasoning
Paper 7: Modelling, problem-solving and integrating

concepts
Paper 8: Methodological appendix

Papers 2 to 5 focus mainly on mathematics relevant
to primary schools (pupils to age 11 years), while
papers 6 and 7 consider aspects of mathematics 
in secondary schools.

Paper 1 includes a summary of the review, which 
has been published separately as Introduction and
summary of findings.

Summaries of papers 1-7 have been published
together as Summary papers.

All publications are available to download from 
our website, www.nuffieldfoundation.org
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3 Key understandings in mathematics learning

Aims
Our aim in the review is to present a synthesis 
of research on mathematics learning by children
from the age of five to the age of sixteen years 
and to identify the issues that are fundamental to
understanding children’s mathematics learning. In
doing so, we concentrated on three main questions
regarding key understandings in mathematics. 

• What insights must students have in order to
understand basic mathematical concepts?

• What are the sources of these insights and how
does informal mathematics knowledge 
relate to school learning of mathematics?

• What understandings must students have in
order to build new mathematical ideas using
basic concepts?

Theoretical framework

While writing the review, we concluded that there
are two distinct types of theory about how children
learn mathematics. 

Explanatory theories set out to explain how 
children’s mathematical thinking and knowledge
change. These theories are based on empirical
research on children’s solutions to mathematical
problems as well as on experimental and longitudinal
studies. Successful theories of this sort should
provide insight into the causes of children’s
mathematical development and worthwhile
suggestions about teaching and learning mathematics. 

Pragmatic theories set out to investigate what children
ought to learn and understand and also identify
obstacles to learning in formal educational settings.

Pragmatic theories are usually not tested for their
consistency with empirical evidence, nor examined
for the parsimony of their explanations vis-à-vis other
existing theories; instead they are assessed in multiple
contexts for their descriptive power, their credibility
and their effectiveness in practice.

Our starting point in the review is that children need
to learn about quantities and the relations between
them and about mathematical symbols and their
meanings. These meanings are based on sets of
relations. Mathematics teaching should aim to ensure
that students’ understanding of quantities, relations
and symbols go together.

Conclusions

This theoretical approach underlies the six main
sections of the review. We now summarise the main
conclusions of each of these sections. 

Whole numbers
• Whole numbers represent both quantities and

relations between quantities, such as differences
and ratio. Primary school children must establish
clear connections between numbers, quantities
and relations.

• Children’s initial understanding of quantitative
relations is largely based on correspondence.
One-to-one correspondence underlies their
understanding of cardinality, and one-to-many
correspondence gives them their first insights
into multiplicative relations. Children should be
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4 SUMMARY – PAPER 2: Understanding whole numbers

encouraged to think of number in terms of these
relations.

• Children start school with varying levels of 
ability in using different action schemes to solve
arithmetic problems in the context of stories.
They do not need to know arithmetic facts to
solve these problems: they count in different
ways depending on whether the problems they 
are solving involve the ideas of addition,
subtraction, multiplication or division.

• Individual differences in the use of action
schemes to solve problems predict children’s
progress in learning mathematics in school.

• Interventions that help children learn to use their
action schemes to solve problems lead to better
learning of mathematics in school.

• It is more difficult for children to use numbers to
represent relations than to represent quantities. 

Implications for the classroom
Teaching should make it possible for children to:

• connect their knowledge of counting with their
knowledge of quantities

• understand additive composition and one-to-
many correspondence

• understand the inverse relation between addition
and subtraction

• solve problems that involve these key
understandings

• develop their multiplicative understanding
alongside additive reasoning.

Implications for further research
Long-term longitudinal and intervention studies 
with large samples are needed to support curriculum
development and policy changes aimed at
implementing these objectives. There is also a 
need for studies designed to promote children’s
competence in solving problems about relations. 

Fractions
• Fractions are used in primary school to represent

quantities that cannot be represented by a single
whole number. As with whole numbers, children
need to make connections between quantities
and their representations in fractions in order to
be able to use fractions meaningfully.

• Two types of quantities that are taught in
primary school must be represented by fractions.
The first involves measurement: if you want to
represent a quantity by means of a number 
and the quantity is smaller than the unit of
measurement, you need a fraction; for example, 
a half cup or a quarter inch. The second involves
division: if the dividend is smaller than the divisor,
the result of the division is represented by a
fraction; for example, three chocolates shared
among four children. 

• Children use different schemes of action in these
two different situations. In division situations, they
use correspondences between the units in the
numerator and the units in the denominator. In
measurement situations, they use partitioning.

• Children are more successful in understanding
equivalence of fractions and in ordering fractions
by magnitude in situations that involve division
than in measurement situations.

• It is crucial for children’s understanding of fractions
that they learn about fractions in both types of
situation: most do not spontaneously transfer what
they learned in one situation to the other. 

• When a fraction is used to represent a quantity,
children need to learn to think about how the
numerator and the denominator relate to the
value represented by the fraction. They must think
about direct and inverse relations: the larger the
numerator, the larger the quantity, but the larger
the denominator, the smaller the quantity.

• Like whole numbers, fractions can be used to
represent quantities and relations between
quantities, but they are rarely used to represent
relations in primary school. Older students often
find it difficult to use fractions to represent relations.

Implications for the classroom
Teaching should make it possible for children to:

• use their understanding of quantities in division
situations to understand equivalence and order
of fractions

• make links between different types of reasoning
in division and measurement situations

• make links between understanding fractional
quantities and procedures

• learn to use fractions to represent relations
between quantities, as well as quantities.
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Implications for further research
Evidence from experimental studies with larger
samples and long-term interventions in the classroom
are needed to establish how division situations relate
to learning fractions. Investigations on how links
between situations can be built are needed to support
curriculum development and classroom teaching.

There is also a need for longitudinal studies designed
to clarify whether separation between procedures
and meaning in fractions has consequences for
further mathematics learning.

Given the importance of understanding and
representing relations numerically, studies that
investigate under what circumstances primary school
students can use fractions to represent relations
between quantities, such as in proportional
reasoning, are urgently needed.

Relations and their mathematical
representation

• Children have greater difficulty in understanding
relations than in understanding quantities. This 
is true in the context of both additive and
multiplicative reasoning problems. 

• Primary and secondary school students often
apply additive procedures to solve multiplicative
problems and multiplicative procedures to solve
additive problems. 

• Teaching designed to help students become aware
of relations in the context of additive reasoning
problems can lead to significant improvement.

• The use of diagrams, tables and graphs to
represent relations in multiplicative reasoning
problems facilitates children’s thinking about the
nature of the relations between quantities. 

• Excellent curriculum development work has
been carried out to design programmes that
help students develop awareness of their implicit
knowledge of multiplicative relations. This work
has not been systematically assessed so far.

• An alternative view is that students’ implicit
knowledge should not be the starting point for
students to learn about proportional relations;
teaching should focus on formalisations rather
than informal knowledge and only later seek to
connect mathematical formalisations with applied

situations.This alternative approach has also not
been systematically assessed yet.

• There is no research that compares the results 
of these diametrically opposed ideas.

Implications for the classroom
Teaching should make it possible for children to:

• distinguish between quantities and relations
• become explicitly aware of the different types 

of relations in different situations
• use different mathematical representations to

focus on the relevant relations in specific problems
• relate informal knowledge and formal learning.

Implications for further research
Evidence from experimental and long-term
longitudinal studies is needed on which approaches 
to making students aware of relations in problem
situations improve problem solving. A study comparing
the alternative approaches – starting from informal
knowledge versus starting from formalisations –
would make a significant contribution to the literature.

Space and its mathematical
representation

• Children come to school with a great deal of
informal and often implicit knowledge about
spatial relations. One challenge in mathematical
education is how best to harness this knowledge
in lessons about space.

• This pre-school knowledge of space is mainly
relational. For example, children use a stable
background to remember the position and
orientation of objects and lines.

• Measuring length and area poses particular
problems for children, even though they are 
able to understand the underlying logic of
measurement. Their difficulties concern iteration of
standard units and the need to apply multiplicative
reasoning to the measurement of area.

• From an early age children are able to
extrapolate imaginary straight lines, which allows 
them to learn how to use Cartesian co-ordinates
to plot specific positions in space with little
difficulty. However, they need help from teachers
on how to use co-ordinates to work out the
relation between different positions.
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• Learning how to represent angle mathematically
is a hard task for young children, even though
angles are an important part of their everyday
life. Initially children are more aware of angle in
the context of movement (turns) than in other
contexts. They need help from to teachers to be
able to relate angles across different contexts. 

• An important aspect of learning about geometry
is to recognise the relation between transformed
shapes (rotation, reflection, enlargement). This can
be difficult, since children’s preschool experiences
lead them to recognise the same shapes as
equivalent across such transformations, rather than
to be aware of the nature of the transformation. 

• Another aspect of the understanding of shape 
is the fact that one shape can be transformed
into another by addition and subtraction of its
subcomponents. For example, a parallelogram
can be transformed into a rectangle of the same
base and height by the addition and subtraction
of equivalent triangles. Research demonstrates a
danger that children learn these transformations
as procedures without understanding their
conceptual basis.

Implications for the classroom
Teaching should make it possible for children to:

• build on spatial relational knowledge from
outside school

• relate their knowledge of relations and
correspondence to the conceptual basis of
measurement

• iterate with standard and non-standard units
• understand the difference between

measurements which are/are not multiplicative
• relate co-ordinates to extrapolating imaginary

straight lines
• distinguish between scale enlargements and area

enlargements.

Implications for further research
There is a serious need for longitudinal research 
on the possible connections between children’s 
pre-school spatial abilities and how well they learn
about geometry at school. 

Psychological research is needed on: children’s ability
to make and understand transformations and the
additive relations in compound shapes; the exact
cause of children’s difficulties with iteration; how

transitive inference, inversion and one-to-one
correspondence relate to problems with geometry,
such as measurement of length and area. 

There is a need for intervention studies on methods
of teaching children to work out the relation
between different positions, using co-ordinates. 

Algebra
• Algebra is the way we express generalisations

about numbers, quantities, relations and functions.
For this reason, good understanding of connections
between numbers, quantities and relations is
related to success in using algebra. In particular,
understanding that addition and subtraction are
inverses, and so are multiplication and division,
helps students understand expressions and solve
equations.

• To understand algebraic symbolisation, students
have to (a) understand the underlying operations
and (b) become fluent with the notational rules.
These two kinds of learning, the meaning and the
symbol, seem to be most successful when
students know what is being expressed and have
time to become fluent at using the notation.

• Students have to learn to recognise the different
nature and roles of letters as: unknowns,
variables, constants and parameters, and also the
meanings of equality and equivalence. These
meanings are not always distinct in algebra and
do not relate unambiguously to arithmetical
understandings.

• Students often get confused, misapply, or
misremember rules for transforming expressions
and solving equations. They often try to apply
arithmetical meanings inappropriately to
algebraic expressions. This is associated with
over-emphasis on notational manipulation, or 
on ‘generalised arithmetic’, in which they may 
try to get concise answers.

Implications for the classroom
Teaching should make it possible for children to:

• read numerical and algebraic expressions
relationally, rather than as instructions to calculate 
(as in substitution)

• describe generalisations based on properties
(arithmetical rules, logical relations, structures) 
as well as inductive reasoning from sequences
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• use symbolism to represent relations
• understand that letters and ‘=’ have a range of

meanings
• use hands-on ICT to relate representations
• use algebra purposefully in multiple experiences

over time
• explore and use algebraic manipulation software.

Implications for further research
We need to know how explicit work on
understanding relations between quantities enables
students to move successfully between arithmetical
to algebraic thinking. 

Research on how expressing generality enables
students to use algebra is mainly in small-scale
teaching interventions, and the problems of large-
scale implementation are not so well reported. We
do not know the longer-term comparative effects of
different teaching approaches to early algebra on
students’ later use of algebraic notation and thinking.

There is little research on higher algebra, except 
for teaching experiments involving functions. How
learners synthesise their knowledge of elementary
algebra to understand polynomial functions, their
factorisation and roots, simultaneous equations,
inequalities and other algebraic objects beyond
elementary expressions and equations is not known.

There is some research about the use of symbolic
manipulators but more needs to be learned about
the kinds of algebraic expertise that develops
through their use.

Modelling, solving problems and
learning new concepts in secondary
mathematics
Students have to be fluent in understanding methods
and confident about using them to know why and 
when to apply them, but such application does not
automatically follow the learning of procedures. Students
have to understand the situation as well as to be able to
call on a familiar repertoire of facts, ideas and methods.

Students have to know some elementary 
concepts well enough to apply them and combine 
them to form new concepts in secondary
mathematics. For example, knowing a range of
functions and/or their representations seems to be
necessary to understand the modelling process, and
is certainly necessary to engage in modelling.

Understanding relations is necessary to solve
equations meaningfully.

Students have to learn when and how to use
informal, experiential reasoning and when to 
use formal, conventional, mathematical reasoning.
Without special attention to meanings, many
students tend to apply visual reasoning, or be
triggered by verbal cues, rather than analyse
situations to identify variables and relations.

In many mathematical situations in secondary
mathematics, students have to look for relations
between numbers, and variables, and relations
between relations, and properties of objects, and
know how to represent them.

Implications for the classroom
Teaching should make it possible for children to:

• learn new abstract understandings, which is
neither achieved through learning procedures,
nor through problem-solving activities, without
further intervention

• use their obvious reactions to perceptions and
build on them, or understand conflicts with them

• adapt to new meanings and develop from earlier
methods and conceptualizations over time

• understand the meaning of new concepts ‘know
about’, ‘know how to’, and ‘know how to use’

• control switching between, and comparing,
representations of functions in order to
understand them

• use spreadsheets, graphing tools, and other
software to support application and authentic
use of mathematics.

