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Foreword 
 
In 2009, the Nuffield Foundation published Key understandings in mathematics learning, a 
review of the research literature on how children learn mathematics. It has been widely read and 
has already had an impact on mathematics teaching and policy in several countries.  
 
Probability was not included in Key understandings, and we subsequently commissioned two of 
its authors, Professors Peter Bryant and Terezinha Nunes from the University of Oxford, to 
examine the evidence on this topic.  
 
There are four key reasons for our interest in probability. First, we wondered whether the 
teaching and learning of probability took sufficient account of children’s prior knowledge of 
fairness, randomness and chance - concepts which are acquired at a very young age and which 
lay the foundations for probabilistic thinking. Key understandings noted that primary school 
geometry often failed to build on children’s pre-school knowledge of spatial relations, and we 
thought probability might offer an interesting parallel. Second, the extent to which probability 
forms part of the primary curriculum has been subject to change in recent decades and so a 
consolidation of the evidence is timely. Third, this evidence is essential to underpin further 
research and development work, and fourth, probability is particularly relevant to our interest in 
statistical literacy in the wider population. Adults as well as children often find it difficult to think 
rationally about probability and randomness, so early encounters with these concepts are 
important.  
 
In this review, the authors identify four ‘cognitive demands’ made on children when learning 
about probability, and examine evidence in each of these areas: randomness, the sample 
space, comparing and quantifying probabilities, and correlations. They draw together 
international evidence, from the early years through to adulthood, and highlight studies that are 
of particular relevance to teaching. They also identify areas that have been relatively neglected 
and would benefit from further research, particularly from fully evaluated intervention projects.  
 
Indeed, the authors are currently seeking to address some of these gaps through a large-scale 
controlled study of the teaching of probability to 9-to-10-year-olds, which the Foundation is 
pleased to be funding.  
 
We are grateful to the authors for their unstinting enthusiasm and commitment to this topic. The 
review is an informative and engaging read for anyone interested in how we understand (and 
misunderstand) probability, and provides valuable evidence that could be used to inform both 
teaching approaches and the design of future research. 
 

 
 
Josh Hillman, Director of Education 
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Summary report 

The ‘cognitive demands’ of understanding probability  
 
Many of the events and relations in people’s lives are well understood and entirely predictable. 
If we knock a glass over, the liquid in it spills. If John is Michael’s father, John must be older 
than Michael. Other events and associations, such as a road accident or winning a lottery, are 
less predictable because they happen randomly. People know they might happen, but are 
uncertain if and when they will happen.  
 
We can, nevertheless, reason logically about random events. This reasoning allows us to work 
out the probability of particular outcomes, and thus to understand the risks and possible benefits 
of acting in one way rather than another.  
 
The understanding of the implications of randomness also lies at the centre of all statistical 
thinking. We decide the significance of any difference, for example in the recovery rates of 
patients given a specific drug and of others given a placebo, by calculating whether this 
difference could have happened by chance. Many associations, such as the association 
between income and health, are imperfect, and the most effective way of working out whether 
there is a genuine relation between two variables is to work out how much of the association 
could be due to random factors.  
 
Randomness and uncertainty play an important part in scientific thinking as well, since many 
physical processes, such as the movement of subatomic particles are random, and need to be 
analysed in terms of probability.  
 
Another good reason for people to be able to think rationally about randomness and uncertainty 
is that randomisation plays an important part in ensuring fairness in their every daily lives. 
Playing cards are shuffled and people are selected by lot to ensure that no one is given an 
unfair start.  
 
Despite the central importance of randomness and probability in our lives, it is clear that 
children, and many adults as well, often have great difficulty in thinking rationally about, and 
quantifying, probability. Probability is quite a complex concept, and in order to learn about it we 
have to draw on our understanding of four different aspects of events and the sequence in 
which they occur. These four ‘cognitive demands’, as we call them in the report, are:  
 

• Understanding randomness: To understand the nature and the consequences of 
randomness, and the use of randomness in our everyday lives. 

  
• Working out the sample space: To recognise that the first and essential step in solving 

any probability problem is to work out all the possible events and sequences of events 
that could happen. The set of all the possible events is called ‘the sample space’ and 
working out the sample space is not just a necessary part of the calculation of the 
probabilities of particular event, but also an essential element in understanding the 
nature of probability.  

 



4 
 

• Comparing and quantifying probabilities: Probabilities are quantities based on 
proportions, and one has to calculate these proportions to make most (but not all) 
comparisons of the probabilities of two or more events. These proportions can be 
expressed as decimals, as fractions or as ratios.  

 
• Understanding correlation (or relationships between events): An association 

between two kinds of event could happen randomly or, alternatively, could represent a 
genuine relationship. To discover whether there is a non-random relation or not, we have 
to attend to the relation between confirming and disconfirming evidence and check 
whether the frequency of confirming cases could have happened by chance. This means 
that, in order to understand correlations, we need to understand all three ideas 
mentioned above.  
 

Randomness  
 
Randomisation is a common and important part of everyday life, but it is clear that many adults’ 
grasp of the nature of randomness and its consequences is quite tenuous. Research on young 
children suggests they have even more difficulty understanding randomness than adults.  
 
Some aspects of randomness may be easier to understand than others. There are claims, for 
example, that even babies can understand the link between uncertainty and randomness. One 
study apparently shows that babies realise that choices made by people who cannot see what 
they are doing will be random, and governed by probability, whereas people who can see what 
they are doing will choose items that they want (Denison and Xu, 2009). However, problems 
with the design of this study mean it is not possible to reach a definite conclusion about this.  
 
Piaget and Inhelder (1975) were the first to study children’s understanding of randomness. In a 
classic experiment, they progressively randomised the position of marbles of two different 
colours, which were initially grouped by colour at one end of a tray, by tilting the tray and letting 
the marbles roll to the other side, and then by tilting it back and forth repeatedly. Young children 
could not predict the consequent jumbling of the two colours. However, this context was 
probably strange to the children, and the study needs to be done again with forms of 
randomisation, like shuffling cards, that are more familiar to children.  
 
Research, using computer microworlds, has shown that by the age of about ten, many children 
realise that there is an association between randomness and fairness, and that randomisation 
can be an effective way of ensuring fair allocations (Pratt and Noss, 2002; Paparistodemou et 
al, 2008; Watson et al, in press). This association could be used to teach children more about 
the nature of randomness.  
 
A common mistake made by adults and children, is to disregard the independence of 
successive events in a random situation. One’s chance of getting a tail on the next toss of a 
coin is not affected by what happened on previous throws. Even if the last six throws were all 
tails, the result is no more or less likely to be a tail again on the next throw than it was on the 
first. Many people make the mistake of judging that, after a run of one kind of outcome, a 
different outcome is more likely the next time round. This is called the ‘negative recency’ effect. 
Another kind of mistake, called the ‘positive recency’ effect, is to predict after a run of one 
outcome that the same outcome is more likely to happen the next time. Many adults (Gilovich et 
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al, 1985) and most children make these mistakes, but recent research shows a higher 
proportion of positive recency errors among children than among adults and vice versa with 
negative recency errors (Chiesi and Primi, 2009). 
 

Sample space  
 
We can only calculate the probabilities of particular events if we know what all the possibilities 
are. The complete set of possibilities in a probability problem is called its ‘sample space’. 
Working out the sample space is the essential first step in solving any probability problem 
(Keren, 1984; Chernoff, 2009), and in many it is the most important, since the solution is often 
quite obvious to someone who knows all the possibilities. Yet this aspect of probability has been 
relatively neglected in research on children’s ideas about chance, which has concentrated for 
the most part on children’s understanding of randomness and on their ability to quantify and 
compare probabilities.  
 
Much of the information on people’s awareness and use of sample space comes from mistakes 
that children and adults make in reasoning about probability, which they wouldn’t have made if 
they had a thorough grasp of the relevant sample space (Fischbein and Gazit, 1984; LeCoutre 
and Durand, 1988; LeCoutre, 1992; Van Dooren et al, 2003). 
 
In many probability problems it is necessary not only to list all the possibilities in the sample 
space, but also to classify them. This second step, which is usually referred to as `aggregation’, 
can cause many children a great deal of difficulty. For example, if you throw two dice at the 
same time, there are 36 possible equiprobable outcomes (1,1; 1,2; 1,3 etc.). But, if you record 
the result in terms of the sum of the two numbers thrown, there are only 11 possible outcomes 
for the sums, which are two to12, and they are not equiprobable: a total of seven is twice as 
likely as a total of four, for example, because only three of the 36 possible pairs add up to four, 
whereas six of them add up to seven. Thus the individual outcomes are equiprobable but the 
aggregated outcomes are not. This difference causes great difficulty to some children 
(Abrahamson, 2009), and possible ways to address this would be an interesting question for 
further research.  
 
The importance of the sample space also raises a general cognitive question, which is fairly 
obvious, but has never been discussed. To work out the sample space, the child must imagine 
the future in a particular way, and has to think of all the possible events that could occur in a 
particular context. There is some research on children’s anticipation of particular and highly 
determined future events, but none on their ability to construct an exhaustive list of alternative, 
and uncertain, possibilities. Studies of this aspect of thinking about probability are sorely 
needed. 
 

Quantifying probabilities  
 
Probability is a quantity: it is a quantity based on proportions, and is usually expressed as a 
decimal number, a percentage or a ratio. The solution to most probability problems rests on the 
calculation of one or more proportions, but a few can be solved on the basis of simple relations 
like ‘more’ or ‘larger’.  
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There is some evidence that even babies in their first year of life form expectations about the 
relative probability of two different possible events (Teglas et al, 2007; Xu and Garcia, 2008; Xu 
and Denison, 2009). They are surprised when someone draws mostly red balls from a container 
that they know to contain many more white than red balls. This reaction to an improbable 
outcome is evidence that they have some idea of the difference between probable and 
improbable outcomes. However, this is not evidence that they understand the proportional 
nature of probability. 
  
Proportional reasoning in general, and not just proportional reasoning about probability, is 
difficult for young children. In the sphere of probability, this difficulty is most clearly illustrated by 
tasks in which children have to compare two or more different probabilities. Martignon and 
Krauss (2009) cite an example of this in a problem given to 15 year-olds: ‘Box A contains one 
white and two black marbles. Box B contains two white and five black marbles. You have to 
draw a marble from one of the boxes with your eyes covered. From which box should you draw 
if you want a white marble?’ The solution is not to be found in the absolute numbers of the two 
colours, but in the proportion of white marbles in each box. A large majority of the 15-year-olds 
given this problem made the wrong choice. Research by Piaget and Inhelder (1975), Falk et al 
(1980), Fischbein and Gazit (1984), and Falk and Wilkening (1998), does establish that pupils 
get better at making proportional calculations of probability as they grow older. However, there 
is no evidence to support Piaget’s view that nearly everyone eventually becomes able to reason 
about probabilities proportionally. It is possible that many people never manage to do so 
effectively. 
  
Proportions can be thought of, and calculated, in two ways. One is as a relation of a part to the 
whole. If a box contains two red and six blue marbles, the whole is all the eight marbles and the 
proportion of red marbles is 2/8 or 0.25, and of blue marbles 6/8 or 0.75, and this proportion is 
usually expressed as a fraction or a decimal number. The other is as the relation of one part to 
another, which is expressed as a ratio. In this example, the ratio of red to blue marbles is 2:6 or 
1:3. There is good evidence that children come to understand proportions as ratios (part-part 
relations) before they understand them as fractions (part-whole relations) (Nunes and Bryant, 
1996). This important distinction, however, has never been studied systematically in research 
on children’s understanding of probability. Nonetheless, the reports of children’s justification for 
their correct answers in probability comparisons in Piaget and Inhelder’s (1975) and in 
Fischbein’s research suggest that for the most part they used ratios rather than fractions in their 
reasoning (Fischbein, 1987; Fischbein and Gazit, 1984). The implication of this hypothesis is 
that children would learn about probabilities more easily if they are initially introduced as ratios. 
 
In many instances, the probability of an event is dependent on the probability of another event. 
These conditional probabilities often cause adults, as well as children, a great deal of difficulty, 
as Kahneman and Tversky’s (1972) work has established. An example of a conditional 
probability problem is a question about the likelihood that someone who has tested positive for 
a particular disease actually has that disease, when the incidence of the disease is 0.001 (or 1 
in 1000) and the false positive rate for the test is 0.05 (or 5%). In this case the correct answer is 
dependent, not just on the false positive rate, but also on the incidence of the disease in the 
general population. Many people, however, attend only to the false positive rate of the test and 
not to the incidence of the disease, and this leads them to wildly incorrect calculations (in this 
example, to the incorrect answer that the probability is 0.95).  
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Recent research has shown that children and adults are much more likely to work out 
conditional probabilities correctly if the basic information is given as absolute numbers (one 
person in a thousand has the disease: five out of a hundred people who do not have the 
disease will test positive) than as decimal fractions (the probability of someone having the 
disease is 0.001, and the false positive rate is 0.05) (Hoffrage et al, 2002; Zhu and Gigerenzer, 
2006). This interesting difference may be connected to the distinction between working with 
ratios and with fractions in probability problems. It is relatively easy to convert absolute numbers 
into ratios. Thus, the suggestion of teaching children about probabilities by first presenting these 
as ratios, rather than as fractions, may hold for conditional, as well as for simple, probabilities. It 
would be easy to do research on this idea. 
 

Correlations  
 
When two events happen together, their co-incidence might be either a random occurrence or 
the result of a genuine relationship. Since most such relationships are imperfect (taller people 
are usually heavier than shorter people but some short people weigh more than expected and 
some tall people weigh less than expected), we have to work out whether the imperfection of 
the association amounts to randomness or to a regular relation with exceptions. Thus, 
correlational thinking depends, at least partly, on an understanding of randomness. 
  
Correlational thinking also depends on children realising that the way to work out whether an 
association is random or not is to consider the relative amount of confirming and disconfirming 
evidence. It is difficult to consider the relative amount of confirming and disconfirming evidence 
without systematic records and their quantification. When people use simple intuitive reasoning, 
they often fall prey to a confirmation bias: they pay more attention to the confirming than to the 
disconfirming evidence (Wason, 1968; Evans, 1989; Nickerson, 1998). Examples of this 
tendency are the idea that someone may have a winning streak in a casino, as if the turning of 
the roulette wheel had a connection with the player’s choice, or that basketball players can have 
a hot hand, as if the fact that they scored in their last attempt makes it more likely that they will 
score again (Gilovich et al, 1985). Professionals working in clinical situations must be 
particularly aware of this confirmation bias: they see a biased sample of people and it is difficult 
for them to avoid this bias without systematic research (Chapman and Chapman, 1967; 1975). 
For example, if clinicians think that people only get better from problem X with a treatment that 
they prescribe, they must remember that the people who get better without the treatment are 
the people that they did not see, so they need to be aware of the risks of confirmation bias. 
 
There is evidence that some adolescents do learn about the need to work out the relationship 
between the confirming and the disconfirming cases, and to do so proportionally (Inhelder and 
Piaget, 1958), but it is not clear yet how general this learning is. It is possible that only a minority 
learn to consider and relate the two kinds of evidence (Adi et al, 1978; Karplus et al, 1980; 
Batanero et al, 1996), and possibly only in situations where the two types of evidence can be 
systematically quantified and compared (Ross and Cousins, 1993). If this is the case, education 
should play a major role in people’s understanding of correlation (Vass et al, 2000).  
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The future of research on children and probability  
 
Research on children’s understanding of probability has produced many interesting and 
educationally valuable conclusions, such as children’s understanding of randomness in the 
context of fairness and the difficulties they have in reasoning proportionally in the context of 
probability. However, some aspects of children’s reasoning about probability have been 
relatively neglected, such as the cognitive basis for constructing the problem space and the 
relative effectiveness of presenting and calculating proportions as ratios or as fractions. Another 
serious gap in research on children’s ideas about probability is in longitudinal research, which is 
needed to establish how well children’s early understanding and insights predict their overall 
learning later on, and also how complete their understanding of probability is by the time they 
leave school.  
 
We make two main recommendations. The first is to take advantage of research designs that 
have been successful in research on other aspects of children’s intellectual development. In 
particular, we recommend the combined use of intervention and longitudinal methods to study 
the links between the four aspects of probability, and to establish what experiences and abilities 
children need in order to learn about chance and uncertainty. This would provide a scientific 
basis for the effective teaching of probability. 
 
Our second recommendation is that researchers on children’s understanding of probability 
should pay much more attention to the great amount of related data that exists on other aspects 
of cognitive development. Probability makes a number of different cognitive demands and most 
of these demands are shared with other aspects of cognitive development about which we know 
a great deal. Probability is an intensive quantity, but so are density and temperature. Analyses 
of the sample space require combinatorial reasoning: so do many branches of scientific 
thinking. We think that many people doing research on probability have not paid attention to 
research on these related topics, and have missed out on potentially valuable information. 
......................................................................................................................................................... 
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1. Introduction 

What is special about probability? 
 
Many of the things that we do and of the events that happen around us have consistent and 
entirely predictable outcomes. When it rains, the garden gets wet, and so do we if we go outside 
without an umbrella. We press a particular button and a radio starts, flick the right switch and a 
light comes on. Adults, and children too, readily understand how one thing can lead to another 
(Bullock and Gelman, 1979; Schultz, 1982), and they base a great deal of what they do and 
what they plan to do on straightforward causal sequences like these. 
 
Other kinds of event and other actions have consequences that are not so certain, but are 
lawful nonetheless. We cannot say what will happen, heads or tails, when we toss a coin, but 
we do know a lot about what is likely to happen. If we toss it once, we are just as likely to throw 
a head as a tail, and if we toss it several times we are more likely to throw a mixture of heads 
and tails than just heads or just tails. The more times we toss the coin, the more equal will be 
the proportions of heads and tails in our throws. The sum of the two proportions will be 1, and 
so the probability of heads (expressed as a proportion) will be 1 <minus sign>- the probability of 
tails.  
 
Our understanding of the probability of uncertain outcomes plays an extremely important part in 
our lives. We depend on it to decide about the medical treatment that we should follow, the 
insurance that we need, the car that we buy, and the precautions that we should take to protect 
our families and our homes. All these, and many other decisions depend on our knowledge of 
possible events that might happen and on our understanding of how likely these different events 
are. Sometimes we can use more information about events than just their general likelihood, 
and this informs decisions that we make as well as decisions that others make on our behalf. 
For example, if it is known that some areas in a city are more likely to be flooded than others, 
insurance companies may charge more for insuring homes in that area than in other areas; if we 
are buying a house, we may decide not to buy one in those neighbourhoods; and if flood 
prevention measures were taken to protect a neighbourhood, we might decide to risk it and buy 
a house there, although we know that preventative measures do not necessarily mean that 
there won’t be a flood in the area. Similarly, if it is known that there is an association between 
being in a certain age range and being less likely to have a car accident, insurance companies 
may try to attract customers that cost them less money in the long run by offering them lower 
rates of insurance. 
 
We also need this knowledge to deal with the ever-increasing use of statistics in modern life, 
since statistical comparisons are based on calculations about the probability of certain events, 
and can only be properly understood in that way. Our role as responsible citizens also depends 
increasingly on an understanding of probability, since many political and legal decisions are 
influenced by the assumptions about the probability and the improbability of certain events that 
are held by the people who make these decisions. Dawes (2001) suggests that in the last 100 
years or so probabilistic thinking has been applied to everyday life, with serious consequences 
for citizens. ‘Currently, for example, jurors are often asked to determine manufacturer or 
company liability on the basis of differential rates of accidents or cancers; in such judgments, 
jurors cannot rely on deterministic reasoning that would lead to a specification of exactly which 
negative outcome is due to what; nor can they rely on "experience” in these contexts in which 
they have had none.’ (Dawes, 2001, p. 12082). So, jurors, who are faced with this kind of 
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problem, need to be able to reason, and to understand other people’s reasoning, about 
probability. 
 
These reasons for learning and knowing about probability may seem to have something of a 
negative tone, dwelling as they do on uncertainty, illness, floods, and accidents, but learning 
about probability has a positive and no less important side to it. One is that randomness is 
useful. It is an indispensable basis for being fair: shuffling cards to make sure that everyone has 
the same chance of getting a good hand, tossing a coin to decide who will start the serving or 
the batting, and distributing prizes and deciding which teams play each other in the opening 
games of the World Cup by lottery are clear examples of people using randomness to ensure 
fairness. Thus, randomness is an important part of everyday life. It is also, increasingly, an 
important part of science, quantum theory is about subatomic particles which move randomly: 
the central part of this theory is the Heisenberg uncertainty principle, and its implication is that 
we have to use the mathematics of chance to understand the physical movement of these 
particles.  
 
We need, therefore, to understand probability in our everyday lives and as part of our 
intellectual understanding of the world around us. Children also need to understand probability. 
They, too, depend on randomness in formal and informal games, and they often have to deal 
with uncertainty. Yet, many people, adults as well as children, often find it hard to work out the 
probability of future events accurately, even in quite straightforward contexts and even though 
the calculations they need to make are often very simple indeed.  

Four steps to understanding probability 
 
Our starting point in this report on children’s understanding and learning about probability is the 
sheer variety of the kinds of reasoning that are needed to solve problems about chance and 
uncertainty. This is illustrated quite dramatically by the many different kinds of mistakes that 
people make when reasoning about chance and uncertainty. Here are four examples of 
common, and yet diverse, obstacles to clear and logical reasoning about chance. 
  
The first is the imperfect grasp that many people have of the independence of individual events 
in a random sequence. After tossing a coin and throwing three heads in a row, they judge that 
the next throw is much more likely as a result to be a tail than a head. This is a mistake, since a 
head is just as likely as a tail the next time, whatever happened in earlier throws, and it is a 
mistake with a name: it is usually called the negative recency bias. It has its mirror-image 
counterpart, the positive recency bias, which is the belief that an event that has happened by 
chance several times over is as a result more probable than before to happen the next time. 
Players, coaches and fans believe that, when a player scores in basketball, his chances of 
making the next scoring shot increase, although massive records of individual players in real 
games show this not to be the case (Gilovich, Vallone, and Tversky, 1985). Children, not 
surprisingly, also tend to make the same mistakes (Chiesi and Primi, 2009).  
 
Our second example is about people working out what the possibilities are. This is an essential 
part of understanding probability, since in every probability problem there is bound to be a 
number of different possible outcomes. There are four possible outcomes (22) when you toss a 
coin twice (HH, HD, DH or DD), eight (23) when you toss it three times and so on. The number 
and the nature of all the possible outcomes is usually referred to as ‘the sample space’, and 
forming and then analysing this space is a crucial part of solving any probability problem, since 
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it determines how likely each outcome is. Yet, even well-educated adults often fail to imagine 
the form of the sample space correctly (Chernoff, 2009). In one study (Keren, 1984) the 
researcher told some university students a story about a game played by two boys (D and M) in 
which they jointly chose one card from a pack of cards. If the card was red, a coin was given to 
D and, if it was black, the coin was given to M. The boys did this three times and so the sample 
space for this story consisted of eight possible equiprobable events, which are (where D means 
D winning the coin, and M means M winning the coin) DDD, MMM, DDM, DMD, DMM, MMD, 
MDM, MDD. In only two of these outcomes is one boy the winner on all three occasions. In the 
remaining six cases, one boy gets two of the coins and the other one. Thus, the first of these 
two types of outcome – both boys win something, is three times as likely as the second – one 
boy scoops the lot. Yet 48% of the university students judged the two types of outcome as 
equally probable. They simply failed to work out the sample space. 
 
Our third example is about calculating probabilities. Anyone who knows the sample space in a 
probability problem can then calculate a precise figure for the probability of particular events. 
This figure is usually a proportion, though it is sometimes given as a percentage or a fraction or 
a ratio. The proportional probability figure for each of the eight possible events in the problem 
that we have just described is 0.125; for the less probable of the two types of outcome, one boy 
scoops the lot, it is 0.25 and for the most probable of the two types of outcome, each boy gets 
something, it is 0.75. If the information were presented as a ratio, one would say that there is 1 
chance in 4 that one boy scoops the lot and 3 chances in 4 that each of them gets something. 
One big advantage of the proportional figures is that they make it possible to compare the 
probabilities of different events with different sample spaces.  
 
An example of a problem with this type of comparison comes from the 2003 PISA report (Pisa 
Consortium Deutschland, 2004, cited by Martignon and Krauss, 2009). This describes a 
problem given to a large number of 15-year-old German students: ‘Consider two boxes, A and 
B. Box A contains 3 marbles of which 1 is white and 2 are black. Box B contains 7 marbles of 
which 2 are white and 5 black. You have to draw a marble from one of the boxes with your eyes 
covered. From which box should you draw if you want a white marble?’ The absolute sample 
spaces are different in the two options but they can easily be compared by calculating the 
proportion of white marbles in A and in B: the answer is 0.33 in A and 0.29 in B, which makes 
Box A the correct answer. Yet, only 27% of these 15-year-old students (less even than chance-
level) answered this question correctly, even though the mere choice of Box A with no further 
justification was counted as correct.  
 
The fourth example is about understanding the association between two different events. In this 
case, the critical issue is to discriminate randomness from non-randomness. For some events, 
we can be relatively certain that one thing follows another: when we turn a particular knob, the 
radio goes on, or if we cut a finger, some blood will come out. But for many events in our lives, 
things are not so clear-cut. One example of strong, but by no means certain, associations is the 
diagnosis of illnesses. Illnesses are complex and the same illness may show a symptom in most 
patients but not in all. Conversely, the appearance of what may be a symptom of an illness in a 
person does not give us certainty that the person has this particular illness. So, many diagnostic 
tests have to be understood in terms of probabilities. Gigerenzer (2002) discusses the case of 
the association between the results of breast cancer screening using mammography and 
actually having breast cancer to illustrate this point. In women aged 40 to 50 who show no 
symptoms on the test but nevertheless have breast cancer, the probability of having a positive 
mammogram is 0.9. If a woman without symptoms and in the same age range does not have 
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breast cancer, the probability of her showing a positive mammogram is 0.07. Clearly, there is no 
certainty after a mammogram. Yet, mammograms are useful screening devices, and the 
association between the results of a mammogram and having cancer is not seen as fortuitous. 
 