Implications for further research
Existing research suggests that where contextual and
exploratory mathematics, integrated through the
curriculum, do lead to further conceptual learning it is
related to conceptual learning being a rigorous focus
for curriculum and textbook design, and in teacher
preparation, or in specifically designed projects based
around such aims. There is therefore an urgent need for
research to identify the key conceptual understandings
for success in secondary mathematics. There is no
evidence to convince us that the new U.K. curricula will
necessarily lead to better conceptual understanding of
mathematics, either at the elementary level which is
necessary to learn higher mathematics, or at higher
levels which provide the confidence and foundation 
for further mathematical study.
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We need to understand the ways in which students
learn new ideas in mathematics that depend on
combinations of earlier concepts, in secondary
school contexts, and the characteristics of
mathematics teaching at higher secondary level
which contribute both to successful conceptual
learning and application of mathematics.

Common themes 

We reviewed different areas of mathematical activity,
and noted that many of them involve common
themes, which are fundamental to learning
mathematics: number, logical reasoning, reflection on
knowledge and tools, understanding symbol systems
and mathematical modes of enquiry.

Number
Number is not a unitary idea, which children 
learn in a linear fashion. Number develops in
complementary strands, sometimes with
discontinuities and changes of meaning. Emphasis on
procedures and manipulation with numbers, rather
than on understanding the underlying relations and
mathematical meanings, can lead to over-reliance
and misapplication of methods in arithmetic, algebra,
and problem-solving. For example, if children form
the idea that quantities are only equal if they are
represented by the same number, a principle that
they could deduce from learning to count, they will
have difficulty understanding the equivalence of
fractions. Learning to count and to understand
quantities are separate strands of development.
Teaching can play a major role in helping children
co-ordinate these two forms of knowledge without
making counting the only procedure that can be
used to think about quantities. 

Successful learning of mathematics includes
understanding that number describes quantity; being
able to make and use distinctions between different,
but related, meanings of number; being able to use
relations and meanings to inform application and
calculation; being able to use number relations to
move away from images of quantity and use
number as a structured, abstract, concept.

Logical reasoning
The evidence demonstrates beyond doubt that
children must rely on logic to learn mathematics and

that many of their difficulties are due to failures to
make the correct logical move that would have led
them to the correct solution. Four different aspects
of logic have a crucial role in learning about
mathematics.

The logic of correspondence (one-to-one and one-to-
many correspondence) The extension of the use of
one-to-one correspondence from sharing to working
out the numerical equivalence or non-equivalence of
two or more spatial arrays is a vastly important step
in early mathematical learning. Teaching multiplication
in terms of one-to-many correspondence is more
effective than teaching children about multiplication
as repeated addition.

The logic of inversion Longitudinal evidence shows that
understanding the inverse relation between addition
and subtraction is a strong predictor of children’s
mathematical progress. A flexible understanding of
inversion is an essential element in children’s
geometrical reasoning as well. The concept of
inversion needs a great deal more prominence 
than it has now in the school curriculum.   

The logic of class inclusion and additive composition
Class inclusion is the basis of the understanding of
ordinal number and the number system. Children’s
ability to use this form of inclusion in learning about
number and in solving mathematical problems is at
first rather weak, and needs some support.

The logic of transitivity All ordered series, including
number, and also forms of measurement involve
transitivity (a > c if a > b and b > c: a = c if a = b
and b = c). Learning how to use transitive relations
in numerical measurements (for example, of area) is
difficult. One reason is 
that children often do not grasp the importance of
iteration (repeated units of measurement). 

The results of longitudinal research (although there is
not an exhaustive body of such work) support the
idea that children’s logic plays a critical part in their
mathematical learning.

Reflection on knowledge and tools
Children need to re-conceptualise their intuitive
models about the world in order to access the
mathematical models that have been developed in
the discipline. Some of the intuitive models used by
children lead them to appropriate mathematical
problem solving, and yet they may not know why
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they succeeded. Implicit models can interfere with
problem solving when students rely on assumptions
that lead them astray.

The fact that students use intuitive models 
when learning mathematics, whether the teacher
recognises the models or not, is a reason for
helping them to develop an awareness of their
models. Students can explore their intuitive models
and extend them to concepts that are less intuitive,
more abstract. This pragmatic theory has been
shown to have an impact in practice.

Understanding symbol systems
Systems of symbols are human inventions and 
thus are cultural tools that have to be taught.
Mathematical symbols are human-made tools that
improve our ability to control and adapt to the
environment. Each system makes specific cognitive
demands on the learner, who has to understand the
systems of representation and relations that are
being represented; for example place-value notation
is based on additive composition, functions depict
covariance. Students can behave as if they
understand how the symbols work while they do
not understand them completely: they can learn
routines for symbol manipulation that remain
disconnected from meaning. This is true of rational
numbers, for example. 

Students acquire informal knowledge in their
everyday lives, which can be used to give meaning
to mathematical symbols learned in the classroom.
Curriculum development work that takes this
knowledge into account is not as widespread as one
would expect given discoveries from past research.

Mathematical modes of enquiry
Some important mathematical modes of enquiry
arise in the topics covered in this synthesis. 

Comparison helps us make new distinctions and create
new objects and relations  Comparisons are related to
making distinctions, sorting and classifying; students
need to learn to make these distinctions based on
mathematical relations and properties, rather than
perceptual similarities.

Reasoning about properties and relations rather than
perceptions  Throughout mathematics, students have
to learn to interpret representations before they
think about how to respond. They need to think

about the relations between different objects in the
systems and schemes that are being represented. 

Making and using representations Conventional
number symbols, algebraic syntax, coordinate
geometry, and graphing methods, all afford
manipulations which might otherwise be impossible.
Coordinating different representations to explore and
extend meaning is a fundamental mathematical skill. 

Action and reflection-on-action In mathematics, 
actions may be physical manipulation, or symbolic
rearrangement, or our observations of a dynamic
image, or use of a tool. In all these contexts, we
observe what changes and what stays the same as 
a result of actions, and make inferences about the
connections between action and effect. 

Direct and inverse relations  It is important in all
aspects of mathematics to be able to construct and
use inverse reasoning. As well as enabling more
understanding of relations between quantities, this
also establishes the importance of reverse chains of
reasoning throughout mathematical problem-solving,
algebraic and geometrical reasoning. 

Informal and formal reasoning At first young children
bring everyday understandings into school and
mathematics can allow them to formalise these and
make them more precise. Mathematics also provides
formal tools, which do not describe everyday
experience, but enable students to solve problems
in mathematics and in the world which would be
unnoticed without a mathematical perspective. 

Epilogue

We have made recommendations about teaching and
learning, and hope to have made the reasoning behind
these recommendations clear to educationalists (in
the extended review). We have also recognised that
there are weaknesses in research and gaps in current
knowledge, some of which can be easily solved by
research enabled by significant contributions of past
research. Other gaps may not be so easily solved, and
we have described some pragmatic theories that are
or can be used by teachers when they plan their
teaching. Classroom research stemming from the
exploration of these theories can provide new 
insights for further research in the future, alongside
longitudinal studies which focus on learning
mathematics from a psychological perspective. 
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Aims
Our aim in this review is to present a synthesis of
research on key aspects of mathematics learning by
children from the age of 5 to the age of 16 years:
these are the ages that comprise compulsory
education in the United Kingdom In preparing the
review, we have considered the results of a large
body of research carried out by psychologists and by
mathematics educators over approximately the last
six decades. Our aim has been to develop a
theoretical analysis of these results in order to attain
a big picture of how children learn, and sometimes
fail to learn, mathematics and how they could learn it
better. Our main target is not to provide an answer
to any specific question, but to identify issues that
are fundamental to understanding children’s
mathematics learning. In our view theories of
mathematics learning should deal with three main
questions regarding key understandings in
mathematics: 
• What insights must students have in order to

understand basic mathematical concepts?
• What are the sources of these insights and how

does informal mathematics knowledge relate to
school learning of mathematics?

• What understandings must students have in order
to build new mathematical ideas using basic
concepts?

Theoretical analysis played a major role in this
synthesis. Many theoretical ideas were already
available in the literature and we sought to examine
them critically for coherence and for consistency
with the empirical evidence. Cooper (1998) suggests
that there may be occasions when new theoretical
schemes must be developed to provide an
overarching understanding of the higher-order
relations in the research domain; this was certainly

true of some of our theoretical analysis of the
evidence that we read for this review. 

The answers to our questions should allow us to
trace students’ learning trajectories. Confrey (2008)
defined a learning trajectory as ‘a researcher-
conjectured, empirically-supported description of 
the ordered network of experiences a student
encounters through instruction (i.e. activities, tasks,
tools, forms of interaction and methods of
evaluation), in order to move from informal ideas,
through successive refinements of representation,
articulation, and reflection, towards increasingly
complex concepts over time.’ If students’ learning
trajectories towards understanding specific concepts
are generally understood, teachers will be much
better placed to promote their advancement.

Finally, one of our aims has been to identify a set 
of research questions that stem from our current
knowledge about children’s mathematics learning and
methods that can provide relevant evidence about
important, outstanding issues.

Scope of the review
As we reviewed existing research and existing
theories about mathematics learning, it soon became
clear to us that there are two types of theories
about how children learn mathematics. The first are
explanatory theories. These theories seek to explain
how children’s thinking and knowledge change.
Explanatory theories are based on empirical
research on the strategies that children adopt in
solving mathematical problems, on the difficulties 
and misconceptions that affect their solutions to 
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such problems, and on their successes and their
explanations of their own solutions. They also draw
on quantitative methods to describe age or school
grade levels when certain forms of knowledge are
attained and to make inferences about the nature of
relationships observed during learning (for example,
to help understand the relation between informal
knowledge and school learning of mathematics).

We have called the second type of theory pragmatic.
A pragmatic theory is rather like a road map for
teachers: its aims are to set out what children must
learn and understand, usually in a clear sequence,
about particular topics and to identify obstacles to
learning in formal educational settings and other
issues which teachers should keep in mind when
designing teaching. Pragmatic theories are usually 
not tested for their consistency with empirical
evidence, nor examined for the parsimony of their
explanations vis-à-vis other existing theories; instead
they are assessed in multiple contexts for their
descriptive power, their credibility and their
effectiveness in practice.

Explanatory theories are of great importance in
moving forward our understanding of phenomena
and have proven helpful, for example, in the domain
of literacy teaching and learning. However, with some
aspects of mathematics, which tend to be those that
older children have to learn about, there simply is
not enough explanatory knowledge yet to guide
teachers in many aspects of their mathematics
teaching, but students must still be taught even when
we do not know much about how they think or
how their knowledge changes over time through
learning. Mathematics educators have developed
pragmatic theories to fill this gap and to take
account of the interplay of learning theory with
social and cultural aspects of educational contexts.
Pragmatic theories are designed to guide teachers in
domains where there are no satisfactory explanatory
theories, and where explanatory theory does not
provide enough information to design complex
classroom teaching. We have included both types of
theory in our review. We believe that both types are
necessary in mathematics education but that they
should not be confused with each other.

We decided to concentrate in our review on issues
that are specific to mathematics learning. We
recognise the significance of general pedagogical
theories that stress, for example, the importance 
of giving learners an active role in developing their
thinking and conceptual understanding, the notion of

didactic transposition, the theory of situations, social
theories regarding the importance of conflict and
cooperation, the role of the teacher, the role and use
of language, peer collaboration and argumentation in
the classroom. These are important ideas but they
apply to other domains of learning as well, and we
decided not to provide an analysis of such theories
but to mention them only in the context of specific
issues about mathematical learning.

Another decision that we made about the scope of
the synthesis was about how to deal with cultural
differences in teaching and learning mathematics. The
focus of the review is on mathematics learning by U.K.
students during compulsory education. We recognise
that there are many differences between learners in
different parts of the world; so, we decided to include
mostly research about learners who can be
considered as reasonably similar to U.K. students, i.e.
those living in Western cultures with a relatively high
standard of living and plenty of opportunities to
attend school. Thus the description of students who
participated in the studies is not presented in detail
and will often be indicated only in terms of the
country where the research was carried out. In order
to offer readers a notion of the time in students’ lives
when they might succeed or show difficulties with
specific problems, we used age levels or school grade
levels as references. These ages and years of schooling
are not to be generalised to very different
circumstances where, for example, children might be
growing up in cultures with different number systems
or largely without school participation. Occasional
reference to research with other groups is used but
this was purposefully limited, and it was included only
when it was felt that the studies could shed light on a
specific issue.

We also decided to concentrate on key
understandings that offer the foundation for
mathematics learning rather than on the different
technologies used in mathematics. Wartofsky (1979)
conceives technology as any human made tool that
improves our ability to control and adapt to the
environment. Mathematics uses many such tools.
Some representational tools, such as counting and
written numbers, are part of traditional mathematics
learning in primary school. They improve our abilities
in amazing ways: for example, counting allows us to
represent precisely quantities which we could not
discriminate perceptually and written numbers in the
Hindu-Arabic system create the possibility of column
arithmetic, which is not easily implemented with oral
number when quantities are large or even with
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written Roman numerals. We have argued elsewhere
(Nunes, 2002) that systems of signs enhance,
structure and empower their users but learners
must still construct meanings that allow them to 
use these systems. Our choice in this review was 
to consider how learners construct meanings 
rather than explore in depth the enabling role of
mathematical representations. We discuss in much
greater detail how they learn to use whole and
rational numbers meaningfully than how they
calculate with these numbers. Similarly, we discuss
how they might learn the meaning and power of
algebraic representation rather than how they 
might become fluent with algebraic manipulation.
Psychological theories (Luria, 1973; Vygotsky, 1981)
emphasise the empowering role of culturally
developed systems of signs in human reasoning but
stress that learners’ construction of meanings for
these signs undergoes a long development process
in order for the signs to be truly empowering.
Similarly, mathematics educators stress that
technology is aimed not to replace, but to enhance
mathematical reasoning (Noss and Hoyles, 1992). 