The association between two different events is technically known as a ‘correlation’.  
Understanding correlations involves understanding the three ideas discussed in the previous 
paragraphs: randomness, sample space, and the proportional quantification of probabilities. The 
key idea behind correlations is to test whether an apparent association between two events can 
be seen as fortuitous or whether it is unlikely to be fortuitous, given the calculations that we 
carry out about the probabilities of the two events occurring together. If we were assessing a 
cancer screening test and found that, of all the women who tested positive, 50% did have 
cancer and 50% did not, and the same turned out to be true of women who did not have cancer, 
we would have little doubt in saying that this was a useless test. But what if 70% of the women 
who tested positive had cancer and only 20% of those who did not have cancer tested positive? 
Would this be fortuitous or is the association stronger than that? Correlations help us to find an 
answer to this question. 
 
We have chosen these particular examples not just to show that children and many adults find 
basic laws of probability difficult to use and even to understand, but also to make the point that 
learning about probability makes several different kinds of cognitive demands. Naturally, one 
has to know first what these demands are in order to work out what to do to help students 
overcome the difficulties that they entail. The framework that we adopt in this report will be that 
these demands fall into four categories, each of which corresponds to a basic and essential 
step that is present in all probability problems. Each of the four examples is an instance of one 
of these steps, which are:  
 

1. Understanding the nature and the consequences of randomness 

2. Forming and categorising the sample space 

3. Quantifying probabilities 

4. Reasoning about correlations.  

One of the examples was about uncertainty due to randomness, another about the sample 
space, and the third about calculating probability precisely and the fourth about correlations and 
probability. In our framework, these correspond to three basic steps that one must always take 
in finding the solution to any probability problem, and a fourth step which is sometimes also 
necessary. The first step is to recognise that the problem is about outcomes that are uncertain 
because there is a random element in the frequency of their occurrence. The second step is to 
work out the sample space. In a probability problem the occurrence of a particular event is 
uncertain because there are other possible events and the probability of each event depends on 
what these alternatives are. Analysing the sample space solves this part of the problem. The 
third step is to calculate probabilities, and this consists of a proportional analysis of the sample 
space. The fourth step, which is not always needed, is too look for associations between 
variables in the samples space. 
 
The intellectual demands of each of these steps are quite different from each other. They are 
also, for the most part, moves that children also have to learn to make in other contexts that 
have nothing directly to do with probability. For example, children have to reason about 
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proportions in scientific problems. Many basic scientific variables, such as temperature, speed 
and density are based on proportions. The density of an object, for example, is the ratio of its 
mass to its volume. Quantities such as density are called intensive quantities, in contrast to 
extensive quantities such as size and mass. The distinction between these two types of quantity 
is rarely, if ever, made explicit either in mathematics or in science lessons, but it is a crucial one 
in mathematical reasoning, because we operate with numbers differently depending on whether 
the quantities they represent are extensive or intensive. If you add one litre of water with a 
temperature of 20 oC to another litre with the same temperature, you double the volume of liquid 
(the extensive quantity) but its temperature (the intensive quantity) stays the same. Probability is 
also an intensive quantity. If you add one white ball and two blue balls to a container that 
already holds four white and eight blue balls, you increase the absolute amount of white and 
blue balls (extensive quantity), but the proportion of white and blue balls and thus the probability 
that you will pick a white ball from this container (intensive quantity) stays the same.  
 
This is just one of very many examples of a cognitive demand that is an important part of 
learning about probability but is also at the centre of other kinds learning that children have to 
master at school. These underlying correspondences between different domains are immensely 
significant, because research on how children learn in other domains has produced a lot of 
information that is potentially of very great importance in learning about probability. Yet this 
potentially valuable link has often been ignored by people doing research on children’s ideas 
about chance and uncertainty. It is one of the aims of our report to make this link and to show 
how useful it will be for future research. 

How good is the evidence on children’s learning about probability? 
 
The report is about research that we think needs to be done as much as it is about research 
that has been done already. In reading about past research, we have, time and again, been 
struck by a clear contrast between the excellence of many of the ideas being tested and the 
ingenuity of many of the tasks used to do this testing on the one hand, and on the other hand 
the clear limitations of the design of the studies that contain these tests. Most research on 
children and probability takes the form of cross-sectional studies in which children of different 
ages are seen for a short period of time and are given tasks that test their understanding of one 
of the four aspects of probability outlined above. This kind of study tells us about what the 
children grasp, and what is difficult for them at particular ages, but it does not explain the reason 
why, as usually happens, older children do better than younger ones, and it give us no 
information about the connections between the four different aspects of learning about 
probability.  
 
Research on other aspects of children’s intellectual growth, such as learning to read and even 
learning about other aspects of mathematics, now rests on quite sophisticated research designs 
which do produce valuable information about the connections between different aspects of 
some kinds of cognitive growth. An example is the combined use of intervention and of 
longitudinal data to explore the connections between different aspects learning to read and 
write: this kind of research has shown quite clearly the importance both of knowledge and of 
morphological knowledge in children’s literacy and has told us a lot about the interaction 
between the two (Nunes and Bryant, 2009). It seems to us that exactly the same kind of 
research could tell us about the possible causal connections, for example, between children’s 
knowledge of the nature and the importance of the sample space and their ability to compare 
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the probabilities of a particular event in two different sample spaces. Probability needs this kind 
of research as much as literacy did.  
 
One unfortunate result of the limitations in the design of research on children’s understanding of 
uncertainty and chance is that the main hypotheses on the topic have never been properly 
tested. These hypotheses are about causal connections, which, as we have already remarked, 
are not properly tested by cross-sectional studies. Several prominent researchers, Fischbein 
(1987) among them, argue that even quite young children have some ideas about probability 
which are not appropriate ones, but which do provide a kind of platform for their learning more 
appropriate concepts. Fischbein claims that pre-school children have ‘primary intuitions’ about 
the nature of uncertain events, which they build for themselves on the basis of their own 
informal experiences. These primary intuitions are not coherent and they often lead to 
misconceptions on the part of the young child. However, they are the basis for the progress that 
children eventually make in understanding probability. With the help of teaching, they manage 
to reconstruct these initial ideas into much more successful ‘secondary intuitions’ about 
probability. Thus, two factors are responsible for the progress that children make, as they grow 
older, in understanding probability and solving probability problems. One is their initial primary 
intuitions and the other the experiences and the teaching that leads them to revamp these 
intuitions.  
 
How does one test the hypothesis of these two causal factors? We will dwell here on the idea of 
combining longitudinal and intervention studies, which we have already mentioned in the 
context of research on children’s literacy. One essential element of a proper test must be 
longitudinal research. If there really is a causal relationship, for example, between children’s 
initial intuitions and the later growth in their understanding of probability, measures of one thing 
should predict measures of differences in the other in a longitudinal study. Thus, much of this 
longitudinal information should be about individual differences since, according to Fischbein’s 
causal hypothesis, the children who develop these intuitions relatively early or relatively strongly 
should be better than others at solving probability problems months and even years later on.  
 
Recently, as we will show in Sections 2 and 3 of this report, there have been some interesting 
attempts to establish the existence of some intuitive knowledge of probability in infants, but this 
will be very little use unless we can also establish some link between this early knowledge, if it 
really does exist, and the progress that the same children make in learning about probability 
later in their childhood. Unfortunately we have not yet been able to find any examples of 
longitudinal, predictive research in research on children’s understanding of probability. This 
disappointing gap leaves us with no sure way of connecting the knowledge and the experiences 
of probability that children have early on in life and their eventual successes and failures in 
learning how to deal with chance and risk. 
 
 Another essential research method is intervention. Intervention studies play a dual role in 
research on children’s intellectual development. One is to test hypotheses about what causes 
intellectual change in children. If you think, as many people do, that children’s understanding of 
probability depends heavily on how well they can reason about and can calculate proportions, 
an excellent way to test this idea is to take steps to improve a group of children’s proportional 
reasoning and then to see if this enhances their reasoning about chance and uncertainty as 
well. 
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The basic requirements for such a study are to assign children randomly either to an 
experimental group who, in this example, are given extra and effective teaching about how and 
when to calculate proportions or to a control group who are given just as much and as exciting 
extra teaching, but not about proportions, and to give all the children the tasks that are designed 
to measure their understanding of chance and probability before the extra teaching starts (pre-
tests) and after it is over (post-tests). Since the effects of enhancing children’s teaching in this 
way have often proved to be ephemeral and therefore not important, it is widely accepted that 
the children should be given post-tests not just immediately after the intervention stops but also 
after a delay of several months as well. The hypothesis about the importance of proportional 
reasoning would be strongly supported if this entirely imaginary study showed that the two 
groups had roughly equal scores in the pre-test, but the experimental group did much better 
than the control group in the immediate and delayed post-tests of their knowledge and 
understanding of chance. We are sad to admit that we have not found a single intervention 
study that has effectively measured the impact of proportional teaching on children’s 
understanding of probability. 
 
The hypothesis would seem even stronger if the positive result that we have just mentioned 
were combined with supporting longitudinal evidence that measures of children’s proportional 
reasoning predict how well they learn about probability later on.  Research on children’s ideas 
about probability has included several intervention studies, which we will describe in the body of 
this report, but the approach of combining longitudinal methods and intervention, which has 
worked well in research on other branches of children’s conceptual learning, such as literacy, 
has never been applied to probability. 
 
We will end this discussion on the methods used to research this topic with the comment on the 
second role of intervention studies. They can measure the effectiveness of particular forms of 
teaching. The design of intervention studies designed to fulfil this aim should be much the same 
as the design of experiments designed to test causal hypotheses about the growth of ideas 
(pre- and post-tests and random assignment of the participants to experimental and control 
groups). In fact, it is quite possible that intervention studies could satisfy both aims at the same 
time. Properly designed intervention experiments, therefore, play a central role in theories about 
the causal connections in the growth of children’s knowledge and understanding, and also in 
hypotheses about how to foster this growth at school and at home. 

Summary 
 

1. Children, as well as adults, need to know about uncertainty and chance. There is an 
obvious case for looking for effective ways of teaching children about probability. 
 

2. The difficulties that adults and children have in reasoning about probability and solving 
probability problems are serious, but they are also diverse. They show that the 
understanding of chance makes a variety of cognitive demands. 
 

3. There are four main aspects of successful reasoning about chance: (1) understanding 
randomness and its consequences, (2) analysing the sample space, (3) quantifying 
probabilities proportionally and (4) understanding and using correlations. Each of these 
makes different cognitive demands on children who are learning about probability. 
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4. Research on children’s learning about probability has produced some interesting 
hypotheses and many ingenious tasks, but has not taken advantage of research designs 
that could establish the existence of the causal connections in these hypotheses. 
Coordinated longitudinal predictive studies and interventions could provide the data that 
we need for theories about the development of children’s understanding and about how 
to encourage this understanding through education. 
 

2. Randomness and its consequences 

Uncertainty and randomness 
 
Our starting point, whenever we try to work out the probability of some event, is uncertainty. We 
usually have a reasonable idea of the various events that could take place in the future, but we 
do not know exactly what will happen. Our uncertainty about the next event is due to the events 
themselves happening randomly. There is no discernible pattern, no set order, in the way that 
they occur and so there is no certainty about what the next event will be.  Randomness is the 
hallmark of any probability problem. Mathematical analyses of probability are designed to deal 
with this uncertainty. If we have accurate information to hand about all the possible events, we 
can calculate the likelihood of each of them happening, even though they do take place in a 
random order, but we still remain unable to predict with any certainty which one will happen 
next. 
 
At first sight, it seems likely that randomness should present no particular difficulty for children. 
Random sequences and random arrangements are a common part of their lives as well as of 
adults’ lives. Many of their experiences are random. Balls bounce one way, and then another. 
Raindrops fall on one tile, but not on another. Randomness is also an essential part of some of 
the games that children and adults play or watch other people playing. Most sports games begin 
with a toss of a coin to decide who kicks the ball first, or serves first, or which side starts the 
batting. Throwing dice in Snakes and Ladders, in Ludo and in Monopoly is another overt form of 
randomisation. Its purpose is to ensure fairness: everyone has an equal chance of throwing the 
right numbers but we cannot say before the dice are cast who the lucky one will be. Card games 
have to begin with the shuffling of the cards, and shuffling is an obvious and very public way of 
ensuring a random sequence. It is an absolute requirement of all card games that no one 
should be able to tell which card will be dealt next, and the purpose of shuffling the cards is to 
produce this uncertainty. Again this tangible form of randomisation ensures fairness: everyone 
has an equal chance of being dealt a good hand. 

Recognising randomness and distinguishing it from non-randomness 
 
Although we may be confident that we know what random events are in everyday life, and can 
distinguish them from deterministic events, like lights switched on and off, some research 
suggests that even adults often cannot make this discrimination at all well. Our judgements 
about what are and what are not random sequences of events seem subject to biases. Falk and 
Konold (1997) illustrated one such bias by asking secondary school and college students in the 
USA to say whether certain patterns were random or not. The patterns were formed by rows of 
the letters X and O of different levels of complexity. The complexity of the row of letters was 
defined in terms of the numbers of chunks that would have to be memorized for the pattern to 
be reproduced. A row like XXXXXOOOXXXXXOOO, in which 5 Xs are followed by 3 Os, is of 
little complexity because it has basically two chunks repeated twice, whereas one like 
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XXOXOOOXXXXOOOXO, which has no easily recognisable pattern, has the same number of 
letters but more chunks to be memorised and is judged as more complex. Although all the 
sequences were random, adults tended to judge the relatively complex and less memorable 
sequences as random more often than the other sequences.  
 
A second bias, identified by Tversky and Kahneman (1971, 1974) in research on psychologists, 
is the expectation that the characteristics of a large sample of random events will be replicated 
in a small sample of the same events. Tversky and Kahneman refer to this bias as a belief in the 
‘law of small numbers’, a bias that leads us to expect, for example, that alternation between the 
letters in the previous example is more characteristic of a random sequence than a run of a few 
letters of the same kind. Dawes (2001) suggests that this is the reason for our tendency to 
judge patterns in which two possible outcomes alternate frequently as random and those with a 
run of the same outcome as determined. For example, if you toss a coin six times and obtain six 
heads, this result is judged as much less likely to have happened randomly than one in which a 
head is followed by two tails, followed by two heads and finally a tail. Yet, each of these 
sequences is equally likely and each has a probability 1/64. Dawes calculated that when people 
judge a sequence as truly ‘random’, they usually do so with a sequence that has a transition 
probability of 2/3 (i.e., different events follow each other 2 out of 3 times) rather than 1/2.  
 
It is possible that judging outcomes as random or not ‘intuitively’ is rather difficult, but that we 
can learn to do so and be helped by cognitive processes other than perception. Given what we 
know about perceptual illusions, this is not at all unlikely, since we can override the perceptual 
effect of illusions with the help of reasoning and mathematical tools. For example, if we compare 
two circles of the same size, one surrounded by smaller circles and the other surrounded by 
larger circles, we see them as different: this is the well-known Titchener’s illusion. However, we 
can measure both circles and conclude that they are of the same size, if their diameters are the 
same, even though we continue to see them as different (Rosengren and Hickling, 1994). 
Thus, the perception of randomness in a sequence and the cognitive understanding of random 
processes may not be the same thing. We should not assume a continuity between perception 
and cognition of randomness, as their differentiation may actually be at the heart of 
understanding probability. 
 
Understanding the effects of randomisation 

A large amount of research suggests that children also have a great deal of difficulty in making 
rational judgements about random sequences and the effects of randomisation. This research 
takes three forms: studies of children’s understanding of the effects of randomisation, studies of 
their ability to discriminate random from non-random sequences and spatial patterns, and 
studies of their understanding of the independence of successive events in a random sequence. 
Many of the people doing research on children’s understanding of randomness have looked at 
children’s knowledge of randomisation. This seems a reasonable thing to do, since in many 
contexts randomness depends on effective randomisation. We can only be sure that cards will 
be dealt in a random sequence if they have been shuffled well or that lottery tickets will be 
picked in a random sequence if their container has been thoroughly shaken. These 
randomisations are such a commonplace in our lives that it is reasonable to expect that most 
adults will understand their nature and their consequences. It may not be the same with young 
children. 
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In one of the first studies on learning about chance, Piaget and Inhelder (1975) looked at the 
predictions that young children make about the consequences of randomisation. They showed 
the children, whose ages ranged from 4 to 12 years, some red and white beads, all neatly 
arranged in separate groups by their colour, and placed at one end of a tray. They asked the 
children to predict what would happen if the tray was tilted so that the beads all rolled to the 
other end of the tray, and then tilted again back to its former position, and then again. The most 
likely result, and therefore the answer that Piaget and Inhelder took to be correct, was that the 
red and white beads would mingle in an increasingly random arrangement each time that the 
tray was tilted. Most children over the age of about 11 years seemed to understand this.  
 
However, many of the younger children, particularly the children in the 4- to 7-years range, 
predicted that the red and white beads would stay separate when the tray was tilted, either 
sticking always to the same side or swapping sides or both (i.e. swapping sides twice). Thus, 
these younger children apparently treated a chance event with several possible outcomes as a 
non-chance event with only one possible outcome. They usually agreed that tilting the tray 
would change the pattern, but they insisted that the new arrangement would be as ordered and 
as patterned as the initial one. 
 
These results, according to Piaget and Inhelder, showed that younger children simply do not 
understand the effects of randomisation, and tended to treat a random spatial arrangement as a 
determined one. Their interesting argument was that children first have to understand 
deterministic cause-and-effect sequences before they can grasp the nature of random events. 
One of the main steps that they take in learning about deterministic cause and effect sequences 
is to realise that they are often ‘reversible’: a light can be switched off after it has been switched 
on and a car can be driven forwards and then backwards to its original starting point. Piaget and 
Inhelder claimed that children who have just learned about reversibility in causal chains tend to 
apply this idea quite inappropriately to randomisation as well, which is why they sometimes 
judged that all the balls of a particular colour would move sideways to the opposite side of the 
tray when it was tilted and then back again to their original position when it was tilted again. 
 
However, some, at least, of the young children’s difficulties in this task might have been due to 
its unfamiliar physical context. The younger children may not have known much about what 
usually happens when several balls roll down a tilted surface. Their difficulty may have been in 
recognising that tilting a tray would randomise the arrangement of the two colours, and may 
have had nothing to do with their understanding the effects of a randomisation once it happens. 
  
A study, by two American psychologists, Kuzmak and Gelman (1986), led these researchers to 
a conclusion that was quite different from Piaget and Inhelder’s. They presented children of 3 to 
7 years with two different mechanisms, both of which dispensed balls of various colours one-by-
one. In one mechanism the balls were lined up in an orderly way in a single tube, so that it was 
easy to see the colour of the ball that would come out next, while the other mechanism 
consisted of a complicated tangle of moving tubes which was designed to eject the balls in a 
random sequence and therefore made it impossible to predict the next ball out. The children 
were asked whether they could work out the colour of the next ball to be dispensed by each 
apparatus, and the majority of those who were 4- or more years-old did correctly say that they 
could make the prediction with the apparatus that was arranged in an orderly fashion but not 
with the disorderly apparatus, although that majority was very slim indeed in the case of the 4-
year-olds.  
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Kuzmak and Gelman argued that this result showed that Piaget and Inhelder’s contention about 
randomness was wrong and that even 4-year-old children can distinguish between random and 
non-random sequences. This conclusion was probably too hasty. The study did show that the 
children of 5 years or more generally made good judgements about their own knowledge of the 
next event: they really could say whether they did or did not know what that would be, but they 
could have made these judgements just on the basis of one arrangement – the tangled one – 
being a great deal more complicated than the other. They could easily have judged that it was 
harder to be sure what would happen with the complicated mechanism than with the relatively 
simple one, and thus their judgments may have nothing directly to do with randomness. This 
explanation would be in line with the finding by Falk and Konold (1997) that adults are more 
likely to judge as random those sequences of events that are too complex to memorise.  
 
There is certainly room for a similar experiment with young children that uses other kinds of 
randomisation that are more familiar, more transparent and more comprehensible. Shuffling 
cards is an obvious candidate. One could start by showing each child a new pack of cards 
neatly separated into the four different suits and the cards in each suit arranged in exactly the 
same order as in the other suits, and then shuffle the pack very thoroughly. Both before and 
after this rearrangement the child could be dealt a card from a point somewhere in the pack and 
asked whether he or she could predict what the card next to it would be. The predictability in a 
shuffled deck of cards could be compared with that in a deck to which transformations were also 
made but these were not random, such as splitting the deck, moving the bottom half to the top, 
and then moving it once again to the bottom of the pile. As far as we know, there is no research 
of this sort, even though it is needed and would be easy to do. 

Distinguishing random and non-random sequences 
 
As we have seen, one way of looking at people’s understanding of randomness is to find out 
whether they can distinguish a random from a non-random sequence. There is a long tradition 
of research on this question with adults, briefly referred to in the introduction. Adults turn out to 
be remarkably poor at distinguishing sequences that are completely random from others that 
contain a random element but are not fully randomised (Falk and Konold, 1997). The 
commonest mistake made by adults in this kind of task is to reject genuinely random sequences 
that contain quite long runs of the same value, like five successive heads in a row. It seems that 
many adults either do not know, or forget, that runs and patterns like this are perfectly possible 
and are to be expected in entirely random sequences. 
  
This expectation of irregularity in a random sequence leads many adults into another confusion, 
which is to judge that irregular sequences with no particular pattern to them are much more 
likely in random situations than in regular ones. If I throw a coin six times, there are 64 (26) 
possible sequences that I could produce and they are equiprobable.  One of these is a regularly 
alternating sequence starting with a head and ending with a tail – HTHTHT. Another is a run of 
six heads – HHHHHH. A third is an unbalanced and apparently irregular mixture – HTHTTT. 
Each of these sequences is as likely as the other and yet many adults wrongly judge sequences 
with no particular pattern as more probable than the regularly alternating ones (Kahenman and 
Tversky, 1972) in random contexts.  
 
Children seem to behave to some extent like adults when judging the randomness of 
sequences. In a large-scale study of the understanding of randomness, Green (1979) gave UK 
secondary school children 3 different pictures of a square roof with 16 tiles on which a few (16 
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in each picture) snowflakes had fallen, and asked them to pick the most likely one. In one 
picture, 1 snowflake had fallen on each tile, in another the snowflakes had fallen in a regular 
pattern on all 12 peripheral tiles but on none of the 4 inner ones. In a third picture, the flakes 
made an entirely irregular pattern on the tiles, some of which were untouched, while two or 
more flakes had fallen on other tiles. Green called the third of these patterns the ‘random’ one. 
The children chose the pattern that Green called random less often than the pattern with one 
flake per tile, although no particular pattern can be seen as more likely than any other, as 
argued by Falk (1991. Batanero and Serrano (1999), who replicated Green’s study, also provide 
more information about children’s justifications in this problem. Children who chose the pattern 
of one flake per tile justified their choices in terms of the equiprobability of the outcomes. Thus 
they seem to be using, as adults do, the ‘Law of Small Samples’, and expected that what is 
observed in a large sample will also be observed in small samples. But their justifications also 
suggested that they did not see the sequence of events as independent: the distribution of one 
flake per tile was the result of this lack of independence of successive events. 
 
Piaget and Inhelder (1975) tackled the question of children’s understanding of randomness in a 
different way. They played a trick on the children by surreptitiously changing an entirely random 
mechanism into a non-random one that always produced the same outcome. The mechanism 
that they started with was a disc with a pointer, which the experimenter or the child could spin. 
This was at the centre of (and slightly above) a circular surface which was divided into equal 
size segments (like slices of cake) each with its own distinct colour: on top of each of these 
segments lay a distinctive box and these boxes could be, and were, shifted from one segment 
to another during the experiment.  
 
At the start of the session, the spinner was not constrained in any way and so when it stopped 
the pointer might be pointing at any of the segments and thus at any of the boxes. Its position 
was quite random. After several spins, which produced a random sequence of results 
(sometimes the pointer stopped at the red segment, sometimes at the green and so on), the 
experimenters made a change without telling the children. They placed magnets in two of the 
boxes, which had the effect of stopping the pointer at particular points. On the whole, children 
below the age of roughly 7 years either did not notice the difference or were not greatly 
surprised by it, whereas older children were surprised and sought an explanation for these non-
random sequences.  
 
Piaget and Inhelder’s conclusion that the younger children did not distinguish between chance 
and non-chance events deserves attention, but it may go too far. Runs of the same event, as 
we have already noted, do occur even in entirely random sequences, and we cannot be sure 
that the children didn’t know this. We can wonder too about the trickery involved. The children 
may have been unwilling to change their judgements in the face of the new sequences because 
the experimenter, whom they trusted to explain what was going on, had said nothing.  
 
Other researchers have examined children’s reaction to biased, and therefore non-random, 
generators of outcomes that are usually purely a matter of chance. In a study, in which the ages 
of the children taking part ranged from 8  to 14 years at the beginning of the project, Watson 
and Moritz (2003) looked at these pupils’ judgements about the ‘fairness’ of dice, by which they 
meant the equiprobability of throwing each of the six numbers on the dice. They gave the 
children three different dice, one of which was loaded: it was heavier on one side than on the 
others and as a result 5 was more likely than the other numbers to be the outcome of a throw. 
At the start of the project, 87% of the children either maintained that throwing die does not 
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produce equiprobable outcomes, or that it does, without any reason for either view: they 
appeared to the researchers to be making an arbitrary proposition. Nine percent of the children 
of the children either stated that the equiprobability of the outcomes depended on how well dice 
are made, or on the physical conditions of the throw itself. The remaining few of the children – a 
very small minority – argued that sometimes with a small number of throws the outcomes could 
be quite unequal, but that with a larger number of throws the outcomes would be generally 
approximately equiprobable. This minority therefore appealed quite correctly to the law of large 
numbers. 
 
Is there an improvement over time in the quality of the children’s beliefs? This was a partial 
longitudinal study: Watson and Moritz revisited rather less than half the sample four years later, 
and asked them the same questions about dice. Many of the children’s beliefs had become 
more sophisticated over time, and yet the majority still expressed apparently arbitrary opinions 
about the fairness or unfairness of dice.  
 
The picture that Watson and Moritz paint of the children’s ability to reason about randomness is 
much bleaker than Piaget and Inhelder’s, and it is clear that we need a lot more evidence on 
this issue. One useful question that this study throws up is about individual differences. It would 
be interesting, and extremely useful to know why some children’s beliefs changed and improved 
over time while others kept to the same arbitrary assumptions over the four years of the project. 
 