Our reason for not focusing on technologies in this
synthesis is that there are so many technological
resources used today for doing mathematics that 
it is not possible to consider even those used or
potentially useful in primary school in the required
detail in this synthesis. We recognise this gap and
strongly suggest that at least some of these issues 
be taken up for a synthesis at a later point, as some
important comparative work already exists in the
domain of column arithmetic (e.g. Anghileri,
Beishuizen and Putten, 2002; Treffers, 1987) and 
the use of calculators (e.g. Ruthven, 2008).

We wish to emphasise, therefore, that this review is
not an exhaustive one. It considers a part of today’s
knowledge in mathematics education. There are
other, more specific aspects of the subject which,
usually for reasons of space, we decided to by-pass.
We shall explain the reasons for these choices as 
we go along. 

Methods of the review
We obtained the material for the synthesis through 
a systematic search of peer reviewed journals, edited
volumes and refereed conference proceedings.1 We
selected the papers that we read by first screening
the abstracts: our main criteria for selecting articles
to read were that they should be on a relevant topic

and that they should report either the results of
empirical research or theoretical schemes for
understanding mathematics learning or both. We 
also consulted several books in order to read
researchers’ syntheses of their own empirical work
and to access earlier well-established reviews of
relevant research; we chose books that provide
useful frameworks for research and theories in
mathematics learning. 

We hope that this review will become the object 
of discussion within the community of researchers,
teachers and policy makers. We recognise that it 
is only one step towards making sense of the vast
research on how students’ thinking and knowledge 
of mathematics develops, and that other steps 
must follow, including a thorough evaluation of 
this contribution. 

Teaching and learning
mathematics: What is the 
nature of this task?

Learning mathematics is in some ways similar 
(but of course not identical) to language learning: in
mathematics as well as in language it is necessary to
learn symbols and their meaning, and to know how
to combine them meaningfully. 

Learning meanings for symbols is often more difficult
than one might think. Think of learning the meaning
of the word ‘brother’. If Megan said to her four-year-
old friend Sally ‘That’s my brother’ and pointed to
her brother, Sally might learn to say correctly and
appropriately ‘That’s Megan’s brother’ but she would
not necessarily know the meaning of ‘brother’.
‘Brother of ’ is a phrase that is based on a set of
relationships, and in order to understand its meaning
we need to understand this set of relationships,
which includes ‘mother of ’ and ‘father of ’. It is in this
way that learning mathematics is very like learning a
language: we need to learn mathematical symbols
and their meanings, and the meaning of these
symbols is based on sets of relations. 

In the same way that Megan might point to her
brother, Megan could count a set of pens and say:
‘There are 15 pens here’. Sally could learn to count
and say ‘15 pens’ (or dogs, or stars). But ‘15’ in
mathematics does not just refer to the result of
counting a set: it also means that this set is
equivalent to all other sets with 15 objects, has
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fewer objects than any set with 16 or more, and 
has more objects than any set with 14 or fewer.
Learning about numbers involves more than
understanding the operations that are carried out to
determine the word that represents the quantity. In
the context of learning mathematics, we would like
students to know, without having to count, that some
operations do and others do not change a quantity.
For example, we would like them to understand that
there would only be more pens if we added some
to the set, and fewer if we subtracted some from
the set, and that there would still be 15 pens if we
added and then subtracted 
(or vice versa) the same number of pens to and
from the original set. 

The basic numerical concepts that we want students
to learn in primary school have these two sides 
to them: on the one hand, there are quantities,
operations on quantities and relations between
quantities, and on the other hand there are symbols,
operations on symbols and relations between
symbols. Mathematics teaching should aim to ensure
that students’ understanding of quantities, relations
and symbols go together. Anything we do with the
symbols has to be consistent with their underlying
mathematical meaning as well as logically consistent
and we are not free to play with meaning in
mathematics in quite the same ways we might play
with words.

This necessary connection is often neglected in
theories about mathematics learning and in teaching
practices. Theories that appear to be contradictory
have often focused either on students’ understanding
of quantities or on their understanding of symbols
and their manipulations. Similarly, teaching is often
designed with one or the other of these two kinds
of understanding in sight, and the result is that there
are different ways of teaching that have different
strengths and weaknesses.

Language learners eventually reach a time when they
can learn the meaning of new words simply by
definitions and connections with other words. Think of
words like ‘gene’ and ‘theory’: we learn their meanings
from descriptions provided by means of other words
and from the way they are used in the language.
Mathematics beyond primary school often works
similarly: new mathematical meanings are learned by
using previously learned mathematical meanings and
ways of combining these. There are also other ways in
which mathematics and language learning are similar;
perhaps the most important of these other similarities

is that we can use language to represent a large
variety of meanings, and mathematics has a similar
power. But, of course, mathematics learning differs
from language learning: mathematics contains its own
distinct concepts and modes of enquiry which
determine the way that mathematics is used. This
specificity of mathematical concepts is reflected in the
themes that we chose to analyse in our synthesis.

The framework for this review
As we start our review, there is a general point to
be made about the theoretical position that we have
reached from our review of research on children’s
mathematics. On the whole, the teaching of the
various aspects of mathematics proceeds in a clear
sequence, and with a certain amount of separation
in the teaching of different aspects. Children are
taught first about the number sequence and then
about written numbers and arithmetical operations
using written numbers. The teaching of the four
arithmetical operations is done separately. At school
children learn about addition and subtraction
separately and before they learn about multiplication
and division, which also tend to be taught quite
separately from each other. Lessons about arithmetic
start years before lessons about proportions and the
use of mathematical models. 

This order of events in teaching has had a clear
effect on research and theories about mathematical
learning. For example, it is a commonplace that
research on multiplication and division is most often
(though there are exceptions; see Paper 4) carried
out with children who are older than those who
participate in research on addition and subtraction.
Consequently, in most theories additive reasoning is
hypothesised (or assumed) to precede multiplicative
reasoning. Until recently there have been very few
studies of children’s understanding of the connection
between the different arithmetical operations
because they are assumed to be learned relatively
independently of each other. 

Our review of the relevant research has led us to 
us to a different position. The evidence quite clearly
suggests that there is no such sequence, at any rate
in the onset of children’s understanding of some of
these different aspects of mathematics. Much of this
learning begins, as our review will show, in informal
circumstances and before children go to school. Even
after they begin to learn about mathematics formally,
there are clear signs that they can embark on
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genuinely multiplicative reasoning, for example, at a
time when the instruction they receive is all about
addition and subtraction. Similar observations can be
made about learning algebra; there are studies that
show that quite young children are capable of
expressing mathematical generalities in algebraic
terms, but these are rare: the majority of studies
focus on the ways in which learners fail to do so 
at the usual age at which this is taught.

Sequences do exist in children’s learning, but these
tend not to be about different arithmetic operations
(e.g. not about addition before multiplication). Instead,
they take the form of children’s understanding of new
quantitative relations as a result of working with and
manipulating relations that have been familiar for
some time. An example, which we describe in detail
in Paper 2, is about the inverse relation between
addition and subtraction. Young children easily
understand that if you add some new items to a set
of items and then subtract exactly the same items,
the number of items in the set is the same as it was
initially (inversion of identity), but it takes some time
for them to extend their knowledge of this relation
enough to understand that the number of items in
the set will also remain the same if you add some
new items and then subtract an equal number items
from the set, which are not the same ones you had
added (inversion of quantity: a + b - b = a). Causal
sequences of this kind play an important part in the
conclusions that we reach in this review.

Through our review, we identified some key
understandings which we think children must achieve
to be successful learners of mathematics and which
became the main topics for the review. In the
paragraphs that follow, we present the arguments
that led us to choose the six main topics.
Subsequently, each topic is summarised under a
separate heading. The research on which these
summaries are based is analysed in Papers 2 to 7.

The main points that are discussed here, before we
turn to the summaries, guided the choice of papers
in the review.

Quantity and number 

The first point is that there is a distinction to be
made between quantity and number and that
children must make connections as well as
distinctions between quantity and number in order
to succeed in learning mathematics. 

Thompson (1993) suggested that ‘a person
constitutes a quantity by conceiving of a quality 
of an object in such a way that he or she
understands the possibility of measuring it.
Quantities, when measured, have numerical value,
but we need not measure them or know their
measures to reason about them. You can think 
of your height, another person’s height, and the
amount by which one of you is taller than the
other without having to know the actual values’
(pp. 165–166). Children experience and learn
about quantities and the relations between them
quite independently of learning to count. Similarly,
they can learn to count quite independently from
understanding quantities and relations between
them. It is crucial for children to learn to make
both connections and distinctions between
number and quantity. There are different theories
in psychology regarding how children connect
quantity and number ; these are discussed in 
Paper 2. 

The review also showed that there are two
different types of quantities that primary school
children have to understand and that these are
connected to different types of numbers. In
everyday life, as well as in primary school, children
learn about quantities that can be counted. Some
are discrete and each item can be counted as a
natural unit; other quantities are continuous and we
use measurement systems, count the conventional
units that are part of the system, and attribute
numbers to these quantities. These quantities 
which are measured by the successive addition of
items are termed extensive quantities. They are
represented by whole numbers and give children
their first insights into number. 

In everyday life children also learn about quantities
that cannot be counted like this. One reason why
the quantity might not be countable in this way is
that it may be smaller than the unit; for example, if
you share three chocolate bars among four people,
you cannot count how many chocolate bars each
one receives. Before being taught about fractions,
some primary school students are aware that you
cannot say that each person would be given one
chocolate bar, because they realise that each
person’s portion would be smaller than one: these
children conclude that they do not know a number
to say how much chocolate each person will
receive (Nunes and Bryant, 2008). Quantities 
that are smaller than the unit are represented by
fractions, or more generally by rational numbers. 
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Rational numbers are also used to represent
quantities which we do not measure directly 
but only through a relation between two other
measures. For example, if we want to say something
about the concentration of orange squash in a glass,
we have to say something about the ratio of
concentrate used to water. This type of quantity,
measurable by ratio, is termed intensive quantity 
and is often represented by rational numbers.

In Papers 2 and 3 we discuss how children make
connections between whole and rational numbers
and the different types of quantities that they
represent. 

Relations 

Our second general point is about relations.
Numbers are used to represent quantities as well 
as relations; this is why children must establish a
connection between quantity and number but also
distinguish between them. Measures are numbers
that are connected to a quantity. Expressions such 
as 20 books, 3 centimetres, 4 kilos, and ½ a
chocolate are measures. Relations, like quantities, 
do not have to be quantified. For example, we can
simply say that two quantities are equivalent or
different. This is a qualitative statement about the
relation between two quantities. But we can quantify
relations and we use numbers to do so: for example,
when we compare two measures, we are quantifying
a relation. If there are 20 children in a class and 17
books, we can say that there are 3 more children
than books. The number 3 quantifies the relation. We
can say 3 more children than books or 3 books
fewer than children; the meaning does not change
when the wording changes because the number 3
does not refer to children or to books, but to the
relation between the two measures. 

A major use of mathematics is to quantify relations
and manipulate these representations to expand 
our understanding of a situation. We came to the
conclusion from our review that understanding
relations between quantities is at the root of
understanding mathematical models. Thompson
(1993) suggested that ‘Quantitative reasoning is the
analysis of a situation into a quantitative structure – 
a network of quantities and quantitative
relationships… A prominent characteristic of
reasoning quantitatively is that numbers and numeric
relationships are of secondary importance, and do
not enter into the primary analysis of a situation.

What is important is relationships among quantities’
(p. 165). Elsewhere, Thompson (1994) emphasised
that ‘a quantitative operation is non-numerical; it has
to do with the comprehension (italics in the original)
of a situation.’ (p. 187). So relations, like quantities, 
are different from numbers but we use numbers to
quantify them. 

Paper 4 of this synthesis discusses the quantification
of relations in mathematics, with a focus on the sorts
of relations that are part of learning mathematics in
primary school.

The coordination of basic concepts
and the development of higher order
concepts

Students in secondary school have the dual task of
refining what they have learned in primary school
and understanding new concepts, which are based
on reflections about and combinations of previous
concepts. The challenge for students in secondary
school is to learn to take a different perspective with
respect to their mathematics knowledge and, at the
same time, to learn about the power of this new
perspective. Students can understand much about
using mathematical representations (numbers,
diagrams, graphs) for quantities and relations and
how this helps them solve problems. Students 
who have gone this far understand the role of
mathematics in representing and helping us
understand phenomena, and even generalising
beyond what we know. But they may not have
understood a distinct and crucial aspect of the
importance of mathematics: that, above and beyond
helping represent and explore what you know, it can
be used to discover what you do not know. In this
review, we consider two related themes of this
second side of mathematics: algebraic reasoning and
modelling. Papers 6 and 7 summarise the research
on these topics.

In the rest of this opening paper we shall summarise
our main conclusions from our review. In other
words, Papers 2 to 7 contain our detailed reviews 
of research on mathematics learning; each of the 
six subsequent sections about a central topic in
mathematics learning is a summary of Papers 2 to 7.
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Key understandings in
mathematics: A summary 
of the topics reviewed

Understanding extensive quantities
and whole numbers

Natural numbers are a way of representing
quantities that can be counted. When children learn
numbers, they must find out not just about the
counting sequence and how to count, but also about
how the numbers in the counting system represent
quantities and relations between them. We found a
great deal of evidence that children are aware of
quantities such as the size of objects or the amount
of items in groups of objects long before they learn
to count or understand anything about the number
system. This is quite clear in their ability to
discriminate objects by size and sets by 
number when these discriminations can be 
made perceptually.

Our review also showed that children learn to count
with surprisingly little difficulty. Counting is an activity
organised by principles such as the order invariance
of number labels, one-to-one correspondence
between items and counting labels, and the use of
the last label to say how many items are in the set.
There is no evidence of children being taught these
principles systematically before they go to school
and yet most children starting school at the age of
five years are already able to respect these principles
when counting and identify other people’s errors
when they violate counting principles.

However, research on children’s numerical
understanding has consistently shown that at first
they make very little connection between the
number words that they learn and their existing
knowledge about quantities such as size and 
the amounts of items. Our review showed that
Thompson’s (1993) theoretical distinction between
quantities and number is hugely relevant to
understanding children’s mathematics. For example,
many four-year-old children understand how to share
objects equally between two or more people, on a
one-for-A, one-for-B basis, but have some difficulty 
in understanding that the number of items in two
equally shared sets must be the same, i.e. that if
there are six sweets in one set, there must be six 
in the other set as well. To make the connection
between number words and quantities, children have
to grasp two aspects of number, which are cardinal

number and ordinal number. By cardinal number, we
mean that two sets with the same number of items
in them are equal in amount. The term ordinal
number refers to the fact that numbers are arranged
in an ordered series of increasing magnitude:
successive numbers in the counting sequence are
greater than the preceding number by 1. Thus, 2 is 
a greater quantity than 1 and 3 than 2 and it follows
that 3 must also greater than 1.

There are three different theories about how
children come to co-ordinate their knowledge 
of quantities with their knowledge of counting. 

The first is Piaget’s theory, which maintains that this
development is based on children’s schemas of
action and the coordination of the schemas with
each other. Three schemas of action are relevant 
to natural number: adding, taking away, and setting
objects in correspondence. Children must also
understand how these schemas relate to each other.
They must, for example, understand that a quantity
increases by addition, decreases by subtraction, and
that if you add and take away the same amount to
an original quantity, that quantity stays the same. They
must also understand the additive composition of
number, which involves the coordination of one-to-
one correspondence with addition and subtraction: 
if the elements of two sets are placed in
correspondence but one has more elements than
the other, the larger set is the sum of the smaller set
plus the number of elements for which there is no
corresponding item in the smaller set. Research has
shown that this insight is not attained by young
children, who think that adding elements to the
smaller set will make it larger than the larger set
without considering the number added.

A second view, in the form of a nativist theory, 
has been suggested by Gelman and Butterworth
(Gelman & Butterworth, 2005). They propose that
from birth children have access to an innate, inexact
but powerful ‘analog’ system, whose magnitude
increases directly with the number of objects in an
array, and they attach the number words to the
properties occasioning these magnitudes. According
to this view both the system for knowing about
quantities and the principles of counting are innate
and are naturally coordinated.

A third theoretical alternative, proposed by Carey
(2004), starts from a standpoint in agreement with
Gelman’s theory with respect to the innate analog
system and counting principles. However, Carey does
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not think that these systems are coordinated
naturally: they become so through a ‘parallel
individuation’ system, which allows very young
children to make precise discriminations between
sets of one and two objects, and a little later,
between two and three objects. During the same
period, these children also learn number words and,
through their recognition of 1, 2 and 3 as distinct
quantities, they manage to associate the right count
words (‘one’, ‘two’ and ‘three’) with the right
quantities. This association between parallel
individuation and the count list eventually leads to
what Carey (2004) calls ‘bootstrapping’: the children
lift themselves up by their own intellectual
bootstraps by inducing a rule that the next count
word in the counting system is exactly one more
than the previous one. They do so, some time
between the age of three – and five years and,
therefore, before they go to school. 

One important point to note about these three
theories is that they use different definitions of
cardinal number, and therefore different criteria for
assessing whether children understand cardinality 
or not. Piaget’s criterion is the one that we have
mentioned already and which we ourselves think to
be right: it is the understanding that two or more
sets are equal in quantity when the number of items
in them is the same (and vice-versa). Gelman’s and
Carey’s less demanding criterion for understanding
cardinality is the knowledge that the last count word
for the set represents the set’s quantity: if I count
‘one, two, three’ items and realise that means that
that there are three in the set, I understand cardinal
number. In our view, this second view of cardinality is
inadequate for two reasons: first, it is actually based
on the position of the count word and is thus more
related to ordinal than cardinal number; second, it
does not include any consideration of the fact that
cardinal number involves inferences regarding the
equivalence of sets. Piaget’s definition of cardinal and
ordinal number is much more stringent and it has
not been disputed by mathematics educators. He
was sceptical of the idea that children would
understand cardinal and ordinal number concepts
simply from learning how to count and the evidence
we reviewed definitely shows that learning about
quantities and numbers develop independently of
each other in young children. 

This conclusion has important educational
implications. Schools must not be satisfied with
teaching children how to count: they must ensure
that children learn not only to count but also to

establish connections between counting and their
understanding of quantities.

Piaget’s studies concentrated on children’s ability 
to reason logically about quantitative relations. He
argued that children must understand the inverse
relation between addition and subtraction and also
additive composition (which he termed class-
inclusion and was later investigated under the label
of part-whole relations) in order to truly understand
number. The best way to test this sort of causal
hypothesis is through a combination of longitudinal
and intervention studies. Longitudinal studies with
the appropriate controls can suggest that A is
causally related to B if it is a specific predictor of B 
at a later time. Intervention studies can test these
causal ideas: if children are successfully taught A and,
as a consequence, their learning of B improves, it 
is safe to conclude that the natural, longitudinal
connection between A and B is also a causal one.

It had been difficult in the past to use this
combination of methods in the analysis of children’s
mathematics learning for a variety of reasons. First,
researchers were not clear on what sorts of logical
reasoning were vital to learning mathematics. There
are now clearer hypothesis about this: the inverse
relation between addition and subtraction and
additive composition of number appear as key
concepts in the work of different researchers.
Second, outcome measures of mathematics learning
were difficult to find. The current availability of
standardised assessments, either developed for
research or by policy makers for monitoring the
performance of educational systems, makes both
longitudinal and intervention studies possible, as
these can be seen as valid outcome measures. Our
own research has shown that researcher designed
and government designed standardised assessments
are highly correlated and, when used as outcome
measures in longitudinal and intervention studies,
lead to convergent conclusions. Finally, in order to
carry out intervention studies, it is necessary to
develop ways of teaching children the key concepts
on which mathematics learning is grounded.
Fortunately, there are currently successful
interventions that can be used for further research
to test the effect that learning about these key
concepts has on children’s mathematics learning.

Our review identified two longitudinal studies that
show that children’s understanding of logical aspects
of number is vital for their mathematics learning.
One was carried out in the United Kingdom and
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showed that children’s understanding of the inverse
relation between addition and subtraction and of
additive composition at the beginning of school 
are specific predictors of their results in National
Curriculum maths tests (a government designed 
and administered measure of children’s mathematics
learning) about 14 months later, after controlling for
their general cognitive ability, their knowledge of
number at school entry, and their working memory. 

The second study, carried out in Germany, showed
that a measure of children’s understanding of the
inverse relation between addition and subtraction
when they were eight years old was a predictor 
of their performance in an algebra test when they
were in university; controlling for the children’s
performance in an intelligence test given at age eight
had no effect on the strength of the connection
between their understanding of the inverse relation
and their performance in the algebra measure.

Our review also showed that it is possible to
improve children’s understanding of these logical
aspects of number knowledge. Children who were
weak in this understanding at the beginning of school
and improved this understanding through a short
intervention performed significantly better than a
control group that did not receive this teaching.
Together, these studies allow us to conclude that it is
crucial for children to coordinate their understanding
of these logical aspects of quantities with their
learning of numbers in order to make good progress
in mathematics learning.

Our final step in this summary of research on whole
numbers considered how children use additive
reasoning to solve word problems. Additive
reasoning is the logical analysis of problems that
involve addition and subtraction, and of course the
key concepts of additive composition and the
inverse relation between addition and subtraction
play an essential role in this reasoning. The chief tool
used to investigate additive reasoning is the word
problem. In word problems a scene is set, usually in
one or two sentences, and then a question is posed.
We will give three examples. 

A Bob has three marbles and Bill has four: how
many marbles do they have altogether? Combine
problem.

B Wendy had four pictures on her wall and her
parents gave her three more: how many does she
have now? Change problem.

C Tom has seven books: Jane has five: how many
more books does Tom have than Jane? Compare
problem.

The main interest of these problems is that, although
they all involve very simple and similar additions and
subtractions, there are vast differences in the level of
their difficulty. When the three kinds of problem are
given in the form that we have just illustrated, the
Compare problems are very much harder than the
Combine and Change problems. This is not because
it is too difficult for the children to subtract 5 from 7,
which is how to solve this particular Compare
problem, but because they find it hard to work out
what to do so solve the problem. Compare
problems require reasoning about relations between
quantities, which children find a lot more difficult
than reasoning about quantities.

Thus the difficulty of these problems rests on how
well children manage to work out the arithmetical
relations that they involve. This conclusion is
supported by the fact that the relatively easy
problems become a great deal more difficult if the
mathematical relations are less transparent. For
example, the usually easy Change problem is a lot
harder if the result is given and the children have to
work out the starting point. For example, Wendy
had some pictures on her wall but then took 3 of
them down: now she has 4 pictures left on the wall:
how many were there in the first place? The reason
that children find this problem a relatively hard one
is that the story is about subtraction, but the solution
is an addition. Pupils therefore have to call on their
understanding of the inverse relation between
adding and subtracting to solve this problem.

One way of analysing children’s reactions to word
problems is with the framework devised by
Vergnaud, who argued that these problems involve
quantities, transformations and relations. A Change
problem, for example, involves the initial quantity and
a transformation (the addition or subtraction) which
leads to a new quantity, while Compare problems
involve two quantities and the relation between
them. On the whole, problems that involve relations
are harder than those involving transformations, but
other factors, such as the story being about addition
and the solution being a subtraction or vice versa
also have an effect. 

The main impact of research on word problems has
been to reinforce the idea with which we began this
section. This idea is that in teaching children
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arithmetic we must make a clear distinction
between numerical analysis and the children’s
understanding of quantitative relations. We must
remember that there is a great deal more to
arithmetical learning than knowing how to carry 
out numerical procedures. The children have to
understand the quantitative relations in the
problems that they are asked to solve and how 
to analyse these relations with numbers.

Understanding rational numbers and
intensive quantities

Rational numbers, like whole numbers, can be used
to represent quantities. There are some quantities
that cannot be represented by a whole number, and
to represent these quantities, we must use rational
numbers. Quantities that are represented by whole
numbers are formed by addition and subtraction: as
argued in the previous section, as we add elements
to a set and count them (or conventional units, in
the case of continuous quantities), we find out what
number will be used to represent these quantities.
Quantities that cannot be represented by whole
numbers are measured not by addition but by
division: if we cut one chocolate, for example, in
equal parts, and want to have a number to represent
the parts, we cannot use a whole number. 

We cannot use whole numbers when the quantity
that we want to represent numerically:
• is smaller than the unit used for counting,

irrespective of whether this is a natural unit 
(e.g. we have less than one banana) or a
conventional unit (e.g. a fish weighs less than a kilo)

• involves a ratio between two other quantities (e.g.
the concentration of orange juice in a jar can be
described by the ratio of orange concentrate to
water ; the probability of an event can be described
by the ratio between the number of favourable
cases to the total number of cases). These
quantities are called intensive quantities.

We have concluded from our review that there are
serious problems in teaching children about fractions
and that intensive quantities are not explicitly
considered in the curriculum. 

Children learn about quantities that are smaller 
than the unit through division. Two types of action
schemes are used by children in division situations:
partitioning, which involves dividing a whole into
equal parts, and correspondence situations, where

two quantities are involved, a quantity to be shared
and a number of recipients of the shares. 

Partitioning is the scheme of action most often used
in primary schools in the United Kingdom to
introduce the concept of fractions. Research shows
that children have quite a few problems to solve
when they partition continuous quantities: for
example, they need to anticipate the connection
between number of cuts and number of parts, and
some children find themselves with an even number
of parts (e.g. 6) when they wanted to have an odd
number (e.g. 5) because they start out by
partitioning the whole in half. Children also find it
very difficult to understand the equivalence between
fractions when the parts they are asked to compare
do not look the same. For example, if they are
shown two identical rectangles, each cut in half but in
different ways (e.g. horizontally and diagonally), many
9- and 10-year-olds might say that the fractions are
not equivalent; in some studies, almost half of the
children in these age levels did not recognize the
equivalence of two halves that looked rather
different due to being the result of different cuts.
Also, if students are asked to paint 2/3 of a figure
divided into 9 parts, many 11- to 12-year-olds may
be unable to do so, even though they can paint 2/3
of a figure divided into 3 parts; in a study in the
United Kingdom, about 40% of the students did not
successfully paint 2/3 of figures that had been divided
into 6 or 9 sections. 