Recognising the independence of successive events in a random sequence 
 
Each event in a random sequence is independent of any of the other events. What happened 
last time has no bearing on what happens next. The spin of a die is not in any way affected by 
the way that it spun last time which is why, having just thrown a 6 you are no more and no less 
likely to throw a 6 again on the following throw than you are to throw any of the other five 
numbers. If you have an urn full of an equal number of black and white balls and you pull out a 
succession of them, (taking care to replace each one after noting its colour) your chances of 
drawing black or white are just the same – 50% – every time. If, by chance, you start by pulling 
out five white balls in a row, the probability of your coming up with another white on your sixth 
draw is exactly what it was on the first draw – 50%. Of course, if you don’t replace the balls 
each time, then pulling out five whites will actually increase the probability that you’ll pull out a 
black one next time, but that is because you have radically changed the sample space, not 
because nature abhors a run of the same coloured balls. 
 
The idea of the independence of random events is generally rather hard for humans to grasp. 
To go back to the example of the black and white balls, many adults would judge that a black 
ball is more likely to appear on the sixth draw after a run of five white ones than it was on the 
first draw. It is a very common mistake indeed, and it is a fundamental mistake because the 
independence of different events is an essential and fundamental aspect of random sequences. 
If what happens in the first five trials makes it possible for you to predict what will happen with 
the sixth draw better than you could predict the outcome of the first draw, the sequence is not a 
random one.  
 
Yet, it is easy enough to see why even seasoned adults often make this error, which is usually 
called ‘the negative recency effect’ or, colloquially, ‘the gambler’s fallacy’, and it is just as easy 
to sympathise with them for doing so. The fact is that, in the situation that we have described, it 
is much more likely that someone will pull out a sequence which consists of five white balls and 
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one black one in the first six draws than a sequence of six white balls. That is because there are 
six different possible sequences in which all but one of the balls is a white one (WWWWWB, 
WWWWBW, WWWBWW, WWBWWW, WBWWWW, BWWWWW) and only one sequence that 
is all white (WWWWWW). This means that sequences with one black and five white balls are 
six times more likely than an all-white sequence. The cause of the negative recency mistake is 
almost certainly people’s knowledge that mixed sequences in general are more probable than 
unmixed ones in random situations. Thus, the mistake is probably a learned one. The people, 
who make it, could be misapplying the results of their experiences with random sequences in 
which they have seen many more mixed sequences than long runs.  
 
Tversky and Kahneman (1974) have explained negative recency mistakes in this way: they 
attribute them to what they call the ‘representativeness heuristic’. People see jumbled up and 
inconsistent sequences as a hallmark of randomness, and that makes them conclude that a 
black ball is more likely than a white draw after five successive white draws because 
randomness ensures inconsistency. Perhaps the best way to teach them that they are wrong in 
doing so is to show them that, though mixed sequences in general are more probable than runs, 
the two specific sequences WWWWWW and WWWWWB are equally likely, or in this case 
equally unlikely since each sequence has a probability of only 1/64 (p = 0.016). 
  
There is another recency effect, called the ‘the positive recency effect’, which, as it name 
implies, takes the opposite form. Sometimes people take a long run of one outcome to mean 
that this is likely to continue: so, after choosing five white balls in succession, they think it more 
likely that their next draw will be another white ball than that it will be a black one. This idea fits 
well with folklore about people having runs of good (or bad) luck (it’s their lucky/unlucky day). It 
is also a completely rational kind of judgement to make about non-random contexts (if flicking a 
light switch five times turns on a particular light each time, then it is very likely to have the same 
effect on the sixth, seventh and eighth occasions), but it is a bad basis for predictions about 
random events.  
 
The existence of these two opposite mistakes, one probably based on what Kahneman and 
Tversky (1974) call ‘representativeness’, the other on folklore or on a confusion between 
random and non-random situations, raises a fascinating question about children’s 
understanding of probability. If, as we have suggested, the negative recency mistake is the 
product of people’s experiences with random sequences, one could quite reasonably expect 
that adults who have had more of this sort of experience than children have, would make the 
mistake more often than young children do. This would be a striking result since in very nearly 
every other cognitive task adults make fewer mistakes than young children do. 
 
It has been known for some time that both adults and children make the two kinds of mistake, 
but the most systematic study of how common these mistakes are in the different age groups 
was only done quite recently. This is an experiment by Chiesi and Primi (2009) with 8- and 10-
year-old Italian schoolchildren and a group of university students as well. They showed these 
participants pictures of bags containing balls of two different colours: sometimes the numbers of 
balls in the two different colours was equal, sometimes not, but for simplicity’s sake we will 
begin by describing what the researchers did and what the results were when the frequency of 
the colours was equal.  
 
The experimenters told the children the actual numbers of the two sets of balls – 15 green and 
15 blue ones – and said that someone had already drawn 4 balls from the bag (replacing the 



23 
 

ball after each draw) and all 4 had been blue (or in other trials all green). This person was going 
to make another draw. The experimenters then asked for a prediction about that next draw: they 
gave the participants three choices:  

1. It was more likely that the next draw would be blue ball than a green one 

2. It was more likely that the next ball would be green than a blue one 

3. The two colours were equally likely.  

The third choice was the correct one. Picking the first choice represents positive recency and 
the second negative recency (when the first four draws had all produced a blue ball). 
 
When the bag contained an equal number of balls, the members of all three age groups made a 
startlingly large number of mistakes. None of the 8-year-old children’s answers was right: the 
10-year-old children and also the college students were right only around 40% of the time. So, 
there was a marked improvement overall between the ages of 8 and 10years, but no evidence, 
from these overall scores, of any improvement after that.  
 
What about the pattern of the mistakes made by each group? These could either be positive or 
negative recency mistakes and Chiesi and Primi found that there were striking differences with 
age in the proportion of these two kinds of error. There was a clear decline with age in the 
number of positive recency choices, and as clear a rise in the number of negative recency 
choices. This was both a relative and an absolute difference. The 8-year-olds made twice as 
many positive recency as negative recency choices; the 10-year-olds made roughly an equal 
number of positive and negative recency choices and the adults made nearly three times as 
many negative recency choices as positive recency choices. The negative recency bias in the 
adult group was so strong that they actually picked this option more times than either the 8- or 
the 10-year-olds did, even though the overall number of wrong choices that the adults made 
was a great deal less than that of the youngest group. So, the positive recency effect seems to 
decline as children grow older while the negative recency effect increases quite dramatically. 
 
Understanding the independence of successive events from each other in a random sequence 
is a fundamental part of learning about randomness, and the clear implication of Chiesi and 
Primi’s study is that there are surprisingly strong limitations to children’s and even to well-
educated young adults’ grasp of this independence. However, the results of the study also 
suggest that the reasons for these limitations change over time. The very large number of 
positive recency choices among the youngest children (between 60% and 70% of all the 
choices that they made when the two colours were equal in number) suggests that their 
greatest difficulty with understanding the independence of successive random events may be 
due to a confusion between determined events, where the same action produces the same 
results time after time, and random sequences where outcomes of the same action cannot be 
predicted on each occasion. In contrast, the strikingly large number of negative recency choices 
made by the adults (43% of all the choices that they made when the two colours were equal in 
number) must be the result of a different confusion, and here Tversky and Kahneman’s 
explanation in terms of representativeness seems the most plausible candidate. 
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Understanding the purpose of randomisation 
 
Most definitions of randomness are couched in negative terms: they emphasise the uncertainty 
of the various outcomes in a random sequence or in a random spatial arrangement. But 
randomness has a positive aspect too, which is to provide us with a way of being fair. We have 
already noted that randomisation is an essential part of most games, either as a preliminary 
step, like selecting who bowls and who will be in Team A and who in Team B, or as a central 
part of the game itself like tossing dice in Monopoly and spinning a roulette wheel in a casino. In 
order to ensure that the randomisation is fair, it is usually open to everyone in the game. We all 
watch the captains tossing the coin at the beginning of the game and we pay great attention to 
the other Snakes and Ladders players when it is their turn to throw the dice. In card games, we 
even carefully monitor how thoroughly the cards are shuffled because we want them to be 
properly randomised so that we can be sure of a fair game.  
 
The link between randomisation and fairness is, therefore, a frequent and very public part of 
games that most children play, and it poses obvious and hugely interesting questions for 
researchers. Do even young children understand the importance of shuffling cards and throwing 
dice in the games that they are taught to play? Does their experience of these forms of 
randomisation teach them anything about probability that they did not know already? How 
efficiently do children carry out these randomisation procedures themselves? Yet, a 
disappointingly few researchers have tried to answer these questions or to study children’s 
reactions to randomisation procedures in games in any way at all.  
 
The most notable exception to this bleak pattern is research by Pratt and Noss (2002) and 
Paparistodemou, Noss and Pratt (2008) on randomisation in a computer microworld. Pratt and 
Noss reported that the comments made by 10- and 11-year-old children working with random 
sequences showed that they started the study with some firm ideas about the nature of 
randomness. These ideas, which the researchers called ‘inner resources’, took the form of 
characteristics, which, the children thought, sequences must have in order to be random. There 
were four of these: the children thought of random sequences as ‘unsteerable’ (in other words, 
impossible to control), unpredictable, irregular and fair. These notions seem a good start to 
understanding randomness.  
 
In the later study, Paparistodemou, Noss and Pratt (2008) introduced a group of 5- to 8-year-old 
children to a computer game that involved a prince who sat on a platform halfway between a 
blue (explosive) mine above him and a red mine below. There was also a little white ball that 
moved around the screen frequently bumping against and bouncing off some larger red and 
blue balls, which were static during the game. The path that the white ball took when it bounced 
off these other balls was random, but it determined the prince’s position. Whenever it hit a blue 
ball, the prince moved up the screen towards the blue mine, and whenever it hit a red one the 
prince moved down towards the red mine. Thus, the effects of each kind of encounter cancelled 
out the effects of the other and restored the status quo and an imbalance of either blue or red 
encounters would mean the prince’s obliteration. It was in the prince’s interest that the white ball 
should have roughly the same number of encounters with blue and with red balls, and it was 
also in the interest of the children playing the game, since they were asked to ensure what the 
researchers called fairness, which meant an equal number of red and blue encounters, and thus 
to save the prince.  
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The children were allowed to change the position, the size and even the number of the static 
red balls before the game started, and the researchers wanted to know whether they would 
decide on a random arrangement of these static balls to ensure a kind of red–blue equality. 
With such an arrangement, the probabilities of the white ball hitting a blue ball and of it hitting a 
red one would be equal.  
 
Most of the children did not adopt this strategy at the outset of the study. Instead, they preferred 
a symmetrical arrangement of the red and blue balls – red balls to one side of the screen, blue 
balls to the other – in a mirror-image pattern, which on the face of it was a clear display of red-
blue equality. However, it was not always a successful one and, as time went on (each child 
spent between two and three hours on the game), nearly half of them tried out a version of a 
random arrangement as well. Several of those who made this move gave reasonably coherent 
explanations of why they did so, which showed that they had realised that a ball moving 
randomly in a random spatial arrangement would probably hit an equal number of red and blue 
balls.  
 
These young children’s success in spontaneously randomising the spatial arrangement of the 
various balls to achieve fairness (the researchers called this the ‘unsteerable fairness’ strategy) 
is truly impressive, and it seems to belie many of the negative conclusions drawn from the other 
pieces of research that we described earlier on in this section. If young children, or, at any rate, 
some young children, realise quite rightly that randomisation is an effective way of ensuring 
fairness in particular contexts, surely they understand randomness and the effects of 
randomisation a great deal better than all the other studies that we reviewed in this section 
suggest. What is the reason for the apparent difference in the implications of the 
Paparistodemou et al. study and the studies by Piaget and Inhelder, by Green and by Chiesi 
and Primi? 
 
There are various possible answers. One quite plausible explanation for Paparistodemou et al.’s 
positive results is the time that the children spent on the problem and the opportunities that they 
were given to think about different strategies. The children in this study did not start by 
randomising the spatial arrangement: they eventually got there, for the most part, after having 
tried to solve the problem with symmetrical spatial arrangements. None of the other studies that 
we mentioned earlier seems to have given children much opportunity to change from one 
strategy to another.  
 
Another possibility is that the study by Paparistodemou et al. was very explicitly about fairness, 
and the children who randomised may well have done so because of their previous experience 
of using randomisation to ensure fairness in games. The authors made the comment that the 
children’s spoken comments were ‘littered’ with references to familiar games, which certainly 
suggests that those who decided in the end on randomisation did so because they already 
knew that this was a reasonable way, and sometimes the only way, of ensuring fairness in 
games. In our view, both explanations could be right, but we need a lot more research to find 
out whether they are or not.  
 
This research would be extraordinarily interesting to do. One fascinating issue would be about 
how well children discriminate contexts in which randomness is the most effective way to 
achieve fairness and others in which it is not. We have said enough about the first kind of 
context: in the second kind of context, fairness can usually be achieved most effectively by 
some form of sharing. In fact, there is a great deal of research on children’s understanding of 
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sharing as a way of distributing rewards or duties, and by and large this shows that even pre-
school children understand why sharing works (Desforges and Desforges, 1980; Frydman and 
Bryant, 1988; Hay, et al., 1991; Miller, 1984; Squire and Bryant, 2002). However, as far as we 
know, there is no research at all on how well children or adults distinguish the two kinds of 
context.  

Randomness as uncertainty: the view of infants 
 
One criterion of randomness, as we have remarked, is uncertainty. No one knows – everyone is 
uncertain of – exactly what will happen next in a random sequence. This uncertainty, on its own, 
is an insufficient criterion for randomness, since people may also be quite uncertain about what 
will happen next in a determined sequence, if they know absolutely nothing about what causes 
what in the sequence. Nevertheless, uncertainty about the next event is an absolutely 
necessary result of randomness, and it is therefore worth asking whether children recognise this 
link. Some interesting recent data on this issue has come from an unexpected source, from 
research on 10- and 11-month-old babies. 
 
Xu and Denison (2009) set up a research study to answer the following questions. Do very 
young children discriminate between someone making a deliberate and informed choice and the 
same person making a choice blindly and at random? Do they understand that in one case the 
adult will choose the object that she wants, while, in the other, only the contents of the box will 
affect the probability of her pulling any particular object out?  
 
To make this comparison, the researchers enacted a sequence of events, while the infant 
looked on, which started with them showing the infant some quite large boxes of red and white 
balls, in some of which there were more red than white balls and in others more white than red. 
Next, one of the researchers tried to make it clear that she preferred one colour over the other 
by picking balls of one colour only from a small container that contained both colours and 
showing her pleasure at having picked these particular balls. Then, the same adult researcher 
picked five balls from a large box whose contents the infant could not see at the time and had 
not seen before. She drew the balls from the box at different times in three different ways. 
 
Two of these three conditions were random-choice conditions: they were designed to show the 
infant that the adult was drawing the balls at random without knowing what kind of ball she was 
choosing. In one random-choice condition, the adult simply looked away from the box and 
closed her eyes when she reached into it to withdraw each ball. In the other random-choice 
condition, she wore a blindfold while she pulled out the balls.  
 
In contrast, the adult could see inside the box in the third condition, which we call the informed-
choice condition. Each time that she picked a ball, she looked into the box through an opening 
in the top. From the point of view of the scenario that the experimenters devised, this meant that 
the adult could pick the colour that she preferred. 
 
In all three conditions, the experimenters actually pre-arranged the colours of the balls that the 
adult drew from the box: it was always the case that the five balls were of one colour only, either 
all red or all white. 
 
The point of the comparison between these three conditions was that someone who 
understands the consequences of randomness would expect differences between the third 
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condition, in which the adult preferred one colour and could make an informed choice which 
would be guided by this preference, and the other two conditions in which they could not see 
what they were doing when they reached into the box, and therefore could not deliberately 
choose the colour that they preferred. In the third condition, the adult should pick the colour that 
she prefers, while in the other two conditions the adult would be more likely to pick balls of the 
majority colour in the box itself. Thus, if she just picks red ones in the random-choice conditions, 
she is more likely to do so from a box that contains vastly more red than white ones rather than 
the other way round.  
 
To see if the babies understood that the colour of the balls drawn by the adult might be different 
in the different conditions, the experimenters finally opened up the box, so that the infant could 
now see the contents of the box as well as the five balls that the adult had already drawn from 
it. The experimenters argued that in the two random-choice conditions, it would be surprising if 
the colour of the five balls drawn by the adult was not the same as the majority colour in the 
box, since it is less probable (though not impossible) that you would draw, for instance, five red 
balls from a box which contains mostly white balls than from a box which contains mostly red 
balls. On the other hand, in the (non-random) informed-choice condition, it would be surprising if 
the adult did not confine her choices to the colour that she preferred: thus if the adult preferred 
red, a choice by her of five white ones, when she could see inside the box, would be a surprise. 
  
A large amount of research with infants has shown that they look at events that are in some way 
novel or surprising to them longer than they do at highly familiar and predictable events. So, Xu 
and Denison measured the amount of time that the infants looked at the scene once the 
contents of the box were revealed. They reported that in the random-choice conditions the 
infants looked longer (by around 2 seconds) when the majority colour in the box and the colour 
of the five balls drawn from it were different from each other than when they were the same. 
However, in the informed-choice condition the contents of the box made no difference to how 
long they kept looking at the event. In this condition, it was the adult’s preference for a specific 
colour that made the difference: the infants looked longer (again by about 2 seconds) after the 
adult chose the colour that she didn’t prefer than when she chose her preferred colour. 
 
These results suggest that the babies were alert to the events that they witnessed and were 
able to make incisive inferences about the probability of what happened and about the personal 
intentions of the adult. The experimenters concluded that the babies understood (a) that the 
probability of randomly drawing a particular colour depended on the relative number of the two 
colours in the box, and (b) that a person making an informed choice would act on their own 
preference, and not on the relative number of red and white balls in the box.  
 
Here, we will stick to their claim that these less-than-one-year-old infants understood that an 
informed choice would lead to one result and an uninformed choice to another. This is an 
important conclusion because, if it is right, it means that from an early age and even before they 
can speak human infants can discriminate some determined sequences from some random 
sequences for which the rules of probability applied. This view is, of course, strikingly different 
from the ideas of Piaget and Inhelder, and of some other researchers whom we have mentioned 
earlier in this section, about the age at which children begin to be able to distinguish random 
from determined events.  
 
Is this new view justified? We will be discussing whether the pattern of the infants’ responses in 
the two random-choice conditions really did indicate that they had made probabilistic choices in 
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a later section of this report. Here, we shall just express some caution about the informed-
choice condition in the experiment that we have just described.  
 
When the adult drew the five balls successively from the box, the infant could see the colour of 
each of the balls as soon as the adult took it out because she placed each of the five balls in a 
transparent container, which was in the infant’s view. As soon as the balls were drawn out of the 
box and some time before the contents of the box were revealed, the infant who, according to 
the researchers, already knew which colour the adult preferred, could see whether or not the 
adult was choosing balls of the colour that she did prefer.  
 
The researchers measured each infant’s looking time from the moment when, later on, they 
revealed the contents of the box to the infant. This was the correct thing to do in the two 
random-choice conditions because, according to the researchers, the infant’s looking time was 
determined by what the infant saw when he looked at the contents of the box. But, in the 
informed-choice condition, the relative number of red and white balls in the box, again according 
to the researchers, was irrelevant. The researchers claim that in this condition, the infants were 
surprised when the adult chose the five balls in a colour different from her preference and were 
not surprised when the colour that she chose was the same as the colour she preferred. The 
trouble, as we see it, is that the adult made her choices some time before the box’s contents 
were revealed and therefore the act of opening the box and revealing its contents to the infant 
should not have had any effect on whether he or she was surprised or not. The fact that the 
babies, having seen a purportedly surprising event some time before the box was opened up, 
looked at the scene for a relatively long time some time after the box was opened up is, 
therefore, a puzzle. Given the importance of the researchers’ conclusions, there is an urgent 
need for this puzzle to be cleared up.  

Teaching randomness 
 
We end this section, as we shall end subsequent sections, by considering what is known about 
how to teach children about randomness. This will have to be a very short section because 
there seems to be very little research on this obviously pertinent question. The nearest that we 
have come to an attempt to find some kind of an answer to it is the work on computer 
microworlds by David Pratt and his colleagues which we have already mentioned. Studies of 
microworlds are sometimes called ‘teaching experiments’ because the researchers concerned 
are interested not just in children’s reactions at any one time but also in how their ideas change 
during the course of the study.  
 
In fact, in these particular studies, much of what was written was about how individual children 
gained new insight into randomness during the course of the project. The authors claim that the 
main reason for these improvements was the interaction between the children’s ‘inner 
resources’ and the technology of the microworld, which gave them an unusual degree of control 
over probabilistic situations. The inner resources were the basic intuitions that the children 
brought with them to the microworld, such as their idea of randomness as ‘unsteerable’, and the 
control was part of the microworld itself. In the Pratt and Noss study, the technology included 
what the researchers called the ‘workings box’, which allowed the children to generate random 
sequences and to regulate some aspects of these sequences, such as their size. Pratt and 
Noss argue that this aspect of the microworld played an essential part in the steps that the 
children took in understanding the idea of randomness during the study.  
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Thus, this study threw up some interesting suggestions about how to teach children about 
randomness. Yet, it was definitely not a full intervention study of the kind that we have just 
described – no pre- or post-tests and no control group. It would not be difficult to do such a 
study in order to test Pratt and Noss’s hypothesis about the fruitfulness of interactions between 
children’s intuition and their experiences of technological control, or to carry out other 
intervention studies to test other hypotheses about learning about randomness. 

Summary  
 

1. Although randomisation is a common and important part of everyday life, it is clear that 
even adults’ grasp of the nature of randomness and its consequences is often tenuous. 
Many researchers have concluded on the basis of research on young children that they 
have even more difficulties in understanding randomness than adults do.  

2. The research by Piaget and Inhelder (1975) on young children’s predictions about 
successive randomisation led to the interesting idea that children first have to grasp the 
reversibility of determined spatial arrangements and then some time later go on to learn 
about the virtual irreversibility of progressively randomised sequences. However, the 
context that Piaget and Inhelder used for randomising in this study (a row of marbles 
rolling down a slope at the same time) was probably strange to the children, and the 
study needs to be done again with situations which children would be more familiar with 
like shuffling cards. 
 

3. By the age of 10 years or so, children have a range of ideas about the nature of 
randomness, and even before that age they are able to some extent to make use of their 
association between fairness and randomness in a computer microworld. This 
association with fairness offers an excellent avenue to the study of children’s 
understanding of randomness. Fairness engages their attention, and they seem to be 
able to adopt flexible and adaptive strategies to achieve fairness in different ways. 
 

4. There is some evidence that children begin to understand the link between uncertainty, 
randomness and probability at a very early age indeed, but this is not conclusive. It 
would be easy to fill the gaps left by the interesting research that led to this important 
claim. 
 

5. The overall picture that we have is that children are actively interested in randomness, 
particularly in the context of fairness, and that the ideas that they have about 
randomness should be encouraged through teaching. 

 

3. Understanding and analysing the sample space 

What is sample space? 
 
Problems in probability are always about a set of possible, but uncertain, events that occur 
randomly. We cannot say what will happen next in these random sequences, but we can often 
try to work out the probability of particular events or particular types of event. To be able to do 
that, we need one crucial bit of knowledge - we have to know precisely what all the possible 
events are. 
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It is easy to see why this is so. Let us start with the simplest and most familiar examples – 
tossing coins and throwing dice. The probability that a tossed coin will land head upwards is 1 in 
2, or 0.5, or 50% or ½, because there are only two possible outcomes of tossing the coin – a 
head or a tail. With the same kind of reasoning, one can easily work out that the chance of a die 
landing with 3 uppermost is 1 in 6 or 0.167, and it takes only a small step to realise that all the 
probabilities of all the possible events will sum to 1. The chance of throwing a head and of 
throwing a tail are both 0.5 which also add up to 1: the chance of throwing each of the 6 
numbers on a die is 0.167 and the sum of the probabilities of the 6 numbers is again 1.  
Of course, the range of possible events that one needs to know is rarely as simple as that. To 
continue with tossing a coin, what are the possible outcomes of tossing the coin twice, or three 
times or four times? It can surprise no one that the number of possible outcomes will increase 
with each extra toss of the coin. However, it is less obvious but just as important that the 
relationship between the number of tosses and the number of possible outcomes is not a simple 
linear one. It is in fact a multiplicative relation, and Figure 1 (overleaf) shows why.  
 
The left-hand side of the figure is a tree diagram that shows how the number of possible 
outcomes doubles on each throw. You can throw either a head or a tail with one coin, and each 
of these two possible outcomes has the same two possible sequels on the next throw, which 
makes four possible outcomes (22), and since each of these four possibilities can be followed by 
one of two possible sequels there are eight possible outcomes (23) on the third and 16 (24) on 
the fourth throw. Thus, the number of possible outcomes doubles each time that a coin is 
tossed and this is because the number of outcomes of each throw is two. A throw of a die has 
six possible outcomes and so the number of possible outcomes is multiplied by six with each 
extra throw: there are 36 (62) possible outcomes of throwing two dice and 216 (63) of throwing 
three. 
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Figure 1: Tree diagram to represent the sample space for four tosses of a coin. 
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We use a tree diagram in this figure, because we think that this is the clearest way to illustrate 
the sample space in random sequences of events. It is worth noting that this way of 
representing all the possible sequences in a sample space was used as a teaching instrument 
with some success in a study of children aged between 10 and 14 years (Fischbein, Pampu and 
Minzat, 1970). 

The importance of the sample space 
 
The term that is usually used for the number of possible outcomes in any probability problem is 
the ‘sample space’ or ‘problem space’ (Chernoff, 2009), and we have may have already said 
enough to show that knowledge of the sample space is an essential part of finding the correct 
solution to any probability problem. Every calculation of probability is based on the problem’s 
sample space. In fact, once one knows and understands the sample space, one is usually well 
on the way to solving the problem.  
 
It is no surprise, therefore, that, some common confusions about probability and mistakes in 
probability problems can be traced back to many people having a hazy picture of the sample 
space of the problem that they are dealing with. For example, one common mistake is for 
people to expect random sequences to have no discernible pattern. Many adults judge 
BGGBGB as a more likely sequence than BBBGGG (Kahneman and Tversky, 1972) for the 
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birth order of six children in the same family. In fact, these two sequences are as likely as each 
other, as a glance at the sample space for this particular context would show. As with tossing 
coins, there are two possible outcomes, a boy or a girl, each time. Thus, the total number of 
equiprobable sequences for six births in a family is 26 or 64. BGGBGB is one of these 64 
possible sequences and BBBGGG another, and so both have a probability of 1/64 or 0.016. The 
people who made this mistake had not been shown the sample space and may not have 
thought about it at the time. It seems quite likely to us that they would change their minds quite 
quickly if they were told about the 64 possibilities and grasped the fact that these are all 
equiprobable. 
 
Another common mistake, which we have described already, might also become much less 
common if people thought clearly about the sample space when trying to solve probability 
problems. This is the negative recency bias (Chiesi and Primi, 2009), which leads people to 
predict a change after a run of one particular event. They judge a head as more likely than a tail 
on the next toss after a run of tails even though the two events are equiprobable. If they looked 
at the sample space for tossing a coin, for example, five times they would see that there are 32 
possible equally probable sequences, of which one is HHHHH and another HHHHT. Since each 
of these sequences is equiprobable – these two sequence both have a probability of 1/32 – one 
is just as likely as the other. So, the sample space is a vivid and, we imagine, effective way of 
showing people that recency (what happened on the last four throws) is not a good basis for a 
judgement about probability. 
 
We will be making the point that the crucial importance of the sample space tends to be 
neglected both in research on children’s understanding of probability and in teaching children 
about probability but before that we will present one other example of a fairly sophisticated kind 
of judgement about probability which people often get radically wrong even though they would 
probably see through their own confusion by thinking clearly about the sample space. 
 
The probability of a particular event happening to you in the future depends on the number of 
occasions on which it could happen. The probability that we, the authors, who live in middle 
England, will meet a man wearing a kilt at our local shopping centre next week is fairly low, but it 
will be greater if we go there three times than only once during the week. The probability that 
you will throw a head is higher if you toss a coin three times than if you toss it twice or only 
once, as Figure 1 clearly shows. This pervasive and completely reliable relationship between 
the two variables that we are talking about – (1) the probability of a particular event and (2) the 
number of occasions on which it could take place – could easily lead people to think that the 
relationship is a linear one. Throw the coin three times and you will be three times as likely to 
throw a head as when you throw it only once. 
 
This idea is wrong. There isn’t a linear relationship here, as a glance at Figure 1 shows: the 
probability of throwing a head when you toss the coin once is 0.5: if a linear relationship did 
hold, that probability would double (p = 1) with two tosses and would triple with three tosses (p = 
1.5). Since a probability of 1 means absolute certainty, that would mean that you would get a 
head at least once by tossing the coin twice, which is manifestly not the case, and the figure of 
1.5 for three tosses makes no sense at all. In fact, as Figure 1 shows, the probability of one or 
more heads in two, three and four throws is well below certainty. There are four possible 
outcomes in the sample space for two-coin tosses, and eight for three-coin tosses and 16 for 
four. In each sample space, only one of the outcomes includes no heads at all (TT for two, TTT 
for three and TTTT for four tosses). Thus, the sample space tells you that the chance of getting 
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at least one head in two throws is 3 in 4 or 0.75, in three throws 7 in 8 or 0.875, and in four 
throws 15 in 16 (0.94). Thus, the relation between the number of throws and the probability of 
this particular event is not a simple linear one: you are not four times more likely to get at least 
one head when you toss the coin four times as when you toss it once. 
 
However, when a group of Belgian psychologists (van Dooren,et al., 2003), asked 16- and 17-
year-old students to judge the truth of a set of statements about throwing dice on a certain 
number of occasions, most of these students seemed to assume a linear relation between the 
number of times the dice were thrown and the probability of particular outcome, even though the 
older (but not the younger) students in this group had already been formally taught about 
probability at the time of the study. The statements that the students were asked to judge were 
a great deal more complex than the coin tossing example that we have just outlined, but the 
principle was the same. One, for instance, was: I roll a die 12 times. My chance of getting at 
least two 6s in these 12 throws is three times as great as my chance of getting at least two 6s if 
I roll the die four times, and then the participant had to tick the box beside one of two answers 
This is true or This is not true. The statement is a claim for a linear relationship between the 
chance of a particular outcome and the number of times that the dice are thrown, and it is not 
true: the probability of rolling at least two 6s with 12 throws is more than three times the 
probability of the same outcome with only four throws. Yet, the great majority of the students 
who took part in this study and even of those who had been taught about probability, opted for 
the linear relation most of the time in this and some other similar problems.  
 
This is an understandable mistake. The solution to many of the mathematical and scientific 
problems that students are asked to solve at school lies in a linear relationship between two 
variables, and it is not at all surprising that these students tried the same approach in probability 
problems as well. Yet, it seems to us that they might have been far less likely to do so if they 
had been encouraged to think about the sample space. This, too, would show quite clearly that 
the relationship between the number of possible sequences with two or more sixes in them and 
the number of times that the die is rolled is complex and certainly not linear.  
 
We are speculating here about a possibility that needs investigation. In fact, our speculation 
suggest two sets of studies.  
 

1. Students may make the linear error because they have no clear idea of the sample 
space, but we cannot be certain that they would know how to interpret and use the 
sample space. A study in which the researchers provide the students with a clear 
account of the sample space for some probability problems but not for others should sort 
this out. If our speculation is correct, those given a clear and comprehensible sample 
space for problems like the ones that van Dooren et al. gave to students, would no 
longer make the linear error. Exactly the same comparison could be made with the 
negative recency effect, which we described in the previous section. The sample space 
for three-coin tosses consists of 8 (23) equiprobable sequences, and a list of these would 
easily demonstrate to the student that the sequence HHH is just as probable as the 
sequence HHT and therefore that one is just as likely to throw another head after 
throwing two heads already as to throw a tail the third time round. 
 

2. The next question is how to teach children to work out the sample space for themselves. 
As far as we know, there is no research on this issue, apart from some studies that we 
shall review later on children’s ability to categorise material systematically. Research on 
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teaching children about creating sample spaces should concentrate on how best to 
present the sample space and on how to convince children of the need to list all the 
possibilities exhaustively. One way of approaching the first issue is to test Fischbein’s 
suggestion that tree diagrams are an effective way of teaching children about how to list 
all the possibilities, by comparing the use of tree diagrams, like the one on the left of 
Figure 1 with the use of exhaustive lists such as the one on the right of the same figure. 
The complete lack of systematic intervention studies on methods of teaching students’ 
how to form sample spaces is, in our view, the most glaring gap in research on children’s 
understanding of probability. 

Aggregating the sample space: working at two levels simultaneously 
 
In some problems the relation between the sample space and the probability of a particular 
outcome is a simple and quite a straightforward one. Since there are eight possible outcomes 
when you throw a coin three times and they are all equally probable, the chance of one 
outcome happening is 1 in 8 (0.125). In many problems, however, the relation is more complex 
than that, because the people solving the problem must first group or categorise the sample 
space in some way before they can reach any conclusions about the probability of particular 
events. Usually, this is because the outcomes that are relevant or important are formed from 
combinations or categories of the possible events in the sample space. Usually also, as we shall 
see, the new combinations and categories are not equiprobable even when the basic elements 
in the sample space are. 
 
In the introductory section, we mentioned university students’ difficulties with the DM problem 
devised by Keren (1984). Recall that the students were told about two boys, D and M, who 
together drew three cards from a pack having an equal number of red and black cards. If the 
card was red, one of the boys won a coin, and if it was black, the other boy won. The students 
were asked about the probability of two kinds of event: one was that one boy would win all three 
times, the other that one boy would win twice and the other once. The correct answer is that 
second of these two categories is much more common than the first: this is because there are 
only two possible ways in which one boy could win all (DDD or MMM) but six possible ways of 
one boy winning twice and the other once (DDM, DMD, DMM, MMD, MDM or MDD).  
 
This should be an easy problem to solve for anyone who has looked at the sample space, and 
so it is very likely that the reason for 48% students producing the wrong answer (most of these 
said that there was an equal likelihood of the two kinds of event) was that they did not think 
clearly enough about all the eight possible outcomes. One possible reason for this might be a 
confusion caused by the need to think about two levels of analysis at the same time. One level 
is the two categories that the participants are being asked about, and the second level is the 
eight separate outcomes from which the two categories must be formed. Even though they 
combine the individual outcomes to form the two categories, they still have to keep them 
separate in order to realise that only two of the outcomes belong to one category (one boy wins 
every time) and the remaining six to the other (one boy wins twice and the other once). This is 
the information that they need to be able to judge the second category as more probable than 
the first. However, the eight individual possible outcomes that they have to consider are 
equiprobable, and this is what might have led the participants to say that the categories were 
equiprobable too. 
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We cannot be sure that this is the underlying problem and the answer must lie in further 
research on the effects of providing participants with information about the sample space which 
either clearly distinguishes the two levels of analysis or not. This approach would be also be 
valuable to help decide the implications of some further research, this time with children that 
also involves aggregation of categories which are unequal in their probability but which are 
formed from basic elements that are equiprobable.  
 
This is a set of studies by Abrahamson (2006, 2009). His method was to ask children what 
would happen when they used a scoop to collect four balls at a time from a container that held a 
large number of green and blue balls. The scoop was a flat square with a handle and with four 
holes in it each of which was the right size to hold one of the balls. So, when the children 
plunged the scoop into the container and then retrieved it, the scoop would usually hold four 
balls, which were either blue or green ones. This meant that there were 16 possible 
equiprobable outcomes for any scoop: BBBB, BBBG, BBGB, BGBB, GBBB, BBGG, GGBB, 
BGBG, GBGB, BGGB, GBBG, GGGB, GGBG, GBGG, BGGG and GGGG. This is all one would 
need to know about the sample space to answer a question about the probability of one 
particular outcome, such as BGBG. The answer of course is 1/16. But Abrahamson’s questions 
were not just about individual outcomes such as BGBG, but also about categories of outcomes. 
He wanted to know whether children could work out the probability of the scoop holding, for 
example, just green balls or just blue balls, or an equal number of blues and greens. The correct 
answer is that the probabilities of these three categories are very different, as Figure 2 shows. 
There are six different ways in which the scoop could hold two blue and two green balls, but 
only one way in which all the balls would be green or all would be blue. Thus one is six times 
more likely to scoop an equal mix of greens and blues than to scoop just one colour. 

Figure 2: The 16 possible outcomes in Abrahamson’s 4-scoop problem. 

 

4-G          3-G,1-B     2-G,2-B    1-G,3B      4-B 
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As in Keren’s study with adult students, so in Abrahamson’s research with school children, the 
participants had to deal with the same sample space at two levels simultaneously. They had to 
be able to work out each of the five categories, but in order to compare the likelihood of these 
different categories they also had to be aware of the 16 individual possible outcomes since the 
categories were formed from different numbers of these outcomes. To put it in Abrahamson’s 
terms they had to deal with and distinguish ‘aggregate’ and ‘elemental’ events. An elemental 
event is, for example, a scoop with one blue ball in the top right hand corner and three green 
balls in the other available holes, whereas an aggregate event is a scoop with three green and 
one blue ball in any arrangement. The crucial point of Abrahamson’s task is that the 16 
elemental events are equiprobable but the aggregate events are not, and his main question was 
about how well children could understand this difference.  
 
Abrahamson’s answer to this question was based on qualitative reports of the often-changing 
answers of children around the age of 12 years. He reports that it is hard for them to coordinate 
these two levels of data with each other. Sometimes, they judge that two aggregate events are 
equiprobable when in fact they are not, and their justifications for this response make it clear 
that they think of the aggregate event, such as three greens and one blue as an elemental one. 
This is not a surprising error since two of the five aggregate events (four blues, four greens) are 
elemental events too which must make it hard for the children to distinguish the two levels. At 
other times, the student will argue that some elemental events are more likely than others. 
When a child does make this mistake he or she usually claims that an elemental event, which is 
part of a relatively frequent aggregated category, like two green and two blue balls, is more 
likely to happen than another elemental event, like four green balls, which belongs to a much 
less common category. 
 
The mistakes that we have described so far seem to be due mainly to children paying little or no 
attention to the sample space. The students’ answers that Abrahamson reports suggest a 
different kind of difficulty. Abrahamson, with the help of various graphical representations, 
encouraged the children to think about all the possible events and their relative frequencies. 
Thus they had at their fingertips clear information about the sample space. Yet, even so, they 
sometimes confused the two levels of analysis. 

Compounds and aggregations 
 
To solve some probability problems, the aggregation that is needed is a matter of combining 
two elements. In some experiments the participant are asked about the relative probability of 
these combinations or compounds. This was what happened in a series of experiments by 
Lecoutre (1992; see also Lecoutre and Durand, 1988). In these studies Lecoutre posed the 
following problem, in various different versions, to a large number of adults and also to groups 
of secondary school children: There are three poker chips in a box, two red and one white, and 
two are drawn (from the box). Is it more likely (a) that two red chips are drawn or (b) that one 
red and one white chip is drawn, or (c) are these two events equally likely? The sample space 
for this problem contains three possible outcomes:  

1. that two red chips are drawn  

2. that one of the red chips and a white chip are drawn and  

3. that the other red chip and a white chip are drawn.  
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Thus, there is only one way to draw two red chips, but two different ways to draw a red chip and 
white one. So, the second and third of the three possible events form the aggregate event of 
one red and one white chip, and this compound event is twice as likely to happen as the event 
of drawing the two red chips.  
 
Some of the people to whom Lecoutre and her colleagues gave this problem had had several 
years of teaching about probability, others not. Some were science students, others arts 
students. Some had had a great deal of more experience than the others with games of chance. 
The main result of this research, however, was that around 50% of the participants gave the 
wrong answer, and in nearly every case their mistake was to judge the two events (two red 
chips versus one red and one white) as equiprobable.  
 
The kind of formal education that the participants had had seemed to make very little difference 
to this pattern of results. Arts and science students did equally well, and those who had taken 
courses on probability did no better than the students who had not. The people who were highly 
experienced in games of chance did make the mistake noticeably less than those with less 
experience of this sort, but even so very nearly 50% of them gave the wrong answer. This was 
about the simplest possible aggregation problem (only three possible elemental events and an 
aggregated event formed from two of these events) and yet the majority of the participants did 
not manage to solve it, even though many of them were very well educated. 
 
Lecoutre then tried another version of this task, this time with children. In her new task the 
participants were given three geometrical shapes instead of poker chips. Two of these were 
identical triangles and the third was a square. They were shown, before the task began, how 
they could put the square and one of the triangles together to make the shape of a house if 
these were the two shapes that they drew out, whereas drawing out two triangles would allow 
them to construct another geometric shape (a rhombus) and not a meaningful figure. They were 
then asked the same kinds of question as in the poker chip task: If you draw out two of the three 
shapes at random, are you more likely to draw out a rhombus, or a house, or are these two 
events equally likely? The same children were also given a second task which was a virtual 
repeat of the poker chip task except that the objects were three sweets, two of which were 
orange- and the third lemon-flavoured and they had to judge the relative likelihood of picking 
one orange and one lemon, or two orange sweets.  
 
Lecoutre found a very different pattern of results in the two tasks. The children did much better 
with the house-rhombus problem than with the orange and lemon sweets. In the first task three-
quarters of the group answered correctly that the house was a more probable event than the 
rhombus: only 23% made the mistake of judging the two events to be equiprobable. This of 
course is a much more successful set of answers than those of the adults in the poker chip task, 
even though the structure of the two tasks was the same However, in the second task with the 
orange and lemon sweets roughly the same numbers of children made the wrong, equiprobable 
choice as made the correct choice, which is only a slightly higher rate of success than in 
Lecoutre’s previous studies. 
 
What made the house-rhombus problem a relatively easy one? Lecoutre’s own explanation is 
that this problem distracted the children from the random nature of the choices by making them 
think more about the construction of the shapes and about the material that they had to hand to 
make these constructions. This seems an unconvincing explanation to us since the questions 
that the experimenters put to the children in this task could only make sense to them if they 
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understood that picking two shapes could lead to quite different outcomes. To get the right 
answer the children had to understand that chance determined which shapes they would draw 
out. Their relative success in this task must have been due to them being able to see that there 
were two ways of making a house, because there were two different roofs, whereas there was 
only one way of making a rhombus. The use of a concrete, identifiable and familiar object like 
the roof of a house made it easier and more natural for the children to analyse the sample 
space logically and correctly. The children’s success in this task shows that there are contexts 
in which most of them see the need for analysing the sample space correctly, and carry out the 
analysis correctly. The educational implications of this conclusion are great, and should be 
taken up. 
 
Questions about compounds can be more complex than the one that Lecoutre posed. There is 
for example the quite commonly given two-dice problem in which the child is asked about the 
different possible totals that one could get when throwing two dice at the same time and then 
adding the two numbers you have just thrown. Table 1 shows how, when two dice are thrown, 
one of 36 possible compound outcomes will be the result. In the different compounds, the two 
dice add up to eleven possible totals that range from 2 to 12. It is easy to see from the table that 
the number of compounds that sum to these different totals varies a great deal between totals. 
There is only one way of throwing a total of 2 or a total of 12, and there are two ways of 
throwing the totals 3 and 11, three ways for the totals 4 and 10, four ways for the totals 5 and 9, 
five ways for the totals 6 and 8, and six ways for the total of 7. To take one example, you are six 
times more likely to throw a total of 7 than a total of 12. Thus, this is another context in which 
the elements, which in this case are compounds, are equiprobable, but can be aggregated by 
the sums of two numbers in the compounds and these aggregates are not equiprobable.  

Table 1: The 36 possible totals made by summing the outcomes of throwing two dice (A and B) 
at a time.  
 
 The number on which A lands  

1 2 3 4 5 6 

The 
sums of 
the two 
numbers 

The 
number 
on 
which 
B lands 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 
 
These large and systematic differences in the probability of the sums of two dice are, it seems, 
not immediately obvious to schoolchildren. Fischbein and Gazit (1984) included some questions 
about throwing two dice in a questionnaire that they gave to 10- 11- and 12-year-old students. 
Among other questions, they asked the students what the probabilities were that that the sum of 
two dice would be (a) 6, (b) 13 (an impossible event) and (c) bigger than 9. The children did 
reasonably well in spotting that 13 was not a possible option. Thirty-eight percent of the 10-
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year-olds, 81.0% of the 11-year-olds and 78.8% of the 12-year-olds got this question right, 
which means that they understood the question and were aware of the limits of the sample 
space. However, the number of correct answers to the other two questions, particularly by the 
youngest group, the 10-year-olds, was very low indeed. None of the 10-year-olds, but 51.0% of 
the 12-year-olds, came up with the correct answer to the question about the probability of the 
total 6 (question (a)), and none of the 10-year-olds, and only 29.8% of the 12-year-olds, 
managed to work out the probability of a total greater than 9 (question (c)). Why was it so 
difficult to find an answer to these apparently straightforward two questions?  
 
Perhaps the best way to solve this puzzle is to reflect on what the correct answers are, and how 
to find them. We can start with the total number of compound events, which you can see from 
Table 1 to be 36. Since there are five ways of throwing the total 6 (1,5; 5,1; 2,4; 4,2; 3,3), the 
answer to question (a) is that the probability of this particular total is 5/36 or 0.139. A glance at 
the triangle of figures at the bottom right-hand corner of the collection of totals in Table 1 shows 
that there are three different ways of throwing the total 10, two ways of throwing the total 11, 
and one way of throwing the total 12, which means that the answer to question (c) is 3+2+1/36 
or 0.167. So, the problems are quite easily solved, provided that one has a version of Table 1 to 
hand, and knows how to use it, because the table establishes the two crucial pieces of 
information: first the 36 possible compounds that can be thrown and second the number of 
these compounds that add up to the various totals in question. Fischbein and Gazit (1984) claim 
that many of the students’ mistakes were due to them thinking that the number of possible 
compounds in the sample space is 12 not 36, and these researchers go on to suggest that this 
shows that the pupils were not using multiplicative reasoning because they added 6 to 6 when 
they should have multiplied 6 by 6 to reach the correct total of possible compounds. 
 
The need to multiply is certainly one possible obstacle, but there are others. Another is what is 
known as the ‘equiprobability bias’: this is the assumption, which we encountered already in the 
results of Lecoutre’s research, that, in a random arrangement, all possible events, including 
aggregated ones, have the same probability as each other. A third is that sample spaces, being 
multiplicative, quickly proliferate and, thus, are often hard to comprehend and to calculate as 
well.  
 
One interesting solution to this last problem to work with computer microworlds, in which it is 
possible and quite easy to simulate the results, for example, of tossing two coins or two dice 
1000 times. A study by Pratt (2000), which is about 10-year-old children’s solutions to the two-
dice problem in the context of a computer microworld, is a clear illustration of the advantages of 
this kind of simulation (see also Konold, Harradine and Kazak 2007).  
 
Pratt’s study confirmed that 10-year-old children sometimes do assume equiprobability in their 
first attempts to solve the two-dice problem. They argue that all the 11 possible totals are 
equally probable. Pratt worked with children in a computer microworld in which they could study 
for themselves the results of a very large number of throws, for example 1000 throws of the two 
dice. He noted that the children tended to begin working in this microworld with the assumption 
of equiprobability, which they adopted because of the strong association that they had between 
equiprobability and randomness. Later, however, partly as a result of experiences that they had 
of manipulating aspects of the microworld, and also of seeing the results of spectacularly large 
numbers of throws of the two dice, they exchanged this assumption for a more appropriate view 
of the probabilities of 11 different aggregated totals. 
 



40 
 

There may be another possible obstacle here, which is that the compounding in the two-dice 
problem requires a detailed knowledge of the additive composition of number, which is the 
knowledge that numbers are composed of other numbers: for example 7 is composed of 1 and 
6, 6 and 1, 2 and 5 and so on. Even though quite a lot of evidence (Nunes and Bryant, 1996) 
suggests that children do have some understanding of additive composition quite some time 
before the age of 10 years, the detailed knowledge of composition that the two-dice problem 
requires may be too difficult for them at this age. 
At the moment there is little systematic evidence to tell us what the reasons for children’s 
difficulties with this compounding problem are. In our view, there is a need to find out whether 
the cognitive obstacles that cause whatever difficulties children have with any probability 
problem are general ones or are specific to probability.  

The role of combinatorial reasoning 
 
Piaget and Inhelder (1975) claimed that combinatorial reasoning is a fundamental part of 
children’s learning about probability. They argued that children begin to understand the nature 
of randomness through being able to work out all the possible combinations in random 
situations. ‘The child constructs his notion of probability by his ability to subordinate the 
disjunctions effected within mixed sets to all the possible combinations, using a multiplicative 
and not simply an additive mode.’ (p. 161). In other words, children make sense of randomness 
by working out all the possible combinations in the sample space. Piaget and Inhelder’s 
hypothesis was that children only begin to analyse combinations systematically at around the 
age of 11 or 12 years, and so they concluded that the need for combinatorial reasoning is a 
major obstacle to children’s understanding of probability. 
 
This claim is plausible enough and it certainly justifies the large number of studies on 
combinatorial reasoning that Piaget and Inhelder report in their book on children’s ideas about 
chance. One of these studies was directly about combinations and probability. The ages of the 
children in this study ranged from 5 to 12 years. The experimenters first showed each child a set 
of counters on the table in front of them. These came in four different colours, and the number 
of counters in each colour varied (e.g. 15 yellow, 10 red, 7 green and 3 blue). The 
experimenters then put an exactly identical set of counters into a sack and shook this sack 
thoroughly. Then, several times over, they asked the child to draw out a pair of these counters, 
but also asked her each time to make a prediction first of the colours of each counter in the pair 
that she was about to retrieve. The counters that the child drew each time were not returned to 
the sack, and thus the probabilities of the possible pairs varied constantly throughout the 
session. So, in order to calculate or estimate the probability of each possible combination of 
colours in this rather complex task, the children had to take into account not just the original 
number of counters in each colour, but also the effect of the constantly changing sample space.  
 
Piaget and Inhelder (1975) reported that the younger children (mostly 5-, 6- and 7-year-olds) 
showed no sign of any systematic analysis of the probability of drawing the different colours and 
often did not even take into account the original numbers of each colour. Slightly older children 
base some of their judgements on the initial numbers but did not monitor the changing sample 
space. The oldest children, around 10, 11 and 12 years in age, did make use of both kinds of 
information, and their predictions were realistic, as a result, and often successful. Piaget and 
Inhelder’s conclusion from this developmental pattern was that children in this age range learn 
not just to estimate probabilities of certain events but also how to reason about combinations, 
and they argue that the children’s growing ability to understand and to imagine combinations is 
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actually the basis for their eventual understanding of chance: ‘The essential conclusion to be 
drawn from the preceding observations is that the notions of chance and probability are by 
nature essentially combinatoric’ (p 128).  
 
The idea of the central importance of combinatorial reasoning in learning about probability is 
plausible and exciting, but Piaget and Inhelder’s enthusiastic conclusion about the 
understanding shown by the older children seems to us to go too far. The predictions that these 
children made and the justifications that they gave for their predictions do show that they did 
take into account the relative number of each colour at the start and also the changes in the 
original sample space. However, the two examples given in the book of individual children 
making rational and systematic predictions do not establish that, as Piaget and Inhelder seem to 
be claiming, these children were able to work out all the possible pairs that they might draw in 
their next choice. One child, who consistently predicted a white and a red pair when white and 
red were the two most numerous categories, may simply have done so on the basis of the 
relative frequency of the individual colours rather than by working out all the possible paired 
combinations between them and estimating the relative frequency of all these different pairs. 
The other child consistently predicted a pair of green counters, when green started as and 
remained the most numerous colour, and again this prediction could have been based on the 
relative frequency of the individual colours and not on the relative frequency of possible pairs of 
colours. There is no evidence that this particular child even considered the possibility of drawing 
a combination of two different colours.  
 
It is difficult to understand Piaget and Inhelder’s clear optimism about these children’s ability to 
analyse the sample space and to monitor its changes. Their reasoning seems circular. They 
argue that combinatorial reasoning is essential to understanding probability, and then conclude 
that a modest improvement with age in the success that children have in this probability problem 
must be due to an increase over time in children’s ability to reason about combinations. 

Cartesian product problems 
 
We have concentrated so far on children forming pairs either as compounds or just as 
combinations, but of course there are other kinds of combinatorial tasks, such as permutation 
tasks and arrangement tasks. Piaget and Inhelder (1975) did give such tasks to children, but the 
experiments that they reported were not directly connected to the topic of chance. The authors 
included these further experiments in their book on chance because of their assumption of the 
great importance of combinatorial reasoning in solving probability problems, but as we have 
already remarked this is an assumption that still needs to be tested. 
 