Different studies that we reviewed showed that
students who learn about fractions through the
engagement of the partitioning schema in division
tend to reply on perception rather than on the
logic of division when solving problems: they are
much more successful with items that can be
solved perceptually than with those that cannot.
There is a clear lesson here for education: number
understanding should be based on logic, not on
perception alone, and teaching should be designed
to guide children to think about the logic of
rational numbers.

The research that we reviewed shows that the
partitioning scheme develops over a long period of
time. This has led some researchers to develop ways
to avoid asking the children to partition quantities by
providing them with pre-divided shapes or with
computer tools that do the partitioning for the
children. The use of these resources has positive
effects, but these positive effects seem to be
obtained only after large amounts of instruction. 
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In some studies, the students had difficulties with the
idea of improper fractions even after prolonged
instruction. For example, one student argued with
the researcher during instruction that you cannot
have eight sevenths if you divided a whole into 
seven parts.

In contrast to the difficulties that children have with
partitioning, children as young as five or six years in
age are quite good at using correspondences in
division, and do so without having to carry out the
actual partitioning. Some children seem to
understand even before receiving any instruction 
on fractions that, for example, two chocolates shared
among four children and four chocolates shared
among eight children will give the children in the 
two groups equivalent shares of chocolate; they
demonstrate this equivalence in action by showing
that in both cases there is one chocolate to be
shared by two children. 

Children’s understanding of quantities smaller than
one is often ahead of their knowledge of fractional
representations when they solve problems using 
the correspondence scheme. This is true of
understanding equivalence and even more so of
understanding order. Most children at the age of
eight or so realise that dividing 1 chocolate among
three children will give bigger pieces than dividing
one chocolate among four children. This insight 
that they have about quantities is not necessarily
connected with their understanding of ordering
fractions by magnitude: the same children might say
that 1/3 is less than 1/4 because three is less than
four. So we find in the domain of rational numbers
the same distinction found in the domain of whole
numbers between what children know about
quantities and what they know about the numbers
used to represent quantities.

Research shows that it is possible to help children
connect their understanding of quantities with their
understanding of fractions and thus make progress 
in rational number knowledge. Schools could make
use of children’s informal knowledge of fractional
quantities and work with problems about situations,
without requiring them to use formal
representations, to help them consolidate this
reasoning and prepare them for formalization.

Reflecting about these two schemes of action 
and drawing insights from them places children in
different paths for understanding rational number.
When children use the correspondence scheme,

they can achieve some insight into the equivalence
of fractions by thinking that, if there are twice as
many things to be shared and twice as many
recipients, then each one’s share is the same. This
involves thinking about a direct relation between 
the quantities. The partitioning scheme leads to
understanding equivalence in a different way: if a
whole is cut into twice as many parts, the size of
each part will be halved. This involves thinking about
an inverse relation between the quantities in the
problem. Research consistently shows that children
understand direct relations better than inverse
relations and this may also be true of rational
number knowledge. 

The arguments children use when stating that
fractional quantities resulting from sharing are or are
not equivalent have been described in one study in
the United Kingdom. These arguments include the
use of correspondences (e.g. sharing four chocolates
among eight children can be shown by a diagram to
be equivalent to sharing two chocolates among four
children because each chocolate is shared among
two children), scalar arguments (twice the number of
children and twice the number of chocolates means
that they all get the same), and an understanding of
the inverse relation between the number of parts
and the size of the parts (i.e. twice the number of
pieces means that each piece is halved in size). It
would be important to investigate whether
increasing teachers’ awareness of children’s own
arguments would help teachers guide children’s
learning in this domain of numbers more effectively.

Some researchers have argued that a better starting
point for teaching children about fractions is the use
of situations where children can use correspondence
reasoning than the use of situations where the
scheme of partitioning is the relevant one. Our
review of children’s understanding of the equivalence
and order of fractions supports this claim. However,
there are no intervention studies comparing the
outcomes of these two ways of introducing children
to the use of fractions, and intervention studies
would be crucial to solve this issue: one thing is
children’s informal knowledge but the outcomes of
its formalization through instruction might be quite
another. There is now considerably more information
regarding children’s informal strategies to allow for
new teaching programmes to be designed and
assessed. There is also considerable work on
curriculum development in the domain of teaching
fractions in primary school. Research that compares
the different forms of teaching (based on partitioning
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or based on correspondences) and the introduction
of different representations (decimal or ordinary) 
is now much more feasible than in the past.
Intervention research, which could be carried out 
in the classroom, is urgently needed. The available
evidence suggests that testing this hypothesis
appropriately could result in more successful
teaching and learning of rational numbers.

In the United Kingdom ordinary fractions continue
to play an important role in primary school
instruction whereas in some countries greater
attention is given to decimal representation than to
ordinary fractions in primary school. Two reasons are
proposed to justify the teaching of decimals before
ordinary fractions . First, decimals are common in
metric measurement systems and thus their
understanding is critical for learning other topics,
such as measurement, in mathematics and science.
Second, decimals should be easier than ordinary
fractions to understand because decimals can be
taught as an extension of place value representation;
operations with decimals should also be easier and
taught as extensions of place value representation. 

It is certainly true that decimals are used in
measurement and thus learning decimals is necessary
but ordinary fractions often appear in algebraic
expressions; so it is not clear a priori whether one
form of representation is more useful than the other
for learning other aspects of mathematics. However,
the second argument, that decimals are easier than
ordinary fractions, is not supported in surveys of
students’ performance: students find it difficult to
make judgements of equivalence and order as much
with decimals as with ordinary fractions. Students
aged 9 to 11 years have limited success when
comparing decimals written with different numbers
of digits after the decimal point (e.g. 0.5 and 0.36):
the rate of correct responses varied between 36%
and 52% in the three different countries that
participated in the study, even though all the children
have been taught about decimals.

Some researchers (e.g. Nunes, 1997; Tall, 1992;
Vergnaud, 1997) argue that different representations
shed light on the same concepts from different
perspectives. This would suggest that a way to
strengthen students’ learning of rational numbers is
to help them connect both representations. Case
studies of students who received instruction that
aimed at helping students connect the two forms of
representation show encouraging results. However,
the investigation did not include the appropriate

controls and so it does not allow for establishing
firmer conclusions.

Students can learn procedures for comparing, adding
and subtracting fractions without connecting these
procedures with their understanding of equivalence
and order of fractional quantities, independently of
whether they are taught with ordinary or decimal
fractions representation. This is not a desired
outcome of instruction, but seems to be a quite
common one. Research that focuses on the use of
children’s informal knowledge suggests that it is
possible to help students make connections between
their informal knowledge and their learning of
procedures but the evidence is limited and the
consequences of this teaching have not been
investigated systematically. 

Research has also shown that students do not
spontaneously connect their knowledge of fractions
developed with extensive quantities smaller than the
unit with their understanding of intensive quantities.
Students who succeed in understanding that two
chocolates divided among four children and four
chocolates divided among 8 children yield the same
size share do not necessarily understand that a paint
mixture made with two litres of white and two of
blue paint will be the same shade as one made with
four litres of white and four of blue paint. 

Researchers have for some time distinguished
between different situations where fractions are
used and argued that connections that seem
obvious to an adult are not necessarily obvious 
to children. There is now evidence that this is so.
There is a clear educational implication of this
result: if teaching children about fractions in the
domain of extensive quantities smaller than the
unit does not spontaneously transfer to their
understanding of intensive quantities, a complete
fractions curriculum should include intensive
quantities in the programme. 

Finally, this review opens the way for a fresh research
agenda in the teaching and learning of fractions. The
source for the new research questions is the finding
that children achieve insights into relations between
fractional quantities before knowing how to
represent them. It is possible to envisage a research
agenda that would not focus on children’s
misconceptions about fractions, but on children’s
possibilities of success when teaching starts from
thinking about quantities rather than from learning
fractional representations.
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Understanding relations and their
graphical representation
Children form concepts about quantities from their
everyday experiences and can use their schemas of
action with diverse representations of the quantities
(iconic, numerical) to solve problems. They often
develop sufficient awareness of quantities to discuss
their equivalence and order as well as how quantities
are changed by operations. It is significantly more
difficult for them to become aware of the relations
between quantities and operate on relations. 

The difficulty of understanding relations is clear both
with additive and multiplicative relations between
quantities. Children aged about eight to ten years
can easily say, for example, how many marbles a boy
will have in the end if he started a game with six
marbles, won five in the first game, lost three in the
second game, and won two in the third game.
However, if they are not told how many marbles the
boy had at the start and are asked how many more
or fewer marbles this boy will have after playing the
three games, they find this second problem
considerable harder, particularly if the first game
involves a loss. 

Even if the children are taught how to represent
relations and recognise that winning five in the first
game does not mean having five marbles, they often
interpret the results of operations on relations as if
they were quantities. Children find both additive and
multiplicative relations significantly more difficult than
understanding quantities.

There is little evidence that the design of
mathematics curricula has so far taken into account
the importance of helping students become aware
of the difference between quantities and relations.
Some researchers have carried out experimental
teaching studies which suggest that it is possible to
promote students’ awareness of additive relations
as different from quantities; this was not an easy
task but the instruction seemed to have positive
results (but note that there were no control
groups). Further research must be carried out to
analyse how this knowledge affects mathematics
learning: longitudinal and intervention studies
would be crucial to clarify this. If positive results
are found, there will be imperative policy
implications.

The first teaching that children receive in school
about multiplicative relations is about proportions.
Initial studies on students’ understanding of

proportions previously led to the conclusion that
students’ problems with proportional reasoning
stemmed from their difficulties with multiplicative
reasoning. However, there is presently much
evidence to show that, from a relatively early age
(about five to six years in the United Kingdom),
many children (our estimate is about two-thirds)
already have informal knowledge that allows them 
to solve multiplicative reasoning problems. 

Multiplicative reasoning problems are defined by the
fact that they involve two (or more) measures
linked by a fixed ratio. Students’ informal knowledge
of multiplicative reasoning stems from the schema
of one-to-many correspondence, which they use
both in multiplication and division problems. When
the product is unknown, children set the elements 
in the two measures in correspondence (e.g. one
sweet costs 4p) and figure out the product (how
much five sweets will cost) by counting or adding.
When the correspondence is unknown (e.g. if you
pay 20p for five sweets, how much does each 
sweet cost), the children share out the elements
(20p shared in five groups) to find what the
correspondence is. 

This informal knowledge is currently ignored in 
U.K. schools, probably due to the theory that
multiplication is essentially repeated addition and
division is repeated subtraction. However, the
connections between addition and multiplication on
the one hand, and subtraction and division on the
other hand, are procedural and not conceptual. 
So students’ informal knowledge of multiplicative
reasoning could be developed in school from an
earlier age.

Even after being taught other methods to solve
proportions problems in school, students continue 
to use one-to-many correspondences reasoning to
solve proportions problems; these solutions have
been called building up methods. For example, if a
recipe for four people is to be adapted to serve six
people, students figure out that six people is the
same as four people plus two people; so they figure
out what half the ingredients will be and add this to
the quantity required for four people. Building up
methods have been documented in many different
countries and also among people with low levels of
schooling. A careful analysis of the reasoning in
building-up methods suggests that the students focus
on the quantities as they solve these problems, and
find it difficult to focus on the relations between 
the quantities. 
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Research carried out independently in different
countries has shown that students sometimes use
additive reasoning about relations when the
appropriate model is a multiplicative one. Some
recent research has shown that students also use
multiplicative reasoning in situations where the
appropriate model is additive. These results suggest
that children use additive and multiplicative models
implicitly and do not make conscious decisions
regarding which model is appropriate in a specific
situation. We concluded from our review that
students’ problems with proportional reasoning
stems from their difficulties in becoming explicitly
aware of relations between quantities. Greater
awareness of the models implicit in their solutions
would help them distinguish between situations that
involve different types of relations: additive,
proportional or quadratic, for example.

The educational implication from these findings 
is that schools should take up the task of helping
students become more aware of the models that
they use implicitly and of ways of testing their
appropriateness to particular situations. The
differences between additive and multiplicative
situations rests on the relations between quantities;
so it is likely that the critical move here is to help
students become aware of the relations between
quantities implicit in the procedure they use to 
solve problems.

Two radically different approaches to teaching
proportions and linear functions in schools can be
identified in the literature. These constitute pragmatic
theories, which can guide teachers, but have as yet
not been tested systematically. The first, described as
functional and human in focus, is based on the
notion that students’ schemas of action should be
the starting point for this teaching. Through
instruction, they should become progressively more
aware of the relations between quantities that can
be identified in such problems. Diagrams, tables and
graphs are seen as tools that could help students
understand the models of situations that they are
using and make them into models for other
situations later. 

The second, described in the literature as algebraic,
proposes that there should be a sharp separation
between students’ intuitive knowledge, in which
physical and mathematical knowledge are
intertwined, and mathematical knowledge. Students
should be led to formalisations early on in
instruction and re-establish the connections between

mathematical structures and physical knowledge 
at a later point. Representations using ordinary and
decimal fractions and the number line are seen as
the tools that can allow students to abstract early 
on from the physical situations. Students should learn
early on to represent equivalences between ordinary
fractions (e.g. 2/4 = 4/8), a representation that would
provide insight into proportions, and also
equivalences between ordinary and decimal fractions
(2/4 = 0.5), which would provide insight into the
ordering and equivalence of fractions marked on 
the number line.

Each of these approaches makes assumptions about
the significance of students’ informal knowledge at
the start of the teaching programme. The functional
approach assumes that students’ informal knowledge
can be formalised through instruction and that this
will be beneficial to learning. The algebraic approach
assumes that students’ informal knowledge is an
obstacle to students’ mathematics learning. There is
evidence from a combination of longitudinal and
intervention methods, albeit with younger children,
that shows that students’ knowledge of informal
multiplicative reasoning is a causal and positive factor
in mathematics learning. Children who scored higher
in multiplicative reasoning problems at the start of
their first year in school performed significantly
better in the government designed and school
administered mathematics achievement test than
those whose scores were lower. This longitudinal
relationship remained significant after the appropriate
controls were taken into account. The intervention
study provides results that are less clear because the
children were taught not only about multiplicative
reasoning but also about other concepts considered
key to mathematics learning. Nevertheless, children
who were at risk for mathematics learning and
received teaching that included multiplicative
reasoning, along with two other concepts, showed
average achievement in the standardised
mathematics achievement tests whereas the 
control group remained in the bottom 20% of the
distribution, as predicted by their assessment at the
start of school. So, in terms of the assumptions
regarding the role of informal knowledge, the
functional approach seems to have the edge over
the algebraic approach.

These two approaches to instruction also differ in
respect to what students need to know to benefit
from teaching and what they learn during the course
of instruction. Within the functional approach, the
tools used in teaching are diagrams, tables, and
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graphs so it is clear that students need to learn to
read graphs in order to be able to use them as tools
for thinking about relations between quantities and
functions. Research has shown that students have
ideas about how to read graphs before instruction
and these ideas should be taken into account when
graphs are used in the classroom. It is possible to
teach students to read graphs and to use them in
order to think about relations in the course of
instruction about proportions, but much more
research is needed to show how students’ thinking
changes if they do learn to use graphs to analyse the
type of relation relevant in specific situations. Within
the algebraic approach, it is assumed that students
understand the equivalence of fractions without
reference to situations. Our review of students’
understanding of fractions, summarised in the
previous section, shows that this is not trivial so 
it is necessary to show that students can, in the 
course of this teaching, learn both about fraction
equivalence and proportional relations.

There is no evidence to show how either of these
approaches to teaching works in promoting
students’ progress nor that one of them is more
successful than the other. Research that can clarify
this issue is urgently needed and could have a major
impact in promoting better learning by U.K.
students. This is particularly important in view of
findings from the international comparisons that
show that U.K. students do relatively well in additive
reasoning items but comparatively poorly in
multiplicative reasoning items.

Understanding space and its
representation in mathematics

When children begin to be taught about geometry,
they already know a great deal about space, shape,
size, distance and orientation, which are the basic
subject matter of geometry. They are also quite
capable of drawing logical inferences about spatial
matters. In fact, their spatial knowledge is so
impressive and so sophisticated that one might
expect geometry to be an easy subject for them.
Why should they have any difficulty at all with
geometry if the subject just involves learning how 
to express this spatial knowledge mathematically?

However, many children do find geometry hard and
some children continue to make basic mistakes right
through their time at school. There are two main
reasons for these well-documented difficulties. One

reason is that many of the spatial relations that
children must think about and learn to analyse
mathematically in geometry classes are different from
the spatial relations that they learn about in their
pre-school years. The second is that geometry makes
great demands on children’s spatial imagination. In
order to measure length or area or angle, for
example, we have to imagine spaces divided into
equal units and this turns out to be quite hard for
children to learn to do systematically.

Nevertheless, pre-school children’s spatial knowledge
and spatial experiences are undoubtedly relevant to
the geometry that they must learn about later, and it
is important for teachers and researchers alike to
recognise this. From a very early age children are
able to distinguish and remember different shapes,
including basic geometrical shapes. Children are able
to co-ordinate visual information about size and
distance to recognise objects by their actual size, 
and also to co-ordinate visual shape and orientation
information to recognise objects by their actual
shapes. In social situations, children quite easily work
out what someone else is looking at by extrapolating
that person’s line of sight often across quite large
distances, which is an impressive feat of spatial
imagination. Finally, they are highly sensitive not just
to the orientation of lines and of objects in their
environments, but also to the relation between
orientations: for example, young children can,
sometimes at least, recognise when a line in the
foreground is parallel to a stable background feature. 

These impressive spatial achievements must help
children in their efforts to understand the geometry
that they are taught about at school, but there is little
direct research on the links between children’s
existing informal knowledge about space and the
progress that they make when they are eventually
taught about geometry. This is a worrying gap,
because research of this sort would help teachers 
to make an effective connection between what their
pupils know already and what they have to learn in
their initial geometry classes. It would also give us a
better understanding of the obstacles that children
encounter when they are first taught about geometry.

Some of these obstacles are immediately apparent
when children learn about measurement, first of
length and then of area. In order to learn how to
measure length, children must grasp the underlying
logic of measurement and also the role of iterated
(i.e. repeated) measurement units, e.g. the unit of 1
cm repeated on a ruler. Using a ruler also involves an

24 Paper 1: Overview



active form of one-to-one correspondence, since 
the child must imagine and impose on the line being
measured the same units that are explicit and
obvious on the ruler. Research suggests that children
do have a reasonable understanding of the
underlying logic of measurement by the time that
they begin to learn about geometry, but that many
have a great deal of difficulty in grasping how to
imagine one-to-one correspondence between the
iterated units on the ruler and imagined equivalent
units on the line that they are measuring. One
common mistake is to set the 1 cm rather than 
the 0 cm point at one end of the line. The evidence
suggests that many children apply a poorly
understood procedure when they measure length
and are not thinking, as they should, of one-to-one
correspondence between the units on the ruler and
the length being measured. There is no doubt that
teachers should think about how to promote
children’s reflection on measurement procedures.
Nunes, Light and Mason (1993), for example,
showed that using a broken ruler was one way 
to promote this.

Measurement of area presents additional problems.
One is that area is often calculated from lengths,
rather than measured. So, although the measurement
is in one kind of unit, e.g. centimetres, the final
calculation is in another, e.g. square centimetres. This
is what Vergnaud calls a ‘product of measures’
calculation. Another potential problem is that most
calculations of area are multiplicative: with rectangles
and parallelograms, one has to multiply the figure’s
base by height, and with triangles one must calculate
base by height and then halve it. There is evidence
that many children attempt to calculate area by
adding parts of the perimeter, rather than by
multiplying. One consequence of the multiplicative
nature of area calculations is that doubling a figure’s
dimensions more than doubles its area. Think of a
rectangle with a base of 10 cm and a height of 4 cm,
its area is 40 cm2: if you enlarge the figure by
doubling its base and height (20 cm x 8 cm), you
quadruple its area (160 cm2). This set of relations 
is hard for pupils, and for many adults too, to
understand.

The measurement of area also raises the question
of relations between shapes. For example the proof
that the same base by height rule for measuring
rectangles applies to parallelograms as well rests 
on the demonstration that a rectangle can be
transformed into a parallelogram with the same
height and base without changing its area. In turn

the rule for finding the area of triangles, A = ½
(base x height), is justified by the fact every triangle
can be transformed into a parallelogram with the
same base and height by doubling that triangle. Thus,
rules for measuring area rest heavily on the relations
between geometric shapes. Although Wertheimer
did some ingenious studies on how children were
able to use of the relations between shapes to help
them measure the area of some of these shapes,
very little research has been done since then on
their understanding of this centrally important
aspect of geometry.

In contrast, there is a great deal of research on
children’s understanding of angles. This research
shows that children have very little understanding 
of angles before they are taught about geometry. 
The knowledge that they do have tends to be
quite disconnected because children often fail to
see the connection between angles in dissimilar
contexts, like the steepness of a slope and how
much a person has to turn at a corner. There is
evidence that children begin to connect what they
know about angles as they grow older : they
acquire, in the end, a fairly abstract understanding
of angle. There is also evidence, mostly from
studies with the programming language Logo, that
children learn about angle relatively well in the
context of movement.

Children’s initial uncertainties with angles contrast
sharply to the relative ease with which they adopt 
the Cartesian framework for plotting positions in 
any two-dimensional space. This framework requires
them to be able to extrapolate imaginary pairs of
straight lines, one of which is perpendicular to the
vertical axis and the other to the horizontal axis, and
then to work out where these imaginary lines will
meet, in order to plot specific positions in space. 
At first sight this might seem an extraordinarily
sophisticated achievement, but research suggests 
that it presents no intellectual obstacle at all to most
children. Their success in extrapolating imaginary
straight lines and working out their meeting point may
stem for their early experiences in social interactions
of extrapolating such lines when working out what
other people are looking at, but we need longitudinal
research to establish whether this is so. Some further
research suggests that, although children can usually
work out specific spatial positions on the basis of
Cartesian co-ordinates, they often find it hard to use
these co-ordinates to work out the relation between
two or more different positions in space. 
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We also need research on another possible
connection between children’s early informal spatial
knowledge and how well they learn about geometry
later on. We know that very young children tell
shapes apart, even abstract geometric shapes,
extremely well, but it is also clear that when children
begin to learn about geometry they often find it
hard to decompose complicated shapes into several
simpler component shapes. This is a worrying
difficulty because the decomposition of shapes plays
an important part in learning about measurement of
area and also of angles. More research is needed on
how children learn that particular shapes can be
broken down into other component shapes.

Overall, research suggests that the relation between
the informal knowledge that children build up before
they go to school and the progress that they make
at school in geometry is a crucial one. Yet, it is a
relation on which there is very little research indeed
and there are few theories about this possible link as
well. The theoretical frameworks that do exist tend
to be pragmatic ones. For example, the Institute
Freudenthal group assume a strong link between
children’s preschool spatial knowledge and the
progress that they make in learning about geometry
later on, and argue that improving children’s early
understanding of space will have a beneficial effect
on their learning about geometry. Yet, there is no
good empirical evidence for either of these two
important claims.

Algebraic reasoning

Research on learning algebra has considered a range
of new ideas that have to be understood in school
mathematics: the use and meaning of letters and
expressions to represent numbers and variables;
operations and their properties; relations, functions,
equations and inequalities; manipulation and
transformation of symbolic statements. Young
children are capable of understanding the use of a
letter to take the place of an unknown number, and
are also able to construct statements about
comparisons between unknown quantities, but
algebra is much more than the substitution of letters
for numbers and numbers for letters. Letters are
used in mathematics in varying ways. They are used
as labels for objects that have no numerical value,
such as vertices of shapes or for objects that do
have numerical value, such as lengths of sides of
shapes. They denote fixed constants such as g, e or π
and also non-numerical constants such as I and they

represent unknowns and variables. Distinguishing
between these meanings is usually not taught
explicitly, and this lack of instruction might cause
children some difficulty: g, for example, can indicate
grams, acceleration due to gravity, an unknown in an
equation, or a variable in an expression.

Within common algebraic usage, Küchemann (1981)
identified six different ways adolescents used letters
in the Chelsea diagnostic test instrument (Hart et al.,
1984). Letters could be evaluated in some way,
ignored, used as shorthand for objects or treated as
objects used as a specific unknown, as a generalised
number, or as a variable. These interpretations
appear to be task-dependent, so learners had
developed a sense of what sorts of question were
treated in what kinds of ways, i.e. generalising
(sometimes idiosyncratically) about question-types
through familiarity and prior experience. 

The early experiences students have in algebra are
therefore very important, and if algebra is presented
as ‘arithmetic with letters’ there are many possible
confusions. Algebraic statements are about
relationships between variables, constructed using
operations; they cannot be calculated to find an
answer until numbers are substituted, and the same
relationship can often be represented in many
different ways. The concept of equivalent
expressions is at the heart of algebraic manipulation,
simplification, and expansion, but this is not always
apparent to students. Students who do not
understand this try to act on algebraic expressions
and equations in ways which have worked in
arithmetical contexts, such as trial-and-error, or
trying to calculate when they see the equals sign, 
or rely on learnt rules such as ‘BODMAS’ which 
can be misapplied. 

Students’ prior experience of equations is often
associated with finding hidden numbers using
arithmetical facts, such as ‘what number, times by 4,
gives 24?’ being expressed as 4p = 24. An algebraic
approach depends on understanding operations or
functions and their inverses, so that addition and
subtraction are understood as a pair, and
multiplication and division are understood as a pair.
This was discussed in an earlier section. Later on,
roots, exponents and logarithms also need to be
seen as related along with other functions and their
inverses. Algebraic understanding also depends on
understanding an equation as equating two
expressions, and solving them as finding out for 
what values of the variable they are equal. New
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technologies such as graph-plotters and spreadsheets
have made multiple representations available and
there is substantial evidence that students who have
these tools available over time develop a stronger
understanding of the meaning of expressions, and
equations, and their solutions, than equivalent
students who have used only formal pencil-and-
paper techniques.

Students have to learn that whereas the
mathematical objects they have understood in
primary school can often be modelled with 
material objects they now have to deal with objects
that cannot always be easily related to their
understanding of the material world, or to their out-
of-school language use. The use of concrete models
such as rods of ‘unknown’ related lengths, tiles of
‘unknown’ related areas, equations seen as balances,
and other diagrammatical methods can provide
bridges between students’ past experience and
abstract relationships and can enable them to make
the shift to seeing relations rather than number as
the main focus of mathematics. All these metaphors
have limitations and eventually, particularly with the
introduction of negative numbers, the metaphors
they provide break down. Indeed it was this
realisation that led to the invention of 
algebraic notation.