One kind of combinatorial problem that has attracted a great deal of interest more recently is the 
Cartesian product problem. In this, the participant has to work out how many combinations are 
possible between two different kinds of material. In a typical example, the question is how many 
different kinds of sandwich can be formed from three kinds of bread (white, granary, wholemeal) 
and four possible fillings (tuna, cheese, avocado, chicken). It is well documented that this 
multiplicative problem is a difficult one for children younger than 10 years, who often add the 
relevant numbers (e.g. 3 + 4) instead of multiplying them (Brown, 1981; Nesher, 1988). The 
person who makes this kind of additive error is clearly far from creating an exhaustive list of all 
the possible combinations.  
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However, two different studies suggest that quite young children often can solve Cartesian 
product problems if they are allowed to model the situation with concrete material. Lynn English 
(1991), an Australian psychologist, gave children, who were aged from 4 to 9 years, a product 
problem about two kinds of clothing – tops and skirts or tops and trousers. The children had to 
work out what all the possible combinations of tops and skirts of trousers were. English also 
gave them teddy bears and encouraged the children to dress them before they decided on the 
possible combinations. English reported that the children’s approach to this problem became 
more systematic and exhaustive with age. The oldest children (9-year-olds) formed all the 
appropriate combinations on more than half the times. In the study the children were given 
several different problems, and English noted that a marked improvement, mainly in the older 
children, in how systematic and successful their solutions were during the course of the study. 
She attributed the children’s surprisingly high rate of success largely to the opportunity that they 
had to use concrete material to model each problem. This is a plausible, but untested claim. We 
need a study that compares children’s solutions to Cartesian product problems with and without 
the help of concrete material. 
 
In a closely similar study (Bryant, Morgado and Nunes, 1992; also described in Nunes and 
Bryant, 1996, p163–165), we also gave 8- and 9-year-old children concrete material to model a 
Cartesian product problem about clothing, again (co-incidentally) about combinations of t-shirts 
and shorts. One group of children was given all the material that they needed to model all the 
possible combinations. A second group was given an incomplete set of material: it included 
examples of the t-shirts and the shorts, but not all the different elements in the problem, The aim 
of this second condition was to find out if the children could work out what all the combinations 
were without being able to get to the solution by counting actual combinations that they had 
formed with the material provided.  
 
We found that the 8-year-old children solved the problem successfully about a third of the time 
when they were given a complete set of materials but hardly at all with the incomplete set. The 
9-year-olds did better. They calculated the number of possible combinations correctly just over 
half of the time with the complete set and roughly a third of the time with the incomplete set. So, 
it is generally hard for children under the age 10 years to work out a complete list of all the 
possible combinations in a Cartesian product problem, but it does helps children to have 
concrete material to hand to help them to think about these combinations. Again, we need more 
research to see what implications these two studies of children’s solutions to Cartesian product 
problems have about children’s understanding of probability and, in particular, about their ability 
to create an exhaustive and appropriate sample space for themselves. 

Imagining possibilities 
 
The analysis of sample space starts with an exhaustive search for all the possibilities that fall 
within that space. This makes two obvious intellectual demands. One is to eliminate from the 
space any element that is impossible. The second is to draw up the list of all the events that are 
possible.  
 
There is more research on the first than on the second of these two demands. On the whole, 
researchers have reported that children quite easily eliminate impossible events from the 
sample space. Piaget and Inhelder report, in their chapter on the comparisons of two 
probabilities, that children solve problems in which one of the sample spaces has none of the 
quantity that they are being asked about (no blue balls when the question is about the relative 
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probability of drawing a red ball) relatively easily. As we mentioned earlier (page 42), Fischbein 
and Gazit also report that a question about an impossible total in the two-dice task was much 
easier for 10-year-old children to answer than other questions about events that were possible. 
In research outside the topic of probability, there is a large amount of evidence that even very 
young children are quite good at discriminating impossible events from ordinary events (e.g. 
Chandler and Lalonde, 1994; Subbotsky, 2004; Woolley and Cox, 2007; Johnson and Harris, 
1994). 
 
However, two fairly recent studies by Shtulman and Carey (2007) and Shtulman, (2009) show 
that the discrimination between possible and impossible events is not always that easy for 
young children. It is difficult for them, these researchers claim, when they have to compare and 
discriminate possible but highly improbable events and events that are completely impossible. 
Their studies showed that children between 4 and 7 years are quite good at judging impossible 
events, like catching a shadow, as impossible, but tend to include improbable events, such as 
catching a fly with a pair of chopsticks, in the impossible category as well. Children of 8 to 9-
years, on the whole, did better on this task, even though some of them still did confuse 
improbable with impossible events. The researchers make no connection between these results 
and children’s understanding of chance, but there is plainly a connection to be made since 
many of the serious risks in children’s lives involve quite possible, but statistically improbable 
events, such as catching AIDS or death from a drug overdose. 
 
There is, as far as we know no direct research at all on the second question. We simply do not 
know how children set about imagining all the possibilities in a particular sample space or what 
difficulties they have in doing so. There is some research on how well children reason about 
future events. This is currently the subject of some lively and interesting research (Atance and 
Meltzoff, 2005, 2006; Suddendorf and Corballis, 1997, 2007; Suddendorf and Busby, 2005; 
Russell, Alexis and Clayton, 2010), but we will not describe it in detail because it deals entirely 
with deterministic contexts. In these studies, children are asked to work out, for example, what 
they will need in order to play a particular game or to make sure that they are not bored in a 
particular situation. The results of these studies suggest that this is something that children of 
about 5 years generally can already do quite well.  
 
However, we do not yet know much about how children set about forming a complete list of 
possible future events whose probabilities vary from high to low, and we know nothing about 
how to help them do so. This seems to us to be a gap in research on children’s understanding 
of probability. 

Summary and comments on teaching children about sample space 
 
There can be no doubt of the crucial part that the sample space plays in our dealings with 
probability. Without a thorough and exhaustive grasp of all the possibilities involved in any 
probability problem, one has no chance at all of solving the problem except by applying some ill-
understood procedure. Yet, we have very little direct evidence about the impact of children’s 
knowledge of the sample space on their understanding of probability. 
 
Two kinds of research study are needed very badly. One, which we have mentioned several 
times already, would be to see how much it helps children who are trying to solve probability 
problems to provide them with the relevant sample space. If this does improve their success in 
solving probability problems, it would be reasonable to conclude that children can see the point 
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of, and can take advantage of, knowing about the sample space, but for one reason or another 
are not managing to create it for themselves. It would then be important to find out what these 
reasons are. However, one possible result of this line of research might be that just presenting 
children, particularly quite young children, with the sample space may be no help at all. They 
may also need to be shown how to interpret the sample space as well. Whether or not they will 
need this additional help is an interesting and important question, which is quite easy to answer. 
 
It is only a short step from this first line of research to the second set of studies that we think 
should be done, which would be about effective ways of teaching children how to form the 
sample space for themselves. In fact, the intervention methods that one would look at in this 
research would partly depend a great deal on what is found in research on the effects of 
providing children with the sample space on their solutions to the probability problem. The work 
that we have reviewed on the help that children seem to get from modelling possibilities with 
concrete material suggests that such material should be at the centre of teaching them about 
how to create a sample space.  
 
One advantage of doing intervention experiments is that they would also, at last, test the as yet 
untested assumption shared by Piaget and Inhelder and by Fischbein and by many other 
researchers, including ourselves, that many of the difficulties that children have in probability 
problems are directly due to a failure on their part to create an adequate sample space. If this 
assumption is right, then successfully teaching children how to form the appropriate sample 
space should also improve their success rate in probability problems. 
 
Several research teams have measured the effects of interventions designed to help children to 
form a comprehensive sample space. The interventions by Jones, et al., (1997, 1999) with 8-
year-olds and by Polaki (2002) with 9- and 10-year-olds are the best examples. The methods 
used in these studies were designed to encourage the children to form the sample space 
themselves and both studies report some success. However, neither research team included a 
control group or involved pre- and post-tests in their research, and so we cannot draw 
conclusions about the intervention methods with any confidence.  
 
We have found one study by Barrattt (1975) of the effect of intervention on combinatorial 
reasoning which did include a pre-test and both an immediate post-test given soon after the 
intervention was over and a delayed post-test two months later. The researchers compared the 
answers of 12- to 14-year-old children in an experimental and in a control group in these tests. 
This well-designed study was on the question of how to teach children about combinations in a 
general sense: Barratt does not seem to have involved probability explicitly in the problems that 
he gave to the participants, but the results of the study are clearly relevant to the understanding 
of uncertainty. He gave all the participants two teaching sessions. The children in the 
experimental group were encouraged to use concrete material (e.g. dolls, counters) to solve a 
series of combinatorial problems, and when they had worked through each problem they were 
asked to check their answer against a correct and systematic solution that they were given. The 
control group children were given other mathematical tasks. Barratt found an impressive 
improvement from pre- to post-test in the oldest children in the experimental group, and less of 
a change in the control group children of that age. There was little difference between the two 
groups at any stage of the experiment in the younger children. The result suggests that it is 
possible to teach older children quite effectively about how to form combinations. It is possible 
that the younger children too might have benefitted from a longer training programme. 
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We are surprised to find no intervention studies designed to help children with another aspect of 
forming the sample space. Creating a sample space is usually a two-step process. First one 
lists the basic elements. Second, one aggregates these elements to form new variables, but 
even when aggregating elements one has to keep them separate from each other as well, in 
order to be able to work out the probability of the aggregate events. There is ample evidence to 
show that this is often a problem for young children for two different reasons. One is that the 
aggregation itself can be quite hard for children since it often depends on combinatorial 
reasoning that children find hard anyway. The other is that the need to combine events into 
aggregates and yet keep them separate is difficult for young children, particularly when the 
elements are equiprobable and the aggregates are not. Again, there is a sore need for research 
on teaching children, this time teaching them how to act on both cognitive levels (elements and 
aggregates) at once: we suspect that the use of concrete material to form models of the 
problem would be an effective help here too. 
 
Finally, we wish to make the point that there are many reasons why children and adults often do 
not manage to form an appropriate sample space for themselves. Piaget and Inhelder 
concentrated on the need for combinatorial reasoning. This certainly must be an important part 
of children’s difficulties with sample space, but there are probably other difficulties as well and 
these need to be researched. The cognitive demands of forming a sample space vary from 
problem to problem. For example, success in the two-dice problem depends on the participants’ 
understanding of the additive composition of number at least as much on their ability to form 
compounds. At a more basic level, one has to be able to work out what is possible, even though 
improbable, and what is entirely impossible. As we have seen, this is not something that we can 
take for granted in young children. 
 
So, it seems to us that much depends on research in the future on children’s learning about 
sample space. It is quite easy to see what research should be done, and quite easy to do the 
research itself. This research would be a major step towards understanding how children learn 
and can be helped to learn about probability. 

 

4. Quantifying probability 

Probability and proportions: probability as an intensive quantity 
 
Probability is a quantity, and learning how to calculate the probabilities of various events is an 
essential part of understanding chance. The information that we use to calculate probabilities 
always comes from the sample space, and the calculation that we perform on this information is 
almost always a proportional one. That is because probability is a proportional quantity or, to 
use the correct technical term, an intensive quantity.  
 
All quantities can be categorised either as extensive or as intensive. Many of the quantities that 
children deal with in the context of mathematics are extensive quantities like mass, height, 
distance and the number of objects in a set. These extensive quantities obey simple additive 
laws. If I add a kilo of apples to the shopping that is already in my shopping bag, I increase the 
mass of its contents. The longer the tap is on, the more water collects in the basin.  
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This is not the case with intensive quantities. If the temperature of the litre of water in the basin 
is 20oC and I add another litre of exactly the same temperature to it, the (extensive) amount of 
water doubles as a result but the (intensive) temperature stays the same. When someone 
fastens one steel bar to another just like it, the total (extensive) weight of the steel increases, 
but its overall (intensive) density is the same as before. 
 
Probability is an intensive quantity because the likelihood of a particular possibility occurring in a 
random sequence is the proportion of the quantity of this particular possibility in the sample 
space to the quantity of alternative possibilities. If three out of the seven balls in an urn are red, 
the chances of pulling out a red ball at random are 3/7 (0.43). The probability of getting a 3 
when throwing a die is 1/6, because there are six possible equiprobable events in that sample 
space. The probability of throwing at least one head in three tosses of a coin is 7/8 (0.875) since 
the sample space for the three tosses consists of eight possibilities and only one of these – TTT 
– is a head-free sequence. The probability of throwing at least two heads in three tosses is 0.5 
because a half of the eight possible sequences in the sample space contains two or more 
heads (HHH, HHT, HTH, THH) and the other half contains two or more tails (TTT, TTH, THT, 
TTH). 
Notice that the probabilities of the items in the sample spaces in these problems, and in every 
other probability problem, always add up to 1. Since all the sequences in three-coin tosses 
contain either two or more heads or two or more tails and the probability of getting at least two 
heads is 0.5, the probability of throwing at least two tails is also 0.5. The probability of throwing 
at least one head is 0.875, and so the probability of throwing three tails, and therefore no heads 
at all, is 0.125. 
 
The crucial point here is that the calculation of the probability of an event or a class of events 
must be based on all the quantities in the sample space and not just the quantity of the event 
that we want to predict. I can only calculate how likely I am to draw a red ball from an urn that 
contains red, blue and white balls by working out the proportion of the red balls to the total 
number of balls in the urn (R/(R + B + W)). This might seem a simple and obvious point, but it is 
certainly not one that we can take for granted when we consider children’s understanding of 
probability. There is evidence that children often restrict their analysis of the sample space to 
one quantity only. If they want to know the probability of pulling a blue ball out of the urn, many 
of them will attend to the number of blue balls but not to the number of the other balls in that 
container. This mistake is well documented and it represents a significant obstacle to children’s 
thinking about probability. The challenge is to find a way of helping children to surmount this 
apparently formidable cognitive barrier. Fortunately, two factors should help us to do that. One 
is the high quality of the research on children’s difficulties and successes in calculating and 
comparing probabilities. The other is the often neglected fact that children have exactly the 
same difficulties in calculating and comparing other intensive quantities, such as concentration 
of a solution and speed, as they do in dealing with probability. Research on how they learn 
about intensive quantities in general is a rich source for suggestions about how to help children 
to measure probability. 

Calculating single probabilities 

Infants 

We start with problems in which children have to make some calculation about a single sample 
space. Most of these can only be solved by calculating a proportion, but there is a class of 
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extremely simple problems that are open to a simpler solution. Suppose that you were given an 
urn which contains eight red and four blue balls and are asked whether you would be more 
likely to pull out at random a red or a blue one. You could solve the problem by calculating that 
red is the answer because the probability of getting a red ball is 0.75 (8/12), but another easier 
way to reach the same conclusion is simply to register, without even counting, that there are 
more red than blue balls in the urn, and therefore a red choice is more probable than a blue 
one. 
 
There are good reasons for wondering whether children can answer this kind of question in this 
kind of context. If they can, we can be reassured that they do have some knowledge that is 
relevant to probability. To realise that a red choice is more likely than a blue choice is to know in 
some sense that the probability of the two choices depends on the relation between the 
quantities of the two colours in the container. The relation in this case is a simple more–less 
relationship rather than a calculated proportion, but children who respond to this relation in a 
probability task would be showing at the very least that they are able to attend to more than one 
quantity in the sample space.  
 
The evidence on children’s success in this kind of task is encouraging. Several studies have 
shown that even babies of 12 months or less in age are apparently able to work out that the 
more numerous of two possibilities is the one more likely to occur. All these studies took 
advantage of the fact that babies tend to look for a longer time at objects and events that are in 
some way or other novel or surprising than at those which are familiar and to be expected, as 
we mentioned in the section on Randomness when we discussed the study by Xu and Denison 
(see page 28). The idea that these studies share is that if babies understand something about 
probability they will be more surprised by, and therefore will look longer at, a relatively 
improbable event than at a more probable one. 
 
Teglas et al. (2007) showed 1-year-old babies a film of four objects whirling around in a 
container, which also had a pipe as an outlet. Three of these objects were in one colour and the 
fourth in another. At a certain point, the container was obscured, and at the same time the 
infants could see an object coming out through the exit pipe. Sometimes, this object was one of 
the three in the more frequent colour: at other times, it was in the unique colour. The 
experimenters reported that the infants looked for a longer time at the unique object exiting than 
they did when one of the three objects with the same colour as each other emerged. They 
argued that the babies had judged that one of the more frequent objects would be likely to exit, 
and were surprised by seeing the unique object come out because they knew this to be a 
relatively improbable event. It should be noted that, although the unique object was less likely to 
exit, this was by no means an impossible event. It is quite possible that perhaps adults would 
not be surprised at the 1-in-4 event taking place instead of an even more probable one. 
 
However, the experimenters recognised that the infants’ greater interest in the unique than in 
the frequent objects may not have been due to the differences in their probability. An alternative 
reason for this result could simply have been that the frequent objects were more familiar to 
them since there were more of them, and they therefore attended more to the relatively 
unfamiliar colour when that came out than at the colour that was more heavily represented in 
the container. So, Teglas et al. conducted a second experiment in which the container in the 
film was divided by a wall into two compartments. The wall made it impossible for the objects in 
one compartment to exit through the tube, whereas any object in the other compartment could 
escape in this way. In this new experiment the three identical objects were placed in the first of 
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these compartments and could not therefore escape, while the other compartment held the 
unique object, which was therefore the only object that the laws of physics would allow to come 
out through the tube. In the films that the children saw, the object that eventually exited through 
the tube was sometimes the unique object that had been in the compartment with the exit tube 
(a possible event) but at other times one of the frequent objects in the other compartment (an 
impossible event).  
 
The question posed by the experimenters was whether the children would respond on the basis 
of possibility and impossibility (they would be surprised by the impossible event, and therefore 
would look longer if one of the frequent objects emerged, but not by the less frequent event, in 
which case they would look less if the unique object was the one to exit. The results followed 
the first of these two patterns: the infants looked longer at the impossible event than at the 
possible one. Frequency seemed to play no part in their reactions to these films. From this 
second result, the experimenters argued that the babies must have been responding to the 
different probabilities of the two possible events in their first experiment, and not just to their 
familiarity.  
 
We have some doubts about this conclusion because the first experiment was about possible 
events with different probabilities while the second was about impossible versus possible 
events. An alternative experiment would involve two containers with a separating wall, as in the 
second experiment, and in each of the containers the probability would be the opposite of the 
other: three red balls and one white ball, for example, in the left side of the container, and three 
white balls and one red ball on the other side. The infants would be equally exposed to the 
colours. If each compartment had a pipe, drawing a red ball from the left pipe and a white ball 
from the right pipe would be the most expected events. Thus, a more likely event could be 
compared with a less likely one without any of the biases in the previous experiments. 
 
Nevertheless, Teglas et al.’s conclusion is in many ways startling and provocative. It amounts to 
a claim that babies either start their lives with the ability to judge the relative probability of 
specific events or acquire this ability very early on in their lives and long before they could 
possibly put these expectations into words. Since the conclusion is based on ingenious 
research we must take it seriously but also critically. Before we embark on a more detailed 
analysis, however, we should like to turn to a second set of studies which also suggests that 
babies understand probability in quite a sophisticated way and use this understanding to make 
predictions about what will happen next. 
 
This research was done by Xu and her colleagues, some of whose work we mentioned in 
Section 2: Randomness and its consequences. The babies in Xu and Garcia’s research (2008) 
were only 8 months old, and these researchers also used looking time as a measure of surprise 
in their research. After giving each of the babies some experience with boxes that contained 
coloured balls, the experimenter then put another box, now closed, in front of him or her and 
went on to take out apparently at random (she closed her eyes) five balls from the box and to 
display them to the baby without at the time letting the baby see contents of the box. At this 
stage, therefore, the baby could see all five ‘sample’ balls, four of which were white and one red 
(or vice versa). Next, the experimenter did open the box and revealed that it held a total of 75 
red and white balls. Seventy of these were in one colour and five in the other. Sometimes the 
majority colour in the sample and in the box were the same (e.g. four out of five sample balls 
were red and 70 out of the 75 balls in the box were also red): at other times the majority colour 
in the sample and in the box were different (e.g. four sample balls were white but only five of the 
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75 balls in the box were white). The experimenters called the first kind of event ‘probable’ and 
the second ‘improbable’ on the grounds that it is more likely that a random selection from a box 
with vastly more red than white balls will also contain more red balls than white ones.  
 
The results of this first experiment were simple enough. The babies looked longer at the 
improbable event (one majority colour in the sample and another in the box) than at the 
probable one (the same majority colour in both). The experimenters claimed this as evidence 
that babies as young as 8 months understand the link between quantitative relations in the 
sample space and the probability of specific events, but of course they were concerned, as 
Teglas et al. had been in their own research, that the result could be dismissed as a response 
to the actual frequencies of the two colours rather than as the product of an analysis by the 
babies of the relative probability of specific events. So, as a control study, they did a closely 
similar experiment with another group of babies of the same age. This new experiment differed 
from the first in only one way. Instead of drawing the sample from the box, the experimenter 
now drew it from her own pocket. Thus, the balls in the sample had no physical or logical 
connection to those in the box, but the distribution of the colours was exactly the same in this 
experiment as in the previous experiment. In this experiment, the babies paid much the same 
amount of attention to the box in the two conditions. They looked about the same amount of 
time when the majority colours in the two containers matched as when they did not. The 
difference between the two experiments led Xu and Garcia to conclude that infants do form 
logical judgements about the probability of particular outcomes because they are apparently 
surprised when the box turns out to hold many more red than white balls after a random 
selection from the box has produced more white than red ones. ‘The present studies’ they argue 
‘provide evidence that early in development infants are able to use a powerful statistical 
inference mechanism for inductive learning’ (p 5015). 
 
Together, these two studies make a powerful case for the idea that very early in life children 
already have an impressive understanding of probability and use this understanding quite 
systematically to form expectations and to make predictions. This claim has serious educational 
connotations: if it is right, there should be ways of capitalising on this apparently well-formed 
knowledge when the time comes to teach children how to solve formal probability problems, and 
it should help teachers to know exactly what form this knowledge takes. Our own view, 
however, is that we need to know much more about the strengths and the limitations of very 
young children’s understanding of probability before we can apply any of this research to 
teaching. 
 
One issue that we still need to settle to is whether babies can distinguish impossible from 
improbable events, even though this distinction is a basic and crucial part of any analysis of 
probability. We know from Teglas et al.’s experiments that babies are surprised by impossible 
events and by improbable events too, but neither these experiments nor those by Xu and her 
colleagues tell us whether or not babies grasp the fact that that improbable events, though 
surprising, can and do happen.  
 
Another issue is about understanding probability as a proportion. As we have pointed out 
already, most probability problems can only be solved with the help of a proportional calculation, 
but there are just a few of the problems that can be solved on the basis of simple relations like 
‘more’ and ‘less’ – i.e. of an additive rather than a proportional relation. Suppose that you 
particularly want a green marble, and you know that jar A contains more white marbles than 
green ones (W > G) while jar B holds more green than white marbles (W < G). You could decide 
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quite logically that you would be more likely to pull out a green marble at random from jar B than 
from jar A on this information alone. Thus, the problem can be solved on the basis of the simple 
relations ‘more’ and ‘less’. It is true that you could also solve it by counting all the marbles and 
then calculating and comparing the proportion of green marbles in the two jars, but that would 
be cumbersome and, in this case, unnecessary. The simple and direct solution of relying simply 
on the more/less relation differs from the usual proportional solution to probability problems 
because the judgement can be made on the basis of a perceptual difference between the two 
elements and this makes it possible to avoid having to calculate a proportion. 
 
Several studies, not directly about probability, have shown that, in general, children are much 
more successful when it is possible to solve problems on the basis of a simple more/less 
relation than when some proportional reasoning is necessary. Spinillo and Bryant (1991, 1999) 
showed that children easily discriminate containers with bricks in two different colours when the 
more/less relation between the two colours in one box is the opposite of the same relation in the 
other (e.g. red>blue in one and red<blue in the other). In contrast, when the difference between 
the two colours in the boxes is in the same direction (e.g. red>blue in both boxes) but there is a 
higher proportion of red in one box than in the other, the same children make many more 
mistakes.  
 
Both the research teams whose work on infants we discussed chose problems that could be 
solved by direct more/less additive comparisons. There was no need in these problems for 
proportional comparisons. In both sets of experiments, the babies could have reacted as they 
did to improbable events on the basis of simple ‘more’ and ‘less’ relations between the two 
categories of elements in their experiments.  
 
In the Teglas et al. study the babies only needed to know that there were more, say, blue than 
yellow balls in the container to be surprised that the first ball to emerge was yellow. They did not 
have to calculate the proportion of blue balls to the total number of balls to form the expectation 
that the first ball out would be a blue one. When, in the Xu and Garcia experiment, the babies 
first saw a sample of four red balls and one white ball (R > W), they could have formed the quite 
rational expectation that the box from which the sample came also would also contain more red 
than white balls. When the box was opened and they saw that it contained many more white 
than red balls, that expectation was violated. They expected R > W but they saw R < W, and 
they were surprised. Their reactions could have been based entirely on their expectations about 
simple ‘more’ and ‘less’ relations between the two parts (colours). In neither of the two studies 
do the researchers go into any detail about the type of calculation that that they think the babies 
made, or about the type of relation that they think the babies used to make their calculations, 
though a footnote by Xu and Garcia implies that they think that these calculations were a great 
deal more sophisticated than the ones that we have just suggested.  
 
Thus, the two studies leave us with a serious question: Are babies of this age able to form 
expectations on the basis of proportions or are these expectations based entirely on simple 
‘more’ or ‘less’ relations, as we have suggested? The studies also provide us with ideas about 
how to answer this question. The methods that these researchers have pioneered so 
successfully can easily be adapted to deal with this issue.  
 
Here is a new version of the Xu and Garcia method that would effectively tackle the problem. 
Show the babies a sample of six red balls and then reveal a box that contains on different 
occasions:  
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a. 65 red and 10 white 

b. 40 red and 35 white  

c. 40 white and 35 red   

d. 65 white and 10 red balls.  

The simple more/less relation in the sample is R > W and this relation also characterises the 
contents of boxes (a) and (b) but not (c) and (d). So, if we are right in thinking that babies 
respond only to simple relations, they should be surprised by the contents of boxes (c) and (d) 
in which the opposite relation holds but not by boxes (a) and (b). However, for proportional 
reasons, a random selection from box (a) would be far more likely to produce a sample of six 
red balls and one white one than a random selection from box (b). So, if babies do process 
proportions they should be more surprised at the contents of box (b) than at those of box (a) 
and should spend more time looking at box (b) than at box (a). This seems an unlikely result to 
us but it could happen and, if it did happen, it would have extremely important implications, for it 
would mean that children start their lives in possession of a sophisticated mechanism to help 
them learn about and understand probability. We have to wait for the answer. 
 
Primary school children 

It is not a big jump from the possibility (but improbability) that babies calculate proportions to the 
question of how children aged 10 years or more learn how to give a proportional number to 
probability when they are taught about this in school. The work on this topic has produced two 
main results. The first is that initially children find it hard to understand and apply what they are 
taught about proportional calculations of probability. The second is that children’s success at 
applying what they have been taught to the calculation of probabilities improves rather sharply 
between the ages of 10 and 13 years.  
 
The classic study on this issue was done by Fischbein and Gazit (1984) with 10- 11- and 12-
year-old students who had been through a 12-lesson course on the basic concepts of 
probability, which included instruction on how to make the correct proportional calculation in a 
range of contexts. The researchers then assessed the children’s understanding of several 
aspects of probability, one of which was how well they were able to work out the probability of 
various events. For example, in one set of questions they were told first about a box that 
contained four black and three red marbles, and then were asked to work out the probability of: 
 

a. picking a red marble at random from this box (3/7, 0.43) 
 

b. picking a black marble (4/7, 0.57)  
 

c. after picking and then replacing a black marble, picking another black one the next time 
round (0.57)  
 

d. after picking a black marble but not replacing it, picking a black one the next time round 
(3/6, 0.5).  
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Notice that the first three questions are about independent events whereas in the fourth the 
sample space changed as a result of what happened in the first draw.  
 
The 10-year-old children made many mistakes in their answers to all four questions. Their best 
score was 30.9% correct answers to the second question, (b): their rate of success with the 
other three questions was well below 30%. The 11-year-olds did a great deal better in the first 
three questions which were about independent events, but rather badly (well below 50%) with 
the fourth question which required them to recalculate the sample space before doing the 
proportional calculation. The 12-year-olds’ also did better in their answers to the first three 
questions than to the fourth question, but their scores were all quite high. Their answers were 
correct over 85% of the time to the first three questions, and 71% of the time to the fourth 
question. 
  
The most dramatic feature of these results is how much more successful the older students 
were than the younger ones at calculating quite simple probabilities. This cannot have been due 
just to teaching about probability, since all the children who were asked these questions, 
according to the authors, had been given the same amount of teaching on this subject. 
However, it may have been due to the older students having had more teaching and a great 
deal more experience than the younger students in dealing with fractions as well as with 
proportional problems both in their mathematics and in their science lessons. It would be wrong 
to think that the only teaching given to these children that would help them calculate 
probabilities was their 12-lesson course in probability. 
 
The students’ commonest mistake in the answers to the fourth question was to forget to adjust 
the number of the total (from 7 to 6) and the number of black marbles (from 4 to 3). In the 
students’ answers to the first three questions, one of their most frequent mistakes was to try to 
carry out an additive rather than a proportional comparison. The students often gave the 
frequencies of the different marbles as the probability of drawing a red marble at random but, as 
they had learned to express probabilities in fractions, they answered that the probability of 
drawing a red marble was 3/4 and that the probability of drawing a black one was 4/3. If they 
had understood the connection between ratios and proportions, they would have realised that 
4/3 represents a quantity larger than one, and is an impossible answer in probabilities. This is 
an interesting and important observation, since it suggests that schoolchildren may be readier to 
compare ratios than fractions, as long as they understand that comparing ratios is not about a 
simple subtraction between the frequencies of events, and therefore takes us back to our 
discussion of the research on infants which featured probability tasks that could be solved 
through comparisons between parts. The children’s mistaken attempt to base their calculation 
on the two parts points to the possibility that the step from part–part additive comparisons to 
ratio or part–whole, fractional comparisons in all relational problems, including of course 
probability ones, is a genuinely difficult one for children to take.  

Comparing two (or more) probabilities 
 
So important is proportional reasoning in calculations about probability that much of the 
research that has been done on children’s understanding of probability is about their ability to 
understand and manipulate proportions and nothing else. This widespread interest in the link 
between understanding proportions and understanding probability is justified, since, as we have 
already seen and will continue to see in the rest of this section, the proportional nature of 
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probability is a source of genuine difficulty to many young children and to older school students 
as well.  
 
The difficulties that children have with the proportional element in probability problems was a 
central theme in Piaget and Inhelder’s (1975) book on children’s understanding of chance, and 
their powerful experimental research on children’s comparisons of different probabilities is a 
good starting point for a discussion of children’s proportional reasoning about probability. The 
question that these authors posed was how children set about comparing the probability of a 
particular event in two different sample spaces. The task, which they gave to children whose 
ages ranged from 6 to 13 years, was simple but effective.  
 
The researchers used counters, some of which were plain on both sides while others had a 
cross drawn on one side and were blank on the other. Over several trials, the researchers 
started by forming two sets of these counters. First they showed the child the contents of each 
set and in particular how many counters in each set had crosses on them and how many were 
completely blank. Next, they turned the counters with crosses over so that the child could only 
see their blank side, and shuffled the positions of the counters in each set. Finally they told the 
child to take out one counter at random, but to draw it from the set from which she would be 
most likely to pick a counter with a cross. They also asked the children to give their reasons for 
choice of set.  
 
In some of the trials there was no uncertainly about what would happen if the child chose a 
counter from one at least of the two sets. Either all the counters in the sets had a cross on them 
or none of them did. In other trials, there was a mixture of blank and crossed counters in both 
sets. These are the trials that we shall concentrate on at this point because they are most 
relevant to the question of how well children reason about proportions and to what extent they 
resort to analysing additive relations instead. 
 
When both sets were a mixture of crosses and blank counters, the right set to choose was the 
one with a higher proportion of crosses. However, in some trials there were alternative 
solutions. For example, in one trial the two sets contained the same total number of counters in 
each, but an unequal number of crosses (e.g. one set had 1 crossed and 3 blank counters and 
the other 2 crossed and 2 blank counters): in these comparisons, the child could avoid carrying 
out a proportional analysis and could solve the problem just by directly comparing the number of 
crosses in the two sets (1 cross in one set but 2 crosses in the other). In other trials, the number 
of crossed counters in the two sets was the same, but one set contained more blank counters 
than the other. In these trials, once again, the children could solve the problem without carrying 
out a proportional calculation: the more blank counters there are, the smaller the chance of 
drawing a crossed one. Piaget and Inhelder called these problems ‘one-variable problems’, 
because they did not require a comparison of the ratio or proportion of positive versus negative 
cases across the sets. 
 
In other trials these simple types of solution were not possible, because both the number of 
crosses and the total number of counters differed between the two sets. For example, one set 
contained 1 crossed and 2 blank counters, and the other 2 crossed and 4 blank counters. Here, 
Piaget and Inhelder argued, the child had to work out the ratio (in both cases, there is a 1:2 ratio 
of crossed to blank counters) or the proportion (one third of the counters are crossed) of crosses 
in each set in order to solve the problem.  
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Piaget and Inhelder’s account of the results of this study dwells on children’s justifications for 
the choices that they made. The youngest children made very little attempt at a quantitative 
analysis, and when they did quantify anything it tended to be a single quantity (usually the 
number of crosses) in each set. Slightly older children (about 7 years or so) were more 
systematic and more successful, but their successes came mainly in trials in which they did not 
have to carry out a full proportional analysis of the contents of each set, as in the one variable 
problems. This was shown in problems in which the number of crosses and the total number of 
counters were both different in the two sets. Thus, some kind of a proportional comparison was 
necessary in these problems, and these children usually produced the wrong answer, which 
they often justified by arguing about one of the parts – usually the absolute number of crosses – 
in each set without relating this either to the total number of counters or to the number of blank 
counters.  
 
The oldest children tended to use the ratios in their comparisons; from about age 9, they could, 
for example, with the problem that we have just mentioned argue that in each set there were 
two blank counters for each crossed one. Piaget and Inhelder described this strategy as ‘the 
construction of empirical ratios’. They claimed that it represented a change from additive to 
proportional reasoning in the children’s solutions. Piaget and Inhelder also noted that these ratio 
comparisons were more effectively carried out when the ratios in the two sets were the same. 
When the children explained their reasoning, they used phrases such as there are three times 
as many crosses in both sets or indicated that the proportion was the same (there are two and 
two here, and one and one here).  
 
The comparisons that the children based on empirical ratios were not as likely to lead to the 
right conclusion when the probabilities were unequal. For example, an 11-year-old child, who 
had succeeded with sets with equal probabilities, did not manage to make a successful 
comparison between a set in which 1/3 of the counters had crosses and another set in which 
2/5 had crosses. After setting the counters in 1 to 2 correspondence, the child concluded that 
the probabilities were the same because ‘there is one fewer without a cross in what remains’ (p 
155). Similarly, a 12-year-old who correctly solved the comparison between two sets in which 
there was the same proportion of crossed to the total number of counters (1/2 and 2/4) 
concluded that 2/5 and 6/13 will have the same probability of drawing a counter with a cross: 
‘There is as much risk on one side as on the other. Here there are six with crosses and seven 
without crosses, and there two and three [a difference of one on each side]’ (p 156) 
 
Finally, many of the oldest children, usually children aged 10 years or more, solved the more 
difficult problems, like the comparison between a set of 2 crosses and  blank counters versus a 
set of 3 crosses and 6 blank ones. These children also consistently referred to the proportion of 
crosses to the total number of counters, when justifying their responses, or to the ratio between 
crossed and blank counters in each set.  
 
Piaget and Inhelder argued that the three patterns of responses correspond to three, 
successive developmental stages. In the first, children have no consistent, recognisable 
cognitive approach to the quantification of proportional problems, although they distinguish 
possibility from impossibility. In the second, they solve problems which do not need a full 
proportional analysis, and do well where it is possible to solve the problem by a direct 
comparison between a single part in one set with a single part in the other set (e.g. directly 
comparing the number of crosses or the number of blanks in the two sets). The third stage is the 
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final one: the children who reach it do, according to Piaget and Inhelder, carry out a full 
proportional analysis of each set.  
 
Piaget and Inhelder’s method for interviewing the children, the clinical method, does not involve 
simply presenting the children with questions to be answered. Using the clinical method, Piaget 
and Inhelder often confronted the children with alternative ways of reasoning about the same 
problem: for example, if a child said that it would be best to choose a counter from a set with 2/6 
crossed counters than from another with 1/3 crossed counters, the experimenters would 
rearrange the counters, setting them in 1 to 2 correspondences, and asked whether the child 
still thought that it was best to choose from that set. It is thus by no means certain that these 
empirical correspondences would be used by children answering tests without such counter-
suggestions of different ways of thinking about the problem. The clinical method here could 
have worked almost as a teaching experiment, in which the teacher provokes conflict between 
different ways of approaching the problem without telling the solution. This can be seen as both 
a strength and a weakness in their approach.  
 
Piaget and Inhelder might have obtained the best performance from children who reacted 
positively to such counter-arguments but it is unclear whether children would arrive at this 
reasoning without their prompts. 
 
This is an ingenious, and justly famous, experiment. It provoked a great deal of interest and led, 
as we shall see, to many other rather similar studies by other research teams. How justified are 
the conclusions that Piaget and Inhelder drew from it? Broadly speaking, their suggestion, that 
initially young children do not compare sample spaces on the basis of proportions and 
concentrate instead on single parts (e.g. the number of crosses) in the two sample spaces that 
they are comparing, seems unassailable. As we shall see, subsequent research has 
consistently confirmed that the genuinely proportional problems that Piaget and Inhleder 
devised are indeed far too difficult for most children under the age of 10 years.  
 
These researchers’ other main conclusion was that time (and age) take care of this difficulty 
with proportions, so that eventually all, or very nearly all, children will be able to solve even 
hardest of the problems. This is more questionable. For one thing, as we have already 
mentioned, there is evidence that most 15-year-old students – students, that is, who were older 
than those who took part in Piaget and Inhelder’s study – cannot solve problems that are very 
like the ones that we have been discussing. As we have already mentioned, 73% of a large 
group of European 15-year-olds failed to make the right choice when they were given the 
following choice in a PISA test (Pisa Consortium Deutschland, 2004)): ‘Box A contains 3 
marbles of which 1 is white and 2 are black. Box B contains 7 marbles of which 2 are white and 
5 black. You have to draw a marble from one of the boxes with your eyes covered. From which 
box should you draw if you want a white marble?’  
 
This astoundingly high rate of failures seems all the more remarkable when one considers that 
all the students had to do was to pick the right box out of two boxes, and thus, 50% of them 
could have been right by chance alone. Yet their success rate was far lower even than that. It is 
possible that the students were led astray by a direct comparison between the number of white 
marbles across the sets without considering the proportions. The problem does not actually 
require difficult calculations and could be solved by ratio reasoning: there are twice as many 
white marbles in the second box but more than twice as many black marbles in the second box, 
which makes its choice less advantageous. This generally unimpressive performance does not 
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seem to us to be consistent with the claim that eventually all the students will be able to 
compare sample spaces proportionally.  
 
An alternative hypothesis, which Piaget and Inhelder’s account of their own research certainly 
does not rule out, is that some children, more mathematically gifted than others, learn about the 
importance of proportions in calculating probability either as a result of their informal 
experiences or through being taught about probability, while others do not. We badly need 
longitudinal research which traces students’ reasoning about comparable sample spaces right 
through adolescence and into adulthood. 
 
Piaget and Inhelder’s description of the children’s reasoning raises another issue which may 
seem at first to be merely a technical one, but is, we think, of enormous significance in the study 
of children’s learning about probability and about proportions in general. There are two ways to 
calculate a proportional relation. One is to calculate the relationship of one part to a whole, a 
relationship which is usually represented by a proportion and thus a number smaller than 1. So, 
when 2 out of 6 counters have crosses on them, the proportion of crosses is 2/6 or 1/3 or 0.33. 
The other is to calculate the relationship between the two parts, and to form a ratio between 
them: in the same sample space that we started with, the two parts are crossed and blank 
counters, and the ratio of crossed to blank counters would be 2:4 or 1:2, which is another way of 
saying that for every one crossed counter there are two blank ones in the sample space. Ratios 
can be represented by whole numbers, and children are considerably more familiar with whole 
than with rational numbers. All of Piaget and Inhelder’s quantification of probability problems 
could be solved in either of these two very different ways, and in fact many of the comments 
made by the most successful children in their study suggest that they were making ratio 
judgements and not part–whole ones, that would involve fractional representation. For, 
example, here is the reasoning of a 12-year-old student who is comparing a set (A) of 1 crossed 
and 2 blank counters to a set (B) of 2 crossed and 3 blank counters: ‘It’s easier here (Set B) 
because it gives you 2 chances against 3, and there (A) 1 against 2’. This seems to us to be a 
comparison of the ratios between crossed and uncrossed counters in the two sets, and so do 
the remarks of a 10-year-old who was asked to compare one set with a single crossed and a 
single blank counter to another set with 2 crossed and 2 blank counters: ‘There are the same 
number with crosses and without crosses in both groups.’ In both examples, the students are 
clearly reasoning about the relationship between the two parts of each set and appear to be 
forming a ratio between them on the basis of one-to-many correspondence (there is 1 chance 
against 2) or many-to-many correspondence (there are 2 chances against 3). 
  
The distinction between part–whole proportional solutions and solutions based on ratios formed 
through one-to-many and many-to-many correspondence is highly relevant to educational 
issues. When there are two effective and intellectually respectable ways of solving the same 
problems, we need to wonder which way is most easily learned and which leads to the greater 
progress in the pupils’ understanding, in this case of probability, in the long run. This is surely a 
matter for teaching experiments and for longitudinal research. 
 
Now, we turn to the research on children’s comparisons of probability which followed, and was 
certainly provoked by, Piaget and Inhelder’s study. As we have already mentioned, there is 
ample evidence of the same difficulties with proportional reasoning in this subsequent research. 
The well-known study by Fischbein and Gazit (1984), a part of which we described earlier in this 
section, also included a task in which children had to compare two probabilities, which were 
equal. ‘Uri has in his box 10 white marbles and 20 black ones. Guy has in his box 30 white and 
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60 black ones. The winner is the child who pulls out a white marble first. Uri complains that the 
game is not fair because there are more white marbles in Guy’s box than in his box. What is 
your opinion about this?’ This problem is equivalent in the demands that it makes on 
proportional reasoning to one of Piaget and Inhelder’s more difficult problems, and it did prove 
difficult, particularly for young children. The success rate for children who had recently taken a 
12-session probability course was only 21.1% for 10-year-olds, 53% for 11-year-olds and 69.2% 
for 12-year-olds. These children did no better, and in fact in one age group did rather worse, 
than other students of the same age who had not been taught about probability. The children’s 
answers therefore throw some doubt on the value of formal instruction in this area, at any rate 
on the value of the type of formal instruction that they had received, and at the same time 
confirm both the difficulties that young children have with this kind of problem and also the claim 
that these difficulties decline with age. The fact that the 12-year-olds appear to have been more 
successful at comparing probabilities than those 15-year-olds who were given the PISA task is a 
bit puzzling, but it may be due to Fischbein’s comparisons being between equal probabilities 
and the PISA problem about unequal ones. Equal probabilities may be easier to detect using 
ratio comparisons, as suggested by Piaget and Inhelder. One interesting post-script to the 
Fischbein and Gazit results is that they mention that nearly all the 12-year-olds and over half of 
the 11-year-olds who solved the problem also referred explicitly to the white–black ratio in the 
two sample spaces in their answers. This is further evidence that the use of ratios may be the 
natural way for children to solve probability problems. 
 
The methods that Falk, Falk and Levin (1980) used to study quite young children’s comparisons 
of different probabilities were based on games of chance, appropriately enough because the 
serious study of chance and probability seems historically to have been largely provoked by 
questions about gambling (Mlodinow, 2009). These experimenters presented two studies, only 
one of which we shall describe here. In this, the children, whose ages ranged from 4 to 7 years, 
were given two roulette-type wheels of different sizes, which were divided into blue and yellow 
sections. The relative amount of blue and white differed between the two wheels, and so did the 
number of sections on the wheel: these two variables were confounded: the larger of the wheels 
contained more sections than the smaller one. The child’s task was to pick the wheel that was 
more likely to stop at blue (or yellow). Since the actual areas and the number of elements in the 
two wheels were very different from each other, the correct solution to the problem had to be 
based on the relative size of the blue and white areas, or on the relation of the blue area to the 
total area, within each wheel.  
 
Given the other studies that we have reviewed, the performance of the young children in the 
Falk et al. study was very good. Nevertheless, Falk et al. show that the younger children in 
particular tended to be thrown of course by the relative number of elements of the chosen 
colour in the two wheels. They tended to pick the wheel with the larger number. 
 
Finally, we will describe a study by Falk and Wilkening (1998) which was also about children’s 
comparisons of probability, but which used a different and promising new technique. In their 
task, which they called an ‘adjustment task’, they presented to children whose ages ranged from 
6  to 13 years one urn that contained beads of two different colours and another urn that had 
beads in one of the two colours only. They explained that the urns would be part of a lottery 
game, and that one of them (the experimenter and the child) would draw a bead from one of the 
urns and one from the other. The winner would be the one who drew a bead of a particular 
colour, but first they had to ensure that they both had the same chance of drawing a bead of 
that colour. The experimenter then asked the child to complete the contents of the second urn 
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by putting in beads of the missing colour, in such a way that each of them would have the same 
chance of getting the winning colour, and added that s/he (the experimenter) would choose 
which urn she used and which urn the child used in the draw. Each child was given several 
different problems of this sort, and the proportions of the winning and losing numbers as well as 
the absolute numbers varied from trial to trial. 
 
The main advantage of this adjustment method, apart from being an interesting way of 
recruiting the children’s attention and interest, is that the mistakes that the children made should 
tell us something about the strategies that they were using. For example, some children might 
match the two sample spaces by putting an equal number of the winning colour in both urns. 
Others might respond proportionally, by putting in, for example, twice as many winning as losing 
balls in the incomplete urn when this was the relationship between the two colours in the 
already completed urn.  
 
In the event, in a rather sophisticated analysis of their results, the researchers detected three 
clear patterns among the individual children. Some children’s adjustments reflected the number 
of one of the two colours only in the already competed urn: for example, the more winning balls 
in the complete urn, the more of the same coloured balls they put into the urn whose contents 
they had to complete themselves. Others adopted an apparently more complex strategy, by 
taking into account of the number of both of the colours but in an additive, not a proportional 
way. So, the number of winning colour balls that they added was determined by how many balls 
of the same colour in the other urn and also by the absolute difference between the number of 
winning and losing colour balls in that urn. Falk and Wilkening called this pattern the ‘difference’ 
strategy. The third and successful strategy was proportional. The children’s adjustments to the 
second urn reflected the ratios of the two colours in the first urn. If there were three times as 
many winning as losing balls in one urn, they reproduced that ratio in the second urn as well. 
The equal ratios ensured that the proportions in the two urns were the same. 
 
There was, as one might expect, a strong relation between the children’s ages and which of 
these three strategies they tended to adopt. Those who attended to the quantity of one of the 
colours only were younger on average than the children who apparently took both colours into 
account, but in an additive way (the difference strategy), and these children tended to be 
younger than the children who adopted a proportional strategy. This last strategy was the rarest, 
and most of the children who adopted it were in the two oldest age groups, the 11- and the 13-
year-olds. Hardly any children younger than that carried out the adjustment of the contents of 
the second urn proportionally. Thus, there is a mismatch between the results of earlier Falk et 
al. study and the more recent research by Falk and Wilkening; many 6- and 7-year-old children 
apparently did use proportions to compare two probabilities in the Falk et al. study and yet it is 
hard to find any sign of proportional reasoning in children under the age of 11 years in the Falk 
and Wilkening adjustment experiment.  
 
Falk and Wilkening comment on the apparent difference between their results and those in the 
Falk et al. study and other similar investigations into children’s understanding of probability. 
They offer two possible explanations for the discrepancy. One is that it may be harder to adjust 
quantities proportionally than it is to compare them proportionally. This is speculation, but it 
might be right. The other is that some of the children’s successes in the earlier research on 
children’s comparisons of two probabilities may have been due to children using a version of the 
difference strategy, which they spotted among many of the children in their own study, rather 
than a genuinely proportional strategy to make their comparisons. This does not seem to us to 
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be a convincing analysis. It does nothing, in our view, to explain how well the children did in the 
Falk et al. study when for example both wheels contained a larger blue area than a white one, 
but the proportions of the two colours were different in the two wheels. 

Summary of the work on comparisons of probability 
 
The remarkable research on babies and probability suggests that, early in their lives, children 
grasp the relationship between the relative number of possible events and the likelihood of 
particular events occurring. The infants seem to realise that one is more likely to pull a red than 
a blue ball out of an urn that contains more red than blue balls. However, when infants and 
children up to age of around 10 years have to go beyond simple more/less relations to calculate 
the probability of particular events, they usually encounter a great deal of difficulty. The 
obstacle, which is also an obstacle to learning in several other parts of young children’s 
intellectual life, is the need for proportional reasoning in most probability problems. 
 
Research on children’s attempts to compare probabilities across two sample spaces has 
established the importance of the distinction between using difference relations and making 
proportional comparisons to solve probability problems. The most difficult of these comparisons 
are undoubtedly those that demand proportional reasoning. There are some rather surprising 
discrepancies between the data that we have from different studies on how difficult these 
proportional comparisons are, but it is clear that problems, that can only be solved on the basis 
of proportional reasoning, are much harder for children up to the age of roughly 10 years than 
problems that can be solved in some other way. 
 
Research on this cognitive demand has concentrated on how serious an obstacle it is, and has 
neglected the different ways in which children tackle proportional problems. Yet, details in the 
results of several different studies point to a distinction of great importance to the study not just 
of children’s cognitive strategies but also of ways of teaching them about proportions in general 
and probability in particular. This is the distinction between fractional and ratio representation in 
relational comparisons. 
 
Fractional representation, which is the conventional basis for calculations about probability, 
deals with the relation between part of the sample space and the whole sample space. If there 
are 6 red balls in an urn and 3 blue ones, the probability of pulling out a red ball is 6 divided by 
the total number of balls, 9, which comes to 0.67 or 2/3. Ratio representation deals with the 
part–part relation in a proportional way: in the same urn, there is a 2 to 1 ratio of red balls to 
blue balls. 
 
In this section, we have encountered evidence for two kinds of part–part reasoning. One is part–
part reasoning that deals only with difference, which is a form of additive comparison between 
the parts, and is not genuinely proportional. So, some children can discriminate two containers 
by the pattern of their contents, if one clearly contains more red than blue marbles while the 
other contains more blue than red. They understand the difference between R > B and B < R, 
and use it to solve apparently proportional problems. This relational, but not proportional, 
solution is very common among young children’s judgments about area and number (Spinillo 
and Bryant, 1991, 1999), and applies to probability as well, as shown in Piaget and Inhelder 
study.  
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The second form of part–part reasoning is based on ratio, and genuinely proportional; we argue 
that it does underlie many of the older children’s successes in the comparison tasks, for 
example, in Piaget and Inhelder’s and in Fischbein’s research. This is children’s calculation of 
the ratios between the different elements of the sample space on the basis of one-to-many and 
many-to-many correspondences. In the next section, we briefly review research that shows that 
the question of how multiplicative relations are represented definitely has an impact on 
children’s problem solving and learning. 

Teaching children about proportional calculations 
 
Ratio and fraction language in other proportional problems 

We started the analysis of quantification of probabilities by referring to the distinction between 
extensive and intensive quantities; the latter always involve proportional reasoning. Some 
intensive quantities, and this includes probabilities, can be meaningfully represented by either 
fractions or ratios: a ratio of 1 to 2 crossed to blank counters indicates exactly the same thing as 
1/3 crossed counters or a probability of 0.33 of drawing a crossed card. Other intensive 
quantities that can be expressed as ratios or fractions are, for example, the relative 
concentration of two liquids in a mixture (e.g. orange concentrate and water) or the density of 
objects in an area (e.g. flowers in a flower bed). On the basis of the studies reviewed in the 
previous section, and in particular the study by Piaget and Inhelder, we hypothesised some time 
ago (Nunes and Bryant, 1996) that children would be able to make more sense of intensive 
quantities if they were presented with problems in ratio rather than in fractional language. We 
know only a handful of studies that have analysed if presenting these problems to children using 
ratio or fraction language affects their problem solving performance or their learning. 
 