Students have many perceptions and cognitive
tendencies that can be harnessed to help them learn
algebra. They naturally try to relate what they are
offered to what they already know. While this can 
be a problem if students refer to computational
arithmetic, or alphabetic meaning of letters 
(e.g. a = apples), it can also be useful if they refer to
their understanding of relations between quantities
and operations and inverses. For example, when
students devise their own methods for mental
calculation they often use relations between numbers
and the concepts of distributivity and associativity. 

Students naturally try to generalise when they see
repeated behaviour, and this ability has been used
successfully in approaches to algebra that focus on
expressing generalities which emerge in
mathematical exploration. When learners need to
express generality, the use of letters to do so makes
sense to them, although they still have to learn the
precise syntax of their use in order to communicate
unambiguously. Students also respond to the visual
impact of mathematics, and make inferences based
on layout, graphical interpretation and patterns in
text; their own mathematical jottings can be

structured in ways that relate to underlying
mathematical structure. Algebraic relationships
represented by graphs, spreadsheets and
diagrammatic forms are often easier to understand
than when they are expressed in symbols. For
example, students who use function machines are
more likely to understand the order of operations 
in inverse functions.

The difficulties learners have with algebra in
secondary school are nearly all due to their inability
to shift from earlier understandings of arithmetic to
the new possibilities afforded by algebraic notation. 

• They make intuitive assumptions and apply
pragmatic reasoning to a symbol system they do
not yet understand. 

• They need to grasp the idea that an algebraic
expression is a statement about relationships
between numbers and operations. 

• They may confuse equality with equivalence and try
to get answers rather than transform expressions. 

• They get confused between using a letter to stand
for something they know, and using it to stand for
something they do not know, and using it to stand
for a variable. 

• They may not have a purpose for using algebra,
such as expressing a generality or relationship, so
cannot see the meaning of what they are doing. 

New technologies offer immense possibilities for
imbuing algebraic tasks with meaning, and for
generating a need for algebraic expression. 

The research synthesis sets these observations out 
in detail and focuses on detailed aspects of algebraic
activity that manifest themselves in school
mathematics. It also formulates recommendations 
for practice and research.

Modelling, problem-solving and
integrating concepts

Older students’ mathematical learning involves
situations in which it is not immediately apparent
what mathematics needs to be done or applied, 
nor how this new situation relates to previous
knowledge. Learning mathematics includes learning
when and how to adapt symbols and meanings to
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apply them in unfamiliar situations and also 
knowing when and how to adapt situations and
representations so that familiar tools can be 
brought to bear on them. Students need to learn
how to analyse complex situations in a variety of
representations, identify variables and relationships,
represent these and develop predictions or
conclusions from working with representations 
of variables and relationships. These might be
presented graphically, symbolically, diagrammatically
or numerically. 

In secondary mathematics, students possess not only
intuitive knowledge from outside mathematics and
outside school, but also a range of quasi-intuitive
understandings within mathematics, derived from
earlier teaching and generalisations, metaphors,
images and strategies that have served them well in
the past. In Tall and Vinner’s pragmatic theory, (1981)
these are called ‘concept images’, which are a ragbag
of personal conceptual, quasi-conceptual, perceptual
and other associations that relate to the language of
the concept and are loosely connected by the
language and observable artefacts associated with
the concept. The difference between students’
concept images and conventional definitions causes
problems when they come to learn new concepts
that combine different earlier concepts. They have 
to expand elementary meanings to understand new
abstract concepts, and sometimes these concepts 
do not fit with the images and models that students
know. For example, rules for combining quantities do
not easily extend to negative numbers; multiplication
as repeated addition does not easily extend to
multiplying decimals. 

There is little research and theoretical exploration
regarding how combinations of concepts are
understood by students in general. For example, 
it would be helpful to know if students who
understand the use of letters, ratio, angle, functions,
and geometrical facts well have the same difficulties
in learning early trigonometry as those whose
understanding is more tenuous. Similarly, it would 
be helpful to know if students whose algebraic
manipulation skills are fluent understand quadratic
functions more easily, or differently, from students
who do not have this, but do understand
transformation of graphs.

There is research about how students learn to use
and apply their knowledge of functions, particularly 
in the context of modelling and problem-solving.
Students not only have to learn to think about

relationships (beyond linear relationships with which
they are already familiar), but they also need to think
about relations between relations. Our analysis 
(see Paper 4) suggested that curricula presently do
not consider the important task of helping students
become aware of the distinctions between quantities
and relations; this task is left to the students
themselves. It is possible that helping students make
this distinction at an earlier age could have a positive
impact on their later learning of algebra.

In the absence of specific instructions, students tend
to repeat patterns of learning that have enabled
them to succeed in other situations over time.
Students tend to start on new problems with
qualitative judgements based on a particular context,
or the visual appearance of symbolic representations,
then tend to use additive reasoning, then form
relationships by pattern recognition or repeated
addition, and then shift to proportional and relational
thinking if necessary. The tendency to use addition as
a first resort persists as an obstacle into secondary
mathematics. Students also tend to check their
arithmetic if answers conflict rather than adapting
their reasoning by seeing if answers make sense or
not, or by analysing what sorts of relations are
important in the problem. Pedagogic intervention
over time is needed to enable learners to look for
underlying structure and, where multiple
representations are available (graphs, data, formulae,
spreadsheets), students can, over time, develop new
habits that focus on covariation of variables.
However, they need knowledge and experience of a
range of functions to draw on. Students are unlikely
to detect an exponential relationship unless they
have seen one before, but they can describe changes
between nearby values in additive terms. A shift to
describing changes in multiplicative terms does not
happen naturally.

We hoped to find evidence about how students
learn to use mathematics to solve problems when it
is not immediately clear what mathematics they
should be using. Some evidence in elementary
situations has been described in an earlier section,
but at secondary level there is only evidence of
successful strategies, and not about how students
come to have these strategies. In modelling and
some other problem-solving situations successful
students know how to identify variables and how to
form an image of simultaneous variation. Successful
students know how to hold one variable still while
the change in another is observed. They are also able
to draw on a repertoire of known function-types to
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say more about how the changes in variables 
are related. It is more common to find secondary
students treating each situation as ad hoc and 
using trial-and-adjustment methods which are
arithmetically-based. Pedagogic intervention over
time is needed to enable them to shift towards
seeing relationships, and relations between relations,
algebraically and using a range of representational
tools to help them do so.

The tendencies described above are specific
instances of a more general issue. ‘Outside’
experiential knowledge is seldom appropriate as 
a source for meaning in higher mathematics, and
students need to learn how to distinguish between
situations where earlier and ‘outside’ understandings
are, and are not, going to be helpful. For example, is
it helpful to use your ‘outside’ knowledge about
cooking when solving a ratio problem about the size
of cakes? In abstract mathematics the same is true:
the word ‘similar’ means something rather vague 
in everyday speech, but has specific meaning in
mathematics. Even within mathematics there are
ambiguities. We have to understand, for example,
that -40 is greater in magnitude than -4, but a 
smaller number.

All students generalise inductively from the examples
they are given. Research evidence of secondary
mathematics reveals many typical problems that 
arise because of generalising irrelevant features 
of examples, or over-generalising the domain of
applicability of a method, but we found little
systematic research to show instances where the
ability to generalise contributes positively to learning
difficult concepts, except to generate a need to learn
the syntax of algebra. 

Finally, we found considerable evidence that
students do, given appropriate experiences over
time, change the ways in which they approach
unfamiliar mathematical situations and new
concepts. We only found anecdotal evidence that
these new ways to view situations are extended
outside the mathematics classroom. There is
considerable evidence from long-term curriculum
studies that the procedures students have to learn
in secondary mathematics are learnt more easily if
they relate to less formal explorations they have
already undertaken. There is evidence that
discussion, verbalisation, and explicitness about
learning can help students make these changes. 

Five common themes across 
the topics reviewed
In our view, a set of coherent themes cuts across the
rich, and at first sight heterogeneous, topics around
which we have organised our outline. These themes
rise naturally from the material that we have
mentioned, and they do not include recent attempts
to link brain studies with mathematical education. In
our view, knowledge of brain functions is not yet
sophisticated enough to account for assigning meaning,
forming mathematical relationships or manipulating
symbols, which we have concluded are the significant
topics in studies of mathematical learning. 

In this section, we summarise five themes that
emerged as significant across the research on the
different topics, summarised in the previous sections.

Number 

Number is not a unitary idea that develops
conceptually in a linear fashion. In learning, and in
mathematical meaning, understanding of number
develops in complementary strands, sometimes with
discontinuities and changes of meaning. Emphasis on
calculation and manipulation with numbers rather
than on understanding the underlying relations and
mathematical meanings can lead to over-reliance and
misapplication of methods.

Most children start school with everyday
understandings that can contribute to their early
learning of number. They understand ‘more’ and ‘less’
without knowing actual quantities, and can compare
discrete and continuous quantities of familiar objects.
Whole number is the tool which enables them to be
precise about comparisons and relations between
quantities, once they understand cardinality.

Learning to count and understanding quantities are
separate strands of development which have to be
experienced alongside each other. This allows
comparisons and combinations to be made that are
expressed as relations. Counting on its own does not
provide for these. Counting on its own also means
that the shift from discrete to continuous number is
a conceptual discontinuity rather than an extension
of meaning. 

Rational numbers (we have used ‘fraction’ and
‘rational number’ interchangeably in order to focus
on their meaning for learners, rather than on their
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mathematical definitions) arise naturally for children
from understanding division in sharing situations,
rather than from partitioning wholes. Understanding
rational numbers as a way of comparing quantities is
fundamental to the development of multiplicative
and proportional reasoning, and to applications in
geometry, science, and everyday life. This is not the
same as saying that children should do arithmetic
with rational numbers. The decimal representation
does not afford this connection (although it is
relatively easy to do additive arithmetic with decimal
fractions, as long as the same number of digits
appears after the decimal point).

The connection between number and quantity
becomes less obvious in higher mathematics, e.g. on
the co-ordinate plane the numbers indicate scaled
lengths from the axes, but are more usefully
understood as values of the variables in a function.
Students also have to extend the meaning of
number to include negative numbers, infinitesimals,
irrationals, and possibly complex numbers. Number
has to be abstracted from images of quantity and
used as a set of related, continuous, values which
cannot all be expressed or depicted precisely.
Students also have to be able to handle number-like
entities in the form of algebraic terms, expressions
and functions. In these contexts, the idea of number
as a systematically related set (and subsets) is central
to manipulation and transformation; they behave like
numbers in relations, but are not defined quantities
that can be enumerated. Ordinality of number also
has a place in mathematics, in the domain of
functions that generate sequences, and also in
several statistical techniques. 

Successful learning of mathematics includes
understanding that number describes quantity; being
able to make and use distinctions between different,
but related, meanings of number; being able to use
relations and meanings to inform application and
calculation; being able to use number relations to
move away from images of quantity and use number
as a structured, abstract, concept.

Logical reasoning plays a crucial
part in every branch of mathematical
learning 

The importance of logic in children’s understanding
and learning of mathematics is a central theme in our
review. This idea is not a new one, since it was also
the main claim that Piaget made about children’s

understanding of mathematics. However, Piaget’s
theory has fallen out of favour in recent years, and
many leading researchers on mathematics learning
either ignore or actively dismiss his and his colleagues’
contribution to the subject. So, our conclusion about
the importance of logic may seem a surprising one
but, in our view, it is absolutely inescapable. We
conclude that the evidence demonstrates beyond
doubt that children rely on logic in learning
mathematics and that many of their difficulties in
solving mathematical problems are due to failures on
their part to make the correct logical move which
would have led them to the correct solution.

We have reviewed evidence that four different
aspects of logic have a crucial role in learning about
mathematics. Within each of these aspects we have
been able to identify definite changes over time in
children’s understanding and use of the logic in
question. The four aspects follow.

The logic of correspondence (one-to-one
and one-to-many correspondence) 
Children must understand one-to-one
correspondence in order to learn about cardinal
number. Initially they are much more adept at
applying this kind of correspondence when they
share than when they compare spatial arrays of
items. The extension of the use of one-to-one
correspondence from sharing to working out the
numerical equivalence or non-equivalence of two or
more spatial arrays is a vastly important step in early
mathematical learning. 

One–to-many correspondence, which itself is an
extension of children’s existing knowledge of one-to-
one correspondences, plays an essential, but until
recently largely ignored, part in children’s learning
about multiplication. Researchers and teachers have
failed to consider that one-to-many correspondence
is a possible basis for children’s initial multiplicative
reasoning because of a wide-spread assumption that
this reasoning is based on children’s additive
knowledge. However, recent evidence on how to
introduce children to multiplication shows that
teaching them multiplication in terms of one-to-many
correspondence is more effective than teaching them
about multiplication as repeated addition.

The logic of inversion 
The subject of inversion was also neglected until
fairly recently, but it is now clear that understanding
that the addition and subtraction of the same
quantity leaves the quantity of a set unchanged is of
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great importance in children’s additive reasoning.
Longitudinal evidence also shows that this
understanding is a strong predictor of children’s
mathematical progress. Experimental research
demonstrates that a flexible understanding of
inversion is an essential element in children’s
geometrical reasoning as well. It is highly likely that
children’s learning about the inverse relation
between multiplication and division is an equally
important a part of mathematical learning, but the
right research still has to be done on this question.
Despite this gap, there is a clear case for giving the
concept of inversion a great deal more prominence
than it has now in the school curriculum.  