Desli (1994) presented intensive quantities problems about the concentration of mixtures of 
liquids either using a ratio or a fractional representation in the problem presentation. For 
example, in the ratio language, the children were told that a child made orange squash using 1 
cup of concentrate and 2 cups of water and found it tasted perfect; on another day, the child 
needed to make a much larger amount of juice (or a much smaller amount) because lots of 
friends were coming; she needed to make 18 cups of orange juice; how much concentrate and 
how much water should the child use? The same story was presented with fraction language: 
the perfect mixture was described as having 1/3 concentrate and 2/3 water. Other mixtures (tins 
of white and blue paint, for example) provided a variation in the context. The children were in 
the age range 8 to 10 years and attending schools in London. They had been taught 
considerably more about fractions than about ratios in school, as ratios are not an important 
part of the curriculum until about age 10. The study was a within-participants study, and each 
child solved half of the problems presented in ratio and the other half presented in fraction 
language. The language of problems was changed across participants: half of the participants 
answered particular problems in ratio language whereas the other half answered them in 
fraction language. For the 8- and 9-year-olds, there was a striking and statistically significant 
difference in the rate of correct responses.  
 
As Table 2 shows, both groups solved many more of the problems presented in ratio language 
than of those presented in fractional language. In contract, the 10-year-old children did equally 
well with both kinds of problem. The earlier success in problems presented in ratio language is 
in line with the results observed by Piaget and Inhelder, who showed that children in the age 9 
to 11 years were able to construct empirical ratios to solve probability problems and used ratio 
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language (three times as many crossed counters than blank counters) when justifying their 
responses, before they could solve the problems by using part–whole quantification of 
probabilities. 

Table 2: The relative success of 8- to 10-year-old children with problems presented in ratio and 
fraction language 
 
Age Correct response to problem in ratio 

language  
Correct response to problem in 
fractional language 

8 37% 12% 
9 54% 23% 
10 67% 65% 
 

Subsequently, we (Nunes, Bryant, and Hurry, 2004) assessed whether children benefited as 
much from teaching about intensive quantities when the language used during the teaching 
experiment was either entirely in ratios or in fractions. The study used a pre-test, immediate 
post-test, and delayed post-test design; the teaching intervention was carried out after the pre-
test and before the immediate post-test. The pre- and post-tests were identical; the children 
were asked to make relational comparisons that we expected could be solved without 
calculation and also to enlarge quantities while keeping their quality (taste, colour, density) 
constant. The children (N = 132) came from three different schools in Oxford and were in the 
age range 7 to 8 years. They were randomly assigned to one of three teaching groups: 
intensive quantities using ratio language, the Ratio Group (N = 46); intensive quantities using 
fractions language, the Fractions Group (N = 46); or computations with extensive quantities, the 
Control Group (N = 42). The random allocations were restricted so that approximately equal 
numbers would be assigned to each group in each participating school; because the teaching 
was carried out in pairs, the random allocation of two extra pairs to each of the intervention 
groups in two of the schools produced a different total number of participants across groups. 
The pairs of children were taught by a researcher, outside the classroom. The problems 
presented to the two groups taught about intensive quantities were the same, just the language 
of presentation differed. The problems presented to the control group, who worked with 
extensive quantities, involved multiplication and division, as did those presented to the intensive 
quantities groups. 
 
This study produced three main results. 
 

1. The pre-test scores were rather low: children in this age range showed little insight into 
the relational reasoning and the calculations necessary to enlarge an intensive quantity 
while preserving its quality (the same colour, the same taste).  
 

2. The training had a clear effect. The children in the two groups taught about intensive 
quantities made more progress from pre-test to immediate post-test in their total scores 
for the intensive quantity problems than the children in the control group. This difference 
was still significant at the delayed post-test two months later. Thus the experiment 
establishes that it is possible and worthwhile to teach young school children about 
intensive quantities. 
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3. The Ratio Group improved more than the Fractions Group in solving the problems in 
which they had to make numerical calculations. There were no differences in the 
problems in which relational reasoning without calculations was sufficient to solve the 
problem. 
 

This result was replicated with a very large sample (535 children from 24 classes) of Scottish 
children in the age range 9 to 11 years (Howe, Nunes and Bryant, 2010). In this study, the 
children were taught in groups by a researcher but the teaching took place in the classroom. 
The Ratio Group produced significantly more correct solutions and explanations for their 
solutions than the other two groups in the immediate and delayed post-tests. The Fractions 
Group, however, improved significantly in their ability to represent intensive quantities using 
fractions, and obviously did so significantly better than the Ratio Group, who had not used 
fractions language during the teaching. Surprisingly, though, the Ratio Group improved in the 
use of fractions language and at the delayed post-test caught up with the fractions group and 
significantly outperformed the control group. 
 
The results of analyses of how children solve probabilities problems led us some years ago to 
raise the hypothesis that ratio language is an easier representation for children to learn, as they 
seemed to express their reasoning in ratio terms earlier than in fractional terms in the study by 
Piaget and Inhelder. We tested this hypothesis first in a problem solving context with intensive 
quantities and subsequently in two teaching studies; none of these studies actually included 
probability problems but focused instead on other intensive quantities that we thought might be 
more familiar to children. These studies converge in supporting the idea that children can more 
easily think about intensive quantities using ratio than using fractional representations. It 
remains to be seen if the same holds true for solving probability problems and learning about 
probabilities. There is some research that suggests that probability problems are better 
understood if presented in ratios than in percentages or proportions, which we review in the 
next section, but we know of no relevant teaching studies so far.  
 
Teaching children to calculate probabilities 

We have already made the argument that it is possible to teach children about intensive 
quantities, and we have also claimed that the most effective way to start this teaching is to use 
ratio language. These ideas have not been applied yet to children’s ideas about probability, but 
we believe that this would be a promising way to approach the question of how to teach children 
to calculate and to compare probabilities.  
 
The outcomes of previous intervention studies on these skills are mixed. Two groups took part 
in Fischbein and Gazit’s study, which we have mentioned several times already. The children in 
one group went through a course on probability at school while the children in the other group 
were not taught about the subject at all. The two groups of children were then given a 
questionnaire that included items on comparing probabilities. The children’s success in 
answering these questions suggested that the teaching given to the first group of children had 
had little effect on their ability to think about probability quantitatively. In fact, slightly more 
children in the control group than in the intervention managed to solve these comparison 
problems. However, it is difficult to be sure about what this result means because the 
researchers did not include a pre-test. Perhaps, by chance the control group children 
understood the basic rules of probability at the start of the study as well as at the end.  
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A study by Castro (1998) on teaching Spanish children to calculate, and to reason about, 
probability did include a pre-test as well as a post-test, and Castro also made a comparison 
between two groups of children. The children in one group were taught about probability in what 
Castro called the ‘traditional’ way, whereas those in the other were taught through methods that 
concentrated on, ‘conceptual change’. The traditional methods apparently consisted mainly of 
the teacher telling the children how to carry out the correct arithmetical procedures. The method 
called ‘conceptual change’ involved encouraging each of the students to come up with their own 
ideas for solving probability problems, which were then discussed in the classroom by the other 
students. This is the most careful and the most effectively designed study of how to teach 
children about probability that we know of, and fortunately its results were positive. The children 
in two groups reasoned about probability and calculated probabilities about as well as each 
other, but by the time the intervention study was over the children in the conceptual change 
group were far ahead of the traditionally taught children in reasoning and in calculating 
probabilities. These striking results suggest that open classroom discussions are an excellent 
and interesting way of introducing children to probability, and of helping them to learn how to 
calculate probabilities. 

Conditional probabilities and Bayesian reasoning 
 
Often, the probability of one event depends on the probability of another. Take as an example a 
problem which Tversky and Kahneman (1982) devised and gave to adult participants, probably 
to the dismay of these participants because many of their answers were quite wide of the mark: 
‘If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is 
the chance that a person found to have a positive result actually has the disease, assuming you 
know nothing about the person’s symptoms or signs’. The question is about a ‘conditional 
probability’ because your confidence that a positive result indicates the presence of the disease 
should depend not just on the accuracy of the test itself but also on the number of people in the 
population who suffer from the disease in question. In this example, it is reasonably easy to see 
that the answer should be that the probability that someone who tests positive actually has the 
disease is rather small: in a population of 1000, we would expect the test to produce positive 
results, with 1 person who actually has the disease and with 50 healthy who do not. So, only 2% 
or thereabouts of the people who test positive could be expected to have the disease.  
 
Many of the adults who were given this or similar questions answered quite differently. They 
maintained that the probability was 95% or 0.95 (rather than the much more appropriate 2% or 
0.02), which indicates that they took into account the information about the accuracy of the test 
but not about the disease’s prevalence. Yet, prevalence figures should be an essential part of 
the solution to a problem of this sort. To see this, one only has to think what the answer would 
be if the prevalence rate for the disease was 50/1000. In this case, about half the people who 
tested positive would be expected to have the disease. 
 
It may seem perverse of us, having spent so much time discussing the difficulties that children 
have both in understanding and calculating straightforward probabilities, to inject into the 
discussion a new kind of probability problem which is clearly far more complex than the ones 
that have come before. We have two reasons for doing so. The first is that in the modern world 
we increasingly need to be able to think our way through conditional probabilities. To interpret 
much of the information that we are given about the probabilities of particular events and 
outcomes, we have to take account the probabilities of other events as well (as the Tversky–
Kahneman problem neatly illustrates), and it will surely benefit the children in our society to 
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prepare them for this kind problem. The second is that there is some evidence that many quite 
young pupils can, in some circumstances but not in others, solve these problems remarkably 
well. 
 
Recently there have been several reports (Gopnik, et al., 2004: Sobel, Tenenbaum and Gopnik, 
2004; Sobel and Kirkham, 2007; Xu and Tenenbaum, 2007) about pre-school children’s ability 
to solve conditional problems using a form of Bayesian-reasoning, which, as we shall soon 
show, is often applied to conditional probability problems, but this research was about children’s 
understanding deterministic cause-and-effect chains, and so we shall not describe it here. 
There is some direct research on children’s ability to solve conditional probability problems, 
though not a great deal of it. The most interesting study on children’s solutions to conditional 
probability problems, it seems to us, was done by Zhu and Gigerenzer (2006). These two 
researchers were interested in the possibility that children’s success in solving conditional 
probability problems depends very heavily on the way these problems are presented to them. 
They argue that if the relevant information in the problem is provided to them in the form of 
probabilities, children without exception flounder. If, on the other hand, this information takes the 
form of frequencies, they often find the right solution and their rate of success improves with 
age. Their evidence for this claim is a study with Chinese children at school in Beijing; their ages 
ranged from 9- to 11 years.  
 
The researcher worked with a set of ten problems, which they presented in two different ways. 
One way was to give the information as proportional probabilities in percentage form. The other 
way was to give this information in the form of ‘natural frequencies’: in this case, their stories 
were all about the absolute numbers and not about proportions. Here are two examples of the 
same story being presented first with proportions in the first version and next with frequencies.  
 
A: ‘Pingping goes to a village to ask for directions. In this village the probability that any person 
he meets will lie is 10%. If a person lies, the probability that he has a red nose is 80%. If a 
person doesn’t lie, the probability that he has a red nose is 10%. Imagine that Pingping meets a 
person with a red nose. What is the probability that he will be a liar?’  
B ‘Pingping goes to a village to ask for directions. In this place 10 villagers out of every 100 will 
lie. Of the 10 people who lie, 8 have a red nose. Of the remaining 90 people who don’t lie, 9 
have a red nose. Imagine that Pingping meets a group of people with red noses. How many of 
these people will lie? ____ out of _____?’ 
 
Zhu and Gigerenzer contrast two ways of solving this problem. One is to apply Bayes’ well-
known formula to these probabilities. The formula for a binary hypothesis (H = liar, not-H = not a 
liar: D = data) is: 
 

𝑝(𝐻|𝐷) =
𝑝(𝐻)𝑝(𝐷|𝐻)

𝑝(𝐻)𝑝(𝐷|𝐻) + 𝑝(𝑛𝑜𝑡–𝐻)𝑝(𝐷|𝑛𝑜𝑡–𝐻)
 

 

Applied to the story, this equation would be: 
 

𝑝(𝐻|𝐷) =
. 10 × .80

. 10 × .80 + .90 × .10
 

 
           = .47 (to 2 decimal places) 
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The second way is to proceed through the story working out the frequencies: among the 10 liars 
8 will have a red nose: among the 90 non-liars 9 will have a red nose: thus there will be 17 
people with red noses, and 8 out of the 17, which is just under half or p = 0.47, will be liars. 
 
The researchers report that when the quantitative information was given as probabilities, none 
of the children solved any of the problems or even attempted to solve them in a way that made 
any sense. ‘The children’ they remark ‘seemed to have no clue how to solve the problem when 
the information was presented as probabilities’. In clear contrast, the 9-year-olds succeeded a 
modest 14% of the time when the information came in the form of frequencies, the 10-year-olds 
42% of the time and the 11-year-olds 47% of the time. The difference between the two 
conditions is quite remarkable, especially given that the probabilities in the impossible condition 
were presented as percentages, since percentages are highly similar to frequencies. It should 
have been quite easy to transform percentages into frequencies by treating, for example, the 
statement ‘If a person lies, the probability that he has a red nose is 80%’ as ‘Eight out of ten 
liars have red noses’, but apparently the children did not make this move. Yet, the relatively high 
scores in the frequencies condition, especially among the oldest children, demonstrate that 
many of them were able to devise an effective and appropriate solution that involved a 
sequence of quite complex logical steps.  
 
One possible explanation for the children’s successes in the frequencies condition is that the 
information that they were given could have led them to concentrate on the absolute numbers of 
the different elements in the sample space. The data they are given leads them directly to the 
calculation that there are 8 liars and 9 non-liars with red noses. In our view, this would fit well 
with the argument that children solve proportional problems well when they have a clear idea of 
the quantities of the different elements in the sample space. Knowing about these should help 
children who are thinking in terms of ratios. 
  
Whatever the reason for the stark difference between the two conditions, it is valuable to note 
that Gigerenzer and his colleagues (Gigerenzer, 2002; Hoffrage and Gigerenzer, 1998; 
Hoffrage  et al., 2002; Hoffrage et al., 2000) found a similar difference in adults to whom they 
gave this sort of conditional probability problem. This was true even when the problems were 
about illness and the researchers gave them to medical professionals.  

Summary of the research on conditional probabilities 
 

1. Conditional probability problems are hard for children and for adults when the 
information provided is in a proportional form. However, the same problems become 
easier when the actual quantities in the sample space are given. In our view these 
results fit well with the hypothesis that children are at their best in solving probability 
problems when the information that they deal with is about the absolute numbers in the 
sample space, and they can make these into ratios. 
 

2. The argument that we have developed about children’s ability to understand ratios and 
to use them to solve probability problems is relevant to the way probability is taught at 
school. The idea should be pursued in intervention experiments. 
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5.  Correlations 

Between certainty and uncertainty 
 
Between the complete certainty of determined events and the complete uncertainty of totally 
random events lies a world of imperfect, but nonetheless important associations. This is the 
world of associations between variables. Correlations are measures of the strength and the 
direction of the association between two variables. A correlation coefficient of 1 tells us that two 
variables are perfectly and positively related and a coefficient of <minus>-1 shows that they are 
perfectly but negatively related. Neither of these correlations leaves any room for uncertainty, 
but these perfect correlations are extremely rare. Correlations are greater or smaller than 0 and 
fall somewhere between 0 and 1 or between 0 and <minus>-1. They show that there is an 
association between the two variables but also indicate that we cannot be certain how the 
association will affect individual cases. We know, for example, that there is a relationship 
between how much people eat and whether their mass goes up or down, but we also know that 
the association between these two variables is not a perfect one, since the strength of the effect 
varies a great deal between people. The association, though less than perfect, allows doctors 
and dieticians to give good and worthwhile advice to people in danger of obesity, for example, 
but it is not strong enough for them to make precise predictions about what will happen to 
individuals as a result of changing their diet.  
 
Many situations that confront us, both in science and in everyday life, involve at the same time 
associations between variables and some uncertainty about the effects of the association. 
Correlational reasoning is about the presence, nature and strength of a mutual relationship 
between two variables (Adi et al., 1978). This reasoning requires the recognition that 
relationships between variables are not absolute but exist in degrees (Ross and Cousins, 1993), 
and thus involve probabilistic reasoning.  
 
Risk is an uncertainty that ‘can be expressed as a number such as a probability or frequency on 
the basis of empirical data’ (Gigerenzer, 2002, p. 26). In everyday life the word ‘risk’ is 
associated with negative outcomes, but this is not the use made of the word in the medical or 
psychological literature. To use a common example, in everyday life one would speak about the 
risk of having cancer (i.e. the probability of having cancer) if a test is positive but one would not 
speak of the risk of not having cancer (i.e. the probability of not having cancer) if the test is 
positive. However, the probability of not having cancer if the result of the test is positive is still 
important and must be considered when decisions are made about the subsequent course of 
action. According to Gigerenzer’s definition, each of these probabilities defines the risk of that 
event taking place.  
 
The word risk carries another connotation, alongside the probability of an event, which is related 
to the seriousness of an outcome. Pascal explored this meaning of risk in the argument that is 
today known as Pascal’s wager (Mlodinow, 2009). Pascal weighted the probability that God 
existed, if one did not know anything to prove it one way or the other, against the severity of the 
risks one could run by following or not the laws of God. Pascal’s wager is presented here in a 
simpler form, focusing on the meaning of risk in terms of severity of the outcome. The risk of 
following the laws of God is that one might miss some pleasures in a life of limited in duration. 
The risk of not following the laws of God is losing eternal life and happiness. So Pascal 
concluded that every reasonable person should obey the laws of God because the risk 
associated with not obeying them, if God exists, is clearly more serious than the risk of obeying 
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them, if God does not exist. Although this connotation of the work risk is important, the focus in 
this paper is on the first one, the probability of an event taking place. 
 
Correlations help people define the probability of a particular event taking place when 
something else is known. We can take, as an example, a committee carrying out an inquiry into 
the deaths of children undergoing a certain type of surgery in a particular hospital. The 
committee must consider the evidence using correlational reasoning. The question the 
committee needs to answer is whether children operated on in this hospital are more likely to 
die than those who received the same surgical intervention in other hospitals. In other words, is 
there an association between receiving the treatment in this hospital and death? The 
relationship is unlikely to be absolute: not all children operated in the hospital will have died and 
not all operated elsewhere will have survived. But the question of whether the chances of the 
children dying are increased by receiving surgery in this particular hospital can still be asked 
and answered by looking at the strength of the association.  
 
The value and importance of these imperfect associations is now widely recognised. Even the 
most impressive discoveries in the history of science might have been dismissed if one were to 
expect a perfect association. When Florey and his colleagues ran the first experimental study on 
the effects of penicillin with mice (Lax, 2004), the outcome could be interpreted in deterministic 
terms: they infected 8 mice with the smallest dosage of virulent streptococci known to kill a 
mouse of average mass and then gave four of them penicillin. The four mice that did not receive 
penicillin died within a day. Of those that did receive the penicillin, two had received a single 
shot, and one died after two days and the other after six days. Of the two that had received five 
shots over a period of time, one died after 13 days and the other lived on, presumably to a ripe 
old mouse’s age. However, the trials with humans were by no means as clear-cut: two of the 
first six patients treated with penicillin died, which suggested the possibility that penicillin may 
not be as great a success as the mice experiment had suggested. The question was whether 
this recovery rate was definitely better than a no-treatment condition, and Florey certainly 
wanted to seek more evidence before making these experiments known to the world. 
Thus correlational reasoning is an essential element in scientific reasoning and scientific literacy 
(Gigerenzer et al., 1989; Robinson, 1968; Ross and Cousins, 1993), and a means of controlling 
the present and predicting the future in order to maximise the desired outcomes in one’s 
personal life (Alloy and Tabachnik, 1984). 

The cognitive demands involved in understanding correlational reasoning 
 
The cognitive demands in understanding correlational reasoning are various, and we focus here 
briefly on three. The first one is understanding randomness. If there is no relationship between 
two events, A and B, it is still possible that they might occur together by chance. The aim of 
analysing the correlation between two events is to establish whether they co-occur more often 
than one would expect by chance. Understanding randomness is therefore part of 
understanding correlations.  
 
Correlational reasoning also involves understanding sample space. In order to examine whether 
two events are associated, we need to establish not only whether they co-occur but also what 
all the possible cases are: Did A happen? Yes or no. Did B happen? Yes or no. The sample 
space here is four possible categories.  
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1. Yes–Yes 

2. Yes–No 

3. No–Yes 

4. No–No 

One could be tempted to think that only the Yes–Yes cases are relevant to the question of a 
correlation between the two events, but the probability of the events occurring together must be 
understood in the context of the events not occurring together as well.  
  
If we think of the infected mice that did or did not receive penicillin, we have a slightly more 
complicated sample space. Some mice did not receive penicillin and did not survive for one day, 
so this is a No–No case (i.e. no penicillin, no survival). Some mice received a single shot of 
penicillin: one survived two and the other six days. If we simplify the survival criterion to, for 
example, surviving one week, these mice would also be Yes–No cases. Some mice received 
five shots of penicillin and survived for longer than one week: they would be examples of Yes–
Yes cases. There were no mice that exemplified the No–Yes case (i.e. infected mice that did not 
receive penicillin and survived for at least one week). 
 
This example hints at how sample space can be much more complicated than cases in four 
categories, because the cases may vary in more subtle ways than Yes or No. One could, for 
example, characterise the administration of penicillin by the number of shots the mice received 
and the survival of the mice by the number of the days they survived. This would create a much 
more complicated sample space, which cannot be analysed as easily. However, most of the 
research on children’s understanding of the association between variables has focused on the 
simplest sample spaces described by Yes or No on the two variables. 
 
Once we have established the sample space, we need to move on to the quantification of 
probabilities in a proportional manner. Is the frequency of cases that support the existence of an 
association (the Yes–Yes and the No–No cases) proportionally really larger than the frequency 
of the cases that do not support the association, so that one can assume that this frequency 
departs from what one would expect by chance? If this is the case, we conclude that there is an 
association between the two events. 
In summary, understanding the association between two variables makes at least three 
demands on children’s reasoning: they need to understand randomness and the sample space, 
they must be able to recognise which cases support and which cases go against the idea of an 
association between the variables, and they need to be able to quantify the positive in 
comparison to the negative cases in order to assess whether the positive cases are frequent 
enough to suggest that the co-occurrence observed is not due to chance. 

Past research on how people understand correlations 
 
Studies of people’s understanding of correlations can be best analysed if we separate them into 
groups, defined by the questions that they address. This is not to say that the questions are 
independent of each other; it is just a methodological step to help us identify the different pieces 
of the puzzle that constitute correlational reasoning. The studies are sorted in this report into 
five types related to the questions they address. 
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1. How do people react to contradictions of an expected relationship between two events?  

2. What sort of information do people seek when trying to find out whether two events are 

correlated?  

3. How does the presentation of information relate to our understanding of correlations?  

4. How do children and adolescents quantify the information that they are presented with 

and what inferences do they draw from information?  

5. How can we help students to understand correlations better? 

Reaction to information that contradicts an expected relationship between variables 
 
Inhelder and Piaget (1958) carried out a variety of studies in which they analysed how children 
and adolescents react to information that confirms or contradicts the existence of an expected 
relationship between variables. In one well-known study, they asked children to attempt to 
explain why things float or sink in water. This situation is a deterministic one, and not a matter of 
probabilities, and the researchers’ interest was in the way children reacted to contradictions of 
their predictions. The problem is rather appropriate for examining reactions to contradictions 
because many people, including many adults, start out with the notion that heavy things sink 
and light things float, rather than with the idea of density, which involves a relation between 
mass and volume. The question is then how participants will react to the contradiction of their 
predictions. If children and adolescents cannot discard the hypothesis of a relationship between 
mass and sinking (i.e., if they cannot reject the hypothesis that heavy things sink and light 
things float) in a deterministic situation, they might find it even more difficult to interpret 
relationships that are probabilistic rather than deterministic. We focus here on the relevant 
aspects of this study, not on the details of whether and how the participants reached an 
understanding of density. 
In the Inhelder and Piaget study, at the start of the session, the children are asked to classify 
the objects in two categories, those that will float when placed in a basin full of water and those 
that will sink when placed in the basin. If a child forms these two categories and provides a 
consistent explanation – for example, these float because they are light or small and those sink 
because they are heavy or large – the experimenter proceeds to ask for specific predictions for 
each object and then notes the child’s reactions to contradictions of these predictions. The 
experimenter chooses, for example, a large piece of wood, which is both large and heavy, and 
asks the child to make a prediction. To be consistent, the child should predict that it would sink. 
When the wood is put into the basin, it floats. Inhelder and Piaget noted three different types of 
reactions to this contradiction. 
 

1. Some children would ignore the contradiction, and continue to assert that heavy things 
sink and light things float and indeed attempt to make the piece of wood conform to their 
prediction by pushing it down to the bottom of the basin. 
 

2. Other children would modify their hypothesis, forming classes of objects that can float 
despite belonging to a class which is predicted to sink (e.g. heavy objects sink but wood 
normally floats because it has air inside, it is not very compact).  
 



70 
 

3. Other children would note the contradiction and would no longer accept the simple 
association between mass and sinking (some of these actually give up seeking the 
solution, whereas others seem to go on to think of a relationship between mass and 
volume, constructing an understanding of density).  

 
The relevance of this study to correlational reasoning may not be immediately apparent but we 
hypothesise that it is not possible to think about correlations without understanding how 
expected relationships might be disconfirmed by evidence.  
 