The logic of class inclusion and additive
composition 
Numbers consist of other numbers. One cannot
understand what 6 means unless one also knows
that sets of 6 are composed of 5 + 1 items, or 4 +
2 items etc. The logic that allows children to work
out that every number is a set of combination of
other numbers is known as class inclusion. This form
of inclusion, which is also referred to as additive
composition of number, is the basis of the
understanding of ordinal number: every number 
in the number series is the same as the one that
precedes it plus one. It is also the basis for learning
about the decade structure: the number 4321
consists of four thousands, three hundreds two tens
and one unit, and this can only be properly
understood by a child who has thoroughly grasped
the additive composition of number. This form of
understanding also allows children to compare
numbers (7 is 4 more than 3) and thus to
understand numbers as a way of expressing
relations as well as quantities. The evidence clearly
shows that children’s ability to use this form of
inclusion in learning about number and in solving
mathematical problems is at first rather weak, and
needs some support.

The logic of transitivity 
All ordered series, including number, and also forms
of measurement involve transitivity (a > c if a > b
and b > c: a = c if a = b and b = c). Empirical
evidence shows that children as young as 5-years 
of age do to some extent grasp this set of relations,
at any rate with continuous quantities like length.
However, learning how to use transitive relations 
in numerical measurements (for example, of area) is
an intricate and to some extent a difficult business.
Research, including Piaget’s initial research on
measurement, shows that one powerful reason 

for children finding it difficult to apply transitive
reasoning to measurement successfully is that they
often do not grasp the importance of iteration
(repeated units of measurement). These difficulties
persist through primary school. 

One of the reasons why Piaget’s ideas about the
importance of logic in children’s mathematical
understanding have been ignored recently is
probably the nature of evidence that he offered for
them. Although Piaget’s main idea was a positive
one (children’s logical abilities determine their
learning about mathematics), his empirical evidence
for this idea was mainly negative: it was about
children’s difficulties with the four aspects of logic
that we have just discussed. A constant theme in
our review is that this is not the best way to test 
a causal theory about mathematical learning. We
advocate instead a combination of longitudinal
research with intervention studies. The results of this
kind of research do strongly support the idea that
children’s logic plays a critical part in their
mathematical learning.

Children should be encouraged to
reflect on their implicit models and
the nature of the mathematical tools  

Children need to re-conceptualise their intuitive
models about the world in order to access the
mathematical models that have been developed in
the discipline. Some of the intuitive models used by
children lead them to appropriate mathematical
problem solving, and yet they may not know why
they succeeded. This was exemplified by students’
use of one-to-many correspondence in the solution
of proportions problems: this schema of action leads
to success but students may not be aware of the
invariance of the ratio between the variables when
the scheme is used to solve problems. Increasing
students’ awareness of this invariant should improve
their mathematical understanding of proportions.

Another example of implicit models that lead to
success is the use of distributivity in oral calculation
of multiplication and division. Students who know
that they can, instead of multiplying a number by 15,
multiply it by 10 and then add half of this to the
product, can be credited with implicit knowledge of
distributivity. It is possible that they would benefit
later on, when learning algebra, from the awareness
of their use of distribitivity in this context. This
understanding of distributivity developed in a
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context where they could justify it could be used 
for later learning.

Other implicit models may lead students astray.
Fischbein, Deri, Nello and Marino (1985) and 
Greer (1988) have shown that some implicit models
interfere with students’ problem solving. If, for
example, they make the implicit assumption that in 
a division the dividend must always be larger than
the divisor, they might shift the numbers around in
implementing the division operation when the
dividend is actually smaller than the divisor. So, when
students have developed implicit models that lead
them astray, they would also benefit from greater
awareness of these implicit models.

The simple fact that students do use intuitive models
when they are learning mathematics, whether the
teacher recognises the models or not, is a reason for
wanting to help students develop an awareness of
the models they use. Instruction could and should
play a crucial role in this process. 

Finally, reflecting on implicit models can help students
understand mathematics better and also link
mathematics with reality and with other disciplines
that they learn in school. Freudenthal (1971) argued
that it would be difficult for teachers of other
disciplines to tie the bonds of mathematics to reality
if these have been cut by the mathematics teacher. 
In order to tie these bonds, mathematics lessons can
explore models that students use intuitively and
extend these models to scientific concepts that have
been shown to be challenging for students. One of
the examples explored in a mathematics lesson
designed by Treffers (1991) focuses on the
mathematics behind the concept of density. He tells
students the number of bicycles owned by people 
in United Kingdom and in the Netherlands. He also
tells them the population of these two countries. 
He then asks them in which country there are more
bicycles. On the basis of their intuitive knowledge,
students can easily engage in a discussion that leads
to the concept of density: the number of bicycles
should be considered in relation to the number 
of people. A similar discussion might help students
understand the idea of population density and of
density in physics, a concept that has been shown to
be very difficult for students. The discussion of how
one should decide which country has more bicycles
draws on students’ intuitive models; the concept of
density in physics extends this model. Streefland and
Van den Heuvel-Panhuizen (see Paper 4) suggested
that a model of a situation that is understood

intuitively can become a model for other situations,
which might not be so accessible to intuition.
Students’ reflection about the mathematics
encapsulated in one concept is termed by Treffers
horizontal mathematising; looking across concepts
and thinking about the mathematics tools themselves
leads to vertical mathematising, i.e. a re-construction
of the mathematical ideas at a higher level of
abstraction. This pragmatic theory about how
students’ implicit models develop can be easily put 
to test and could have an impact on mathematics as
well as science education.

Mathematical learning depends on
children understanding systems of
symbols 

One of the most powerful contributions of recent
research on mathematical learning has come from
work on the relation of logic, which is universal, to
mathematical symbols and systems of symbols, which
are human inventions, and thus are cultural tools that
have to be taught. This distinction plays a role in all
branches of mathematical learning and has serious
implications for teaching mathematics. 

Children encounter mathematical symbols
throughout their lives, outside school as well as in
the classroom. They first encounter them in learning
to count. Counting systems with a base provide
children with a powerful way of representing
numbers. These systems require the cognitive skills
involved in generative learning. As it is impossible to
memorise a very long sequence of words in a fixed
order, counting systems with a base solve this
problem: we learn only a few symbols (the labels for
units, decades, hundred, thousand, million etc.) by
memory and generate the other ones in a rule-
based manner. The same is true for the Hindu-Arabic
place value system for writing numbers: when we
understand how it works, we do not need to
memorise how each number is written.

Mathematical symbols are technologies in the sense
that they are human-made tools that improve our
ability to control and adapt to the environment. Each
of these systems makes specific cognitive demands
from the learner. In order to understand place-value
representation, for example, students’ must
understand additive composition. If students have
explicit knowledge of additive composition and how
it works in place-value representation, they are
better placed to learn column arithmetic, which
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should then enable students to calculate with very
large numbers; this task is very taxing without
written numbers. So the costs of learning to use
these tools are worth paying: the tools enable
students to do more than they can do without the
tools. However, research shows that students should
be helped to make connections between symbols
and meanings: they can behave as if they understand
how the symbols work while they do not
understand them completely: they can learn routines
for symbol manipulation that remain disconnected
from meaning. 

This is also true of rational numbers. Children 
can learn to use written fractions by counting the
number of parts into which a whole was cut and
writing this below a dash, and counting the number
of parts painted and writing this above the dash.
However, these symbols can remain disconnected
from their logical thinking about division. These
disconnections between symbols and meaning are
not restricted to writing fractions: they are also
observed when students learn to add and subtract
fractions and also later when students learn
algebraic symbols. 

Plotting variables in the Cartesian plane is another
use of symbol systems that can empower students:
they can, for example, more easily analyse change 
by looking at graphs than they can by intuitive
comparisons. Here, again, research has shown how
reading graphs also depends on the interpretations
that students assign to this system of symbols.

A recurrent theme in the review of research across
the different topics was that the disconnection
between symbols and meanings seems to explain
many of the difficulties faced by primary school
students in learning mathematics. The inevitable
educational implication is that teaching aims should
include promoting connections between symbols
and meaning when symbols are introduced and used
in the classroom.

This point is, of course, not new, but it is well
worth reinforcing and, in particular, it is well worth
remembering in the light of current findings. The
history of mathematics education includes the
development of pedagogical resources that were
developed to help students attribute meaning to
mathematical symbols. But some of these resources,
like Dienes’ blocks and Cuisinaire’s rods, are only
encountered by students in the classroom; the
point we are making here is that students acquire

informal knowledge in their everyday lives, which
can be used to give meaning to mathematical
symbols learned in the classroom. Research in
mathematics education over the last five decades 
or so has helped describe the situations in which
these meanings are learned and the way in which
they are structured. Curriculum development work
that takes this knowledge into account has already
started (a major example is the research by
members of the Freudenthal Institute) but it is 
not as widespread as one would expect given the
discoveries from past research.

Children need to learn modes of enquiry
associated with mathematics
We identify some important mathematical modes 
of enquiry that arise in the topics covered in this
synthesis. 

Comparison helps us make new
distinctions and create new objects 
and relations
A cycle of creating and naming new objects through
acting on simple objects pervades mathematics, and
the new objects can then be related and compared 
to create higher-level objects. Making additive and
multiplicative comparisons is an aspect of
understanding relations between quantities and
arithmetic. These comparisons are manifested precisely
as difference and ratio. Thus difference and ratio arise
as two new mathematical ideas, which become new
mathematical objects of study and can be represented
and manipulated. Comparisons are related to making
distinctions, sorting and classifying based on
perceptions, and students need to learn to make
these distinctions based on mathematical relations 
and properties, rather than perceptual similarities.

Reasoning about properties and relations
rather than perceptions
Many of the problems in mathematics that students
find hard occur when immediate perceptions lead to
misapplication of learnt methods or informal
reasoning. Throughout mathematics, students have to
learn to interpret representations before they think
about how to respond. They need to think about the
relations between different objects in the systems
and schemes that are being represented. 

Making and using representations
Conventional number symbols, algebraic syntax,
coordinate geometry, and graphing methods, all afford
manipulations that might otherwise be impossible.
Coordinating different representations to explore and
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extend meaning is a fundamental mathematical skill
that is implicit in the use of the number line to
represent quantities, for example, the use of graphs to
express functions. Equivalent representations, such as
for number, algebraic relationships and functions, can
provide new insights through comparison and
isomorphic analogical reasoning.

Action and reflection-on-action
Learning takes place when we reflect on the effects 
of actions. In mathematics, actions may be physical
manipulation, or symbolic rearrangement, or our
observations of a dynamic image, or use of a tool. 
In all these contexts, we observe what changes and
what stays the same as a result of actions, and make
inferences about the connections between action and
effect. In early mathematics such reflection is usually
embedded in children’s classroom activity, such as
when using manipulatives to model changes in
quantity. In later mathematics changes and invariance
may be less obvious, particularly when change is
implicit (as in a situation to be modelled) or useful
variation is hard to identify (as in a quadratic function).

Direct and inverse relations 
Direct and inverse relations are discussed in several
of our papers. While it may sometimes be easier to
reason in a direct manner that accords with action, it
is important in all aspects of mathematics to be able
to construct and use inverse reasoning. Addition 
and subtraction must be understood as a pair, and
multiplication and division as a pair, rather than as a
set of four binary operations. As well as enabling
more understanding of relations between quantities,
this also establishes the importance of reverse chains
of reasoning throughout mathematical problem-
solving, algebraic and geometrical reasoning. For
example, using reverse reasoning makes it more
likely that students will learn the dualism embedded
in Cartesian representations; that all points on the
graph fulfil the function, and the function generates
all points on the graph.

Informal and formal reasoning
At first young children bring everyday understandings
into school, and mathematics can allow them to
formalise these and make them more precise. On the
other hand, intuitions about continuity, approximation,
dynamic actions and three-dimensional space might
be over-ridden by early school mathematics – yet are
needed later on. Mathematics also provides formal
tools which do not describe everyday outside
experience, but enable students to solve problems in
mathematics and in the world which would be

unnoticed without a mathematical perspective. In 
the area of word problems and realistic problems
learning when and how to apply informal and formal
reasoning is important. Later on, counter-intuitive
ideas have to take the place of early beliefs, such as
‘multiplication makes things bigger’ and students have
to be wary of informal, visual and immediate
responses to mathematical stimuli.

A recurring issue in the papers is that students find 
it hard to coordinate attention on local and global
changes. For example, young children confuse
quantifying ‘relations between relations’ with the
original quantities; older children who cannot identify
covariation of functions might be able to talk about
separate variation of variables; students readily see
term-to-term patterns in sequences rather than the
generating function; changes in areas are confused
with changes in length.

Epilogue
Our aim has been to write a review that summarises
our findings from the detailed analysis of a large
amount of research. We sought to make it possible
for educators and policy makers to take a fresh look
at mathematics teaching and learning, starting from
the results of research on key understandings, rather
than from previous traditions in the organisation of
the curriculum. We found it necessary to organise
our review around ideas that are already core ideas
in the curriculum, such as whole and rational
number, algebra and problem solving, but also to
focus on ideas that might not be identified so easily
in the current curriculum organisation, such as
students’ understanding of relations between
quantities and their understanding of space. 

We have tried to make cogent and convincing
recommendations about teaching and learning, 
and to make the reasoning behind these
recommendations clear to educationalists. We 
have also recognised that there are weaknesses in
research and gaps in current knowledge, some of
which can be easily solved by research enabled by
significant contributions of past research. Other gaps
may not be so easily solved, and we have described
some pragmatic theories that are, or can be, used by
teachers when they design instruction. Classroom
research, stemming from the exploration of these
pragmatic theories, can provide new insights for
further research in the future.
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Endnotes
1 Details of the search process is provided in Appendix 1. This

contains the list of data bases and journals consulted and the
total number of papers read although not all of these can be
cited in the six papers that comprise this review.
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