Inhelder and Piaget’s (1958) work on propositional reasoning, exemplified in the study about the 
law of floating bodies and the elimination of contradictions, inspired a large number of 
subsequent studies on how children and adolescents interpret statements about causal 
relationships and how they interpret contradictions. It should be noted that studies on 
contradiction do not imply that children have no understanding of causality. For example, 
children know that if water is spilled, the floor gets wet, and if something is cut, it is no longer in 
one piece (Bullock and Gelman, 1979; Schultz, 1982, das Gupta and Bryant, 1989; Sobel and 
Kirkham, 2007). Inhelder and Piaget’s studies were about how children re-examine their 
thinking about relationships if their thinking is contradicted by observations. As far as we know, 
other researchers have not disputed Inhelder and Piaget’s central claim that children’s ability to 
see the relevance of disconfirmation of a prediction about a relationship between two events 
improves over time and that this ability is not observed among children in the early years of 
school. This important result has consequences for understanding correlations: if children 
cannot discard their explanations for events when these are contradicted in a deterministic 
situation, it will be difficult for them to do so in a probabilistic situation, in which both cases that 
confirm and cases that lead to disconfirmation of the prediction might be observed.  
 
Subsequent research has not analysed reactions to contradictions in such detail but has 
explored the judgements that people make about correlations depending on whether they hold 
beliefs about the association between the variables. There are several studies on the 
recognition of covariation between variables when participants have a certain bias (e.g. Alloy 
and Tabachnik, 1984; Jennings, Amabile, and Ross, 1982; Scholz, 1991) but the best-controlled 
study was by Batanero et al., (1996). Batanero and colleagues presented to a large sample of 
final year secondary school students (age 17 to 18 years) tables (2 <mult> x 2, 2 <mult> x 3 or 
3 <mult>x 3) that contained frequencies showing the co-occurrence of certain characteristics. 
For some of these, they expected the participants to have previous beliefs – for example, an 
association is expected between smoking and having a bronchial disease and between number 
of hours studied and results in an exam. For other characteristics, the students were not 
believed to have expectations: for example, leading a sedentary life and having a skin allergy. 
The students were asked to interpret the tables and answer whether there was an association 
between the variables. The level of difficulty of the problems, as defined by the size of the 
contingency tables and the direction of the association (direct relations are more easily 
recognised than inverse relations), was controlled across conditions of expectation. Batanero 
and colleagues found a strong association between the prior beliefs of the students and their 
interpretations of the contingency table. Even students who correctly analysed the proportions 
of confirming cases and the proportions of disconfirming cases often drew the wrong 
conclusion, either supporting the association when there was none according to the table or 
failing to detect an association when it should have been detected. Because these were 
secondary school students, these results suggest that the interpretation of information about 
correlations is influenced by reactions to contradictions, even though the same participants 
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might have reacted differently if the contradiction had been to a prediction in a deterministic 
situation. 

Seeking information about relationships between events 
 
Among the numerous studies that were inspired by Inhelder and Piaget’s work on propositional 
logic, one set of studies focused specifically on the analysis of how people seek information in 
order to test whether an association between two events affirmed in a proposition is true or 
false. Wason (1968) designed a task in which participants were asked to test whether there was 
an association between what was written on one face and on the other face of a set of four 
cards. The association was presented to the participants as a rule: ‘If there is a vowel on one 
side of the card, there is an even number on the other.’ The participants were asked to select 
only the necessary and sufficient pieces of evidence to test whether the rule is true. The cards 
that are on the table show a vowel, a consonant, an even number and an odd number. The 
necessary and sufficient information in this deterministic situation is to select the card with the 
vowel and the one with the odd number, because either could disconfirm the rule; the card with 
a vowel can also provide confirmatory evidence. The cards displaying a consonant and an even 
number are seen as irrelevant to the rule, because the rule does not state that there is a mutual 
association between even numbers and vowels. 
 
The commonest behaviour by children and adults in this task is to choose to verify what is on 
the other side of the card with the vowel and of the card with the even number. This choice is 
considered an error in testing the correctness of the rule because the card with the even 
number could not lead to disproving the rule. The participants’ behaviour in this situation has 
been interpreted as revealing what has come to be known as a confirmation bias, i.e. a search 
only for information that would lead to confirming the rule without a realisation that other 
information could result in disconfirming the rule. 
 
Subsequent research (e.g. Cheng and Holyoak, 1985; Cheng et al., 1986; Girotto, Light, and 
Colbourn, 1988) sought to provide an alternative interpretation to the behaviour of children as 
well as of adults in this task. Their behaviour was considered not to be adequately described by 
a logical analysis but rather by pragmatic schemas, which determined the relevant cases to be 
analysed. If the ‘if–then’ statement was interpreted as a permission or a prohibition, rather 
different behaviour in the testing of rules was observed. 
 
These studies suggest that children and adults evaluate the relationship between events 
differently depending on what they expect the nature of this relationship to be. Therefore, in 
studies about children’s understanding of correlations, which are mutual relationships between 
events, one must ascertain whether they understand what a mutual relationship means when 
they test its existence. If their behaviour seems to indicate, for example, a confirmation bias, as 
in the Wason four-card problem, we need to consider what consequences this bias has for the 
understanding of correlational reasoning. 
 
‘Confirmation bias’ is a term used to refer to seeking evidence that can only support the 
existence of a presumed association between two events. This bias does not have to be 
intentional or explicit: Nickerson (1998) defines confirmation bias as ‘unwitting selectivity in the 
acquisition and use of evidence’ (p. 175). Evans (1989) consider this as ‘perhaps the best 
known and most widely accepted notion of inferential error to come out of the literature on 
human reasoning’ (p. 41) and Dawes (2001) suggests that professionals may be prey to this 
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bias as a consequence of their professional experience: for example, if a clinical psychologist 
asserts that child sex abusers do not recover from this condition without professional help, this 
assertion is often based only on the cases that the professional has seen, namely those who 
seek professional help. Disconfirming cases, i.e. those who recover from their condition without 
professional help, are usually not part of a psychologist’s experience. 
 
Loren Chapman and Jean Chapman analysed confirmation bias in a series of studies with 
psychologists and undergraduate psychology students who were given information about 
patients and also about their performance in psycho-diagnostic, projective tests. In one study 
(Chapman and Chapman, 1967), for example, the participants were presented with drawings of 
human figures supposedly produced by patients who had one of six symptoms (e.g. he is 
suspicious of other people, he is worried about how manly he is). The pairings of the drawings 
with the symptoms had been carried out randomly. However, the participants supposedly 
discovered relationships between characteristics and symptoms as a consequence of 
remembering only confirmatory cases: for example, 80% of the participants ‘discovered’ that a 
figure drawn as muscular, with broad shoulders, indicated that the patient was worried about his 
manliness. Chapman and Chapman referred to this as illusory correlation, which they describe 
as the erroneous reporting of co-occurrence of symptoms and signs in a diagnostic test (see 
also Chapman, 1967; Chapman and Chapman, 1975).  
 
In summary, research with adults and children has suggested that they are influenced by the 
nature of the relationship that they expect to exist between two events in the way they search 
for information to test whether the relationship exists. Some researchers have described a 
confirmation bias or illusory correlation in a number of situations and by a variety of participants 
– but note that these are simply terms and do not constitute an explanation for why information 
is selected in a particular way. Chapman (1967) attempted to explain this phenomenon as a 
consequence of stronger memory for associations between phenomena that were previously 
associated in one’s experience. However, the information does not have to be committed to 
memory for this bias to be observed. In subsequent descriptions of how children and 
adolescents deal with information about the relationship between two events, we will consider 
the possibility that the confirmation bias stems from cognitive demands made by tasks and the 
difficulties that we have in dealing with such tasks. 

Presentation of information and understanding correlations 
 
In order to assess whether two events are correlated, people must be given information. It could 
be argued that the best way to analyse correlational reasoning is to provide information to 
participants about individual cases because organising the information can be seen as part of 
understanding how to assess whether two events are related. Mlodinow (2009) actually 
suggests that historically the analysis of probabilities only became possible when people 
developed better means of recording the occurrence of events. 
 
Inhelder and Piaget (1958) briefly mention, in their study of adolescents’ correlational reasoning, 
that the participants performed better when the classes of events were presented to them in 2 
<mult>x 2 tables, which organised the information according to the sample space – Yes–Yes, 
Yes–No, No–Yes, and No–No. 
 
Other researchers have shown that children may have difficulties in sorting out the information 
in order to construct the relevant classifications for a table (Adi et al., 1978) and that providing 
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children with information already organised in tables improves their performance in tasks in 
which they are asked to assess whether there is an association between two events (Carvalho, 
2008). Ross and Cousins (1993) showed that students can be taught how to organise 
information about individual cases in 2 <mult sign> x 2 tables, which can then be scrutinised in 
order to assess whether the events are associated. They also showed that students can be 
taught to organise information even in more complex, multivariate situations, in which a 
relationship between variables only exists under one condition but not under another (e.g. the 
relationship between a treatment and recovery may be conditional on the amount of medication 
used). Ross and Cousins found that the ability to organise the information in tables can be 
considered part of the skills necessary for correlational reasoning because some students 
cannot even start to organise the information. However, this ability may improve without a 
similar improvement in the ability to make correlational inferences from the information. Thus 
organising information can be seen as an important step in assessing correlations, but is distinct 
from the process of making inferences about whether a correlation does or does not exist. 
Tables still have to be analysed in order to assess whether there is a correlation between the 
variables.  
 
Although tables are often used in correlational reasoning studies in which children and adults 
are asked to assess whether there is a correlation between events, information about 
correlations is often presented in the media and in scientific papers, not in tables but either in 
conditional probabilities or in ratios. Probabilities can be stated as percentages and proportions 
or as ratios, referred to by some researchers as frequencies. Scientific and media reports seem 
to resort to proportions or percentages because these figures are easier to compare than 
frequencies: for example, if we are told that 62 people in a sample of 243 from city A had a 
particular illness and that 93 people in a sample of 329 from city B had the same illness, it is 
difficult to know whether the illness was relatively more frequent in city A than in B. If we were 
told, in contrast, that approximately 25% of the people in each sample had the illness, we would 
quite easily conclude that the incidence was very similar in the two cities. The ease with which 
we compare figures in this example does not extend to correlational reasoning, in which the 
percentages or frequencies are related to conditional probabilities. When information is 
presented in frequencies or ratios rather than percentages or proportions, both children and 
adults seem to find the information easier to interpret. 
 
Correlations can be presented in 2 <mult sign> x 2 tables, when the events are discrete (of the 
Yes–No type) and, when the variable are continuous, they can be presented either in tables or 
in graphs or actually in both formats at the same time. Carvalho (2008) analysed secondary 
school students’ inferences about specific data points or trends in co-variation situations and 
found that they did not appear to use information from graphs by looking at the spatial 
characteristics of the graphs alone: when they explained their answers, they did not refer to 
slopes, for example, but to values that they read from the graphical representation. Their 
performance in problems presented in tables or both graphs and tables did not differ 
significantly, probably because they relied on numerical information. When the graphs 
represented a negative correlation, secondary school students found it rather difficult to draw 
the appropriate inferences from the graphs, although they could note the negative relationship 
between the variables when the information was presented in tables. 
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The quantification of probabilities to determine whether there is a mutual relationship 
between two events  
 
The initial work on how children use information to decide whether two events are related was 
carried out by Inhelder and Piaget (1958). They asked the adolescents aged 12 to 14 years who 
participated in their study to ascertain whether there was an association between hair colour 
(blond hair versus brown hair) and eye colour (blue eyes versus brown eyes) in a set of cards. 
The researchers made it clear to the participants that the question referred simply to the set of 
cards presented to them, in which faces with these attributes were drawn, and not to their 
experience outside the cases they were considering.  
 
The researchers were initially interested in examining the responses from the standpoint of 
propositional logic, and not in the quantification of the relationship. The sample space (or 
possible cases) was thus definable as Blond–Blue eyes (p and q), Blond–Brown eyes (p and 
not q), Brown hair–Blue eyes (not p and q), and Brown hair–Brown eyes (not p and not q). The 
researchers asked the participants whether there was a relationship between hair colour and 
eye colour in this set of cards and later to subtract or add cards that would make this 
relationship stronger or weaker. 
 
Inhelder and Piaget noted that participants had a problem right from the start with establishing 
how the four classes that define the possible cases (or the sample space) relate to the question 
of whether there is a relationship between eye and hair colour. They tended to establish one 
class – for example, the class Blond–Blue eyes (p and q) – and base their answer on this class 
only, thereby thinking only of the probability of having blond hair and blue eyes in that sample. 
When the researchers made the distribution of cards such that the relationship was actually 
perfect – 6 cards with blond –blue eyes (p and q), 6 with brown hair and brown eyes (not p and 
not q) and zero cards in the other categories – some adolescents dissociated the two categories 
from each other in their answers. The blond hair–blue eyes cases indicate that you have more 
chance to have blue eyes if you are blond; when asked about the brown hair–brown eyes 
cases, they thought this was not relevant, these cases only indicated that you are more likely to 
have brown hair if you have brown eyes.  
 
Other adolescents realised that both of these classes are confirming cases and the remaining 
classes are disconfirming cases, but did not combine the confirming cases in order to compare 
them to the disconfirming cases as a group. When they were asked to compare two sets of 
cards and say in which set they were more likely to find cases that ‘follow the rule’ of a 
relationship between hair and eye colour, they did not use all four classes in their answers. For 
example, when comparing two distributions with the same number of cards with blond hair–blue 
eyes, the same number of ‘errors’ according to the rule, and different numbers of cards with 
brown hair–brown eyes, they thought that the relationship between hair and eye colour in the 
two sets is the same: there were five chances of being right in both sets (ignoring that the brown 
hair–brown eyes increased the chances of being right in one of the sets). 
 
Inhelder and Piaget suggested that, with further comparisons, as the experiment proceeded, 
some adolescents were able to reach the understanding that they needed to relate the sum of 
the sets of confirming cases to the sum of the sets of disconfirming cases. They also suggested 
that only exceptionally the adolescents anticipated the need to combine the two types of cases 
in their analyses. Thus, although some adolescents were able to reach an understanding of how 
cases confirming and disconfirming the relationship could be taken into account quantitatively, 
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they did not come across many that demonstrated this understanding from the outset of the 
experiment. 
 
It should be pointed out that in this study, as in the study on quantification of probabilities, 
Inhelder and Piaget’s clinical method may lead to a more positive assessment of adolescents’ 
understanding of probabilities that other methods, in which the participants are asked questions 
but not presented with conflicting approaches to the problem or asked to increase or decrease 
the relationship between the variables by manipulating the number of cards in the different 
cases. 
 
The study by Inhelder and Piaget inspired some further research, both with adolescents and 
with adults. Much of the work with adolescents consisted in developing measures to assess 
correlational reasoning (e.g. Tobin and Capie, 1981), using such measures to predict students’ 
success in science courses or assessing whether science courses had an effect on correlational 
reasoning (Lawson, Adi, and Karplus, 1979).  
 
Studies with adults focused on whether adults who did not take many mathematics courses 
showed competence in correlational reasoning in their domain of work. Smedslund (1963), for 
example, interviewed nurses and student nurses (N = 96; in Denver and in Oslo) using a task 
which was very similar to the one used by Inhelder and Piaget, but the relationship to be 
analysed was relevant to their work: it concerned the correlation between a symptom and an 
illness. They were instructed to concentrate only on the information in the cards, which were 
meant to be about patients, numbered from 1 to 100 in the order in which they were admitted to 
the hospital. The cards contained four letters, representing different specific symptoms, and four 
other letters, representing specific diagnoses made by the hospital. The nurses were asked to 
focus on each of the associations, one at a time. 
 
Smedslund expected that participants that understood correlational reasoning would use a 
selective strategy, organising the cards into the four categories relating to presence or not of the 
symptom and presence or not of the diagnosis; would count or estimate the frequencies in each 
category; would attend to all four categories; and would compare the frequencies of the sum of 
confirming cases with the sum of disconfirming cases. Some of the participants were also 
shown the frequencies for the different combinations of presence or absence of the symptom 
and the diagnosis and asked to estimate the strength of the relationships between symptoms 
and illnesses. 
 
Smedslund found some of the same behaviours described by Inhelder and Piaget in these 
participants: some nurses seemed to think that a relationship may exist when the symptom and 
the diagnosis co-occur and at the same time may not exist when neither is present in the cards; 
they did not see both cases as examples supporting the mutual relationship between the 
symptom and the diagnosis. If a symptom, such as a headache, appeared in many illnesses, it 
was considered an important factor for a diagnosis of a particular illness even if it appeared on 
the card only sometimes. Smedsland reported that not a single participant gave an indication of 
having understood that the degree of the relationship between symptom and illness depended 
on the ratio of confirming to disconfirming cases. This study, as some of those referred to in the 
section on quantification of probabilities, suggests that the clinical method used by Inhelder and 
Piaget in their interviews may have led to a positive view of what adolescents achieve, which is 
not replicated in other studies in which less interactive methods are used. 
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The concern with lack of evidence of correlational reasoning in secondary school and university 
students documented in different studies (e.g. Karplus, Adi, and Lawson, 1980; Lawson, 1982) 
inspired efforts to develop ways of promoting this reasoning, exemplified by studies summarised 
in the subsequent section. 

Improving students’ understanding of correlations 
 
Researchers interested in promoting the development of correlational reasoning, such as Nous 
and Raven (1973) and Ross and Cousins (1993) seemed to approach correlational reasoning 
as involving a set of interrelated skills, such as organising data in tables or graphs, articulating 
predictions (e.g. in a graph, if the value of variable A increases, does the value of variable B 
increase, decrease or stay the same?), locating data, synthesising data, and drawing 
conclusions. The results suggested, as briefly mentioned above, that it is possible to improve 
the skills of organising and synthesising data without improving the inferences regarding the 
correlations. Students in the taught groups were able to organise and synthesise the data better 
than those in the untaught groups; however, they continued to answer the correlation questions, 
not by using the information, but on the basis of their preconceived ideas. For example, one of 
the questions was whether taller people were faster swimmers. Students in the taught groups 
could say either ‘yes’ or ‘no’, and did not reach a similar conclusion, even though they had 
organised and synthesised the data appropriately; when drawing their conclusions, their 
arguments were not based on the data. The actual intervention in this study was carried out by 
classroom teachers, and Ross and Cousins (1993) report a strong relation between the 
commitment of the different teachers and the effect of the intervention on the students’ 
achievement. They also found that their programme led to similar results with younger, grade 7 
students (about 13 years of age), and older, grade 10 students (about 16 years of age). 
Other approaches to teaching correlational reasoning also used lessons on correlations, but 
these were combined with teaching other formal operations schemes, such as control of 
variables and proportional reasoning (e.g. Lawson and Snitgen, 1982). Although these are 
relevant and important studies, it is difficult to relate the improvements in correlational reasoning 
to a specific aspect of the teaching programme. 
 
As far as we know, only one recent teaching study by Vass, Schiller and Nappi (2000) 
conceived of the process for promoting correlational differently from the earlier studies. The 
early studies approached the teaching of correlational reasoning as involving a set of skills, as 
described in the Ross and Cousins study. Vass, Schiller and Nappi’s concentrated on the 
conceptual basis on which correlational reasoning rests. Inhelder and Piaget (1958) and 
Karplus, Adi and Lawson (1980) advanced the hypothesis that understanding correlations 
depends on two cognitive schemes: understanding probabilities and understanding proportions. 
Vass and colleagues taught one group of teacher-education students in three lessons about 
proportionality and probabilities only and a second group, also in three lessons, about 
proportionality, probabilities and correlation. The first two lessons were the same for both 
groups but the third one differed. The members of the first group were given a review of the 
concepts of proportionality and probabilities correlations in the third lesson. The second group 
was taught about correlations in this lesson. Vass et al. reasoned that, if proportionality and 
probabilities are building blocks for understanding correlations, the group taught only about 
these two concepts should make progress in understanding correlations, but perhaps not as 
much as the group that was also taught about correlations.  
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Both intervention groups made more progress from pre- to post-test than the control groups. 
The means attained in the correlational reasoning measure by the two groups were almost 
identical at post-test, and for both groups significantly better than their pre-test performance. 
Vass et al. concluded that teaching them about the building blocks gave them the necessary 
schemes to reason about correlations even without specific teaching about correlations. This is 
an impressive demonstration of how helping students to meet the separate demands of a 
complex concept can promote significant advances in the students’ understanding of that 
concept.  

Summary and conclusions 
 
We argued at the start of this section that correlational reasoning involves the co-ordination of 
three schemes of reasoning: understanding randomness, the sample space and quantification 
of probabilities. Correlational reasoning goes beyond each of these on their own and provides 
the basis for much of modern science and for understanding a large variety of situations in 
everyday life. Many of the relationships between events and between variables are not 
deterministic, but are probabilistic in nature. In order to assess whether there is a mutual 
relationship between events, we must test whether the association that we note between their 
frequencies is one that departs from what could be expected by chance. We must also 
understand the sample space that allows for scrutinising the relationship: in a typical discrete 
variable situation, we can characterise this space as the combination of Yes and No for each of 
the events. For example, a plant was treated with a pesticide (Yes–No) and it is no longer 
infested (Yes–No), gives a table with four cells: Yes–Yes, Yes–No, No–Yes, and No–No. In 
order to draw inferences from the frequencies in this table, we must understand the relevance of 
the different cells to a mutual relationship between the variables and draw conclusions 
accordingly. Two of the cells represent confirmations of the mutual relationship (Yes–Yes and 
No–No) and the other two represent disconfirmations. We then need to know how to deal with 
these cells quantitatively. 
 
Reasoning about a contradiction to a hypothesis is not simple in deterministic situations; it is 
also not simple in correlational situations. Some of the studies we reviewed, including for 
example the Smedslund study with adults, show that contradictions might not be noted by them 
when considering correlational evidence: they might focus only on the cases that seem relevant 
to them (the Yes–Yes cell in the 2 <mult> x 2 table) or they might think that if two events co-
occur sometimes, then they must be associated in some way. Organising the information is 
important for scrutinising a relationship between events but even when this is not necessary, 
because the cases are already organised and quantified in the categories, drawing inferences is 
still a difficult matter. 
 
The quantification of the confirming and disconfirming cases in order to test for a mutual 
relationship between two variables was rarely observed by Inhelder and Piaget at the outset of 
their experiment. Even their clinical method, which tended to guide participants to think about 
problems from different perspectives, did not suggest that correlational reasoning is easily 
attained. Subsequent research indicated that many secondary school and college students 
might not demonstrate high levels of correlational reasoning. These results motivated the 
search for methods of improving correlational reasoning, which was seen as particularly 
important in biological and medical sciences, and which indeed predicted students’ success in 
courses in these domains. 
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Teaching studies that aimed to improve secondary school and college students’ correlational 
reasoning were sometimes conceived in terms of the skills necessary for correlational reasoning 
and sometimes were part of a larger programme designed to improve formal reasoning in 
general. We found a single study that was conceived differently: a control group was compared 
to two taught groups, one that had received instruction only on the schemes necessary for 
correlational reasoning (probabilities and proportionality) and one that had received instruction 
on these two schemes plus instruction on correlational reasoning. The striking similarity in 
results in the two taught groups provides strong support for the notion that, if people master the 
cognitive demands of correlational reasoning, they can use these resources in order to 
understand correlational problems. It is, however, too soon to reach a firm conclusion, on the 
basis of a single study. A combination of longitudinal, predictive studies showing that these 
particular demands predict learning of probabilities (even after controlling for other intellectual 
measures) and further teaching studies is required to support our hypothesis that correlational 
reasoning is the reward that one can reap in the scientific domain from understanding 
randomness, sample space and proportional quantification in the mathematics classroom. 
 

6. General summary 
 
In the introductory section we also argued that, although much of the research on children’s 
understanding of probability is based on good ideas and on ingenious tasks, the design of much 
of this research is very limited. The concentration on cross-sectional studies and the near-
complete absence of longitudinal research designed to test hypotheses about the connections 
between the strength of various abilities and the progress that children make in reasoning about 
probability is one serious problem. Another is the scarcity of intervention projects that are 
designed to test causal hypotheses about the factors that affect children’s learning about 
probability. 
 
In the section on randomness, we reported evidence that children at first have difficulties in 
distinguishing random from determined events, but do acquire relevant and reasonable ideas 
about randomness, particularly in the context of fairness, by the age of about 10 years. The 
relations between fairness and randomness has been under-researched, except in work on 
computer microworlds which suggests that everyday experiences like shuffling cards and 
tossing coins help children learn about the importance and the consequences of randomness. 
This idea is relevant to the teaching of probability at school, and should be explored in 
intervention studies. We also discussed work on infants under 1 year in age which has led to 
claims that even these young children can distinguish events that happen at random from 
events that are determined because the actors concerned can make informed choices. This 
research is ingenious, but some serious questions about the design and procedures of these 
experiments will have to be answered before we can accept the striking conclusions that the 
research has led to. 
 
The main point that we made about the sample space was its central importance in 
understanding probability and in solving probability problems. Yet, research on children has 
produced very little direct information on how children learn about the importance of the sample 
space or about how to analyse it. Much of the information that we have is negative, since it 
comes from mistakes that children make in reasoning about probability, which they wouldn’t 
have made if they had had a thorough grasp of the sample space. On the positive side, there 
has also been research, starting with studies described in Piaget and Inhelder’s book on 
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chance, on children’s combinatorial reasoning. This is relevant to the analysis of the sample 
space because in many probability problems one has to aggregate the elements of the sample 
space in combinations and categories. The innovation of children working with computer 
microworlds on creating sample spaces is also impressive: microworlds appear to be an 
excellent way of dealing with the large amount of data that is often part of discussions about 
sample spaces. 
 
Much of the evidence on children’s combinatorial reasoning suggests that it is often difficult for 
children to make exhaustive lists of all possible combinations and compounds within a sample 
space. However, research on Cartesian product problems establishes that quite young children 
can often manage the exhaustive reasoning that is needed for these problems if they can model 
the space with concrete material. This would be valuable information for anyone devising an 
intervention study of how to teach children about the sample space. Intervention studies are 
badly needed, partly for educational reasons and partly to test hypotheses, like Piaget and 
Inhelder’s, on the importance of combinatorial reasoning for learning about probability. 
The section on the quantification of probability began with a discussion of the relatively few 
probability problems that do not depend on proportional reasoning for a solution because they 
can be solved on the basis of simple more/less relations. The recent experimental work on 
infants’ knowledge about probability is based on such problems, and the generally positive 
results of these experiments raises the question whether babies would also manage well when 
given genuinely proportional problems. The evidence on schoolchildren’s attempts to calculate 
the probabilities of simple events, and to compare probabilities across different sample spaces, 
suggests that the need to reason proportionally in these tasks is a real obstacle for them. 
However, some of the reports suggest that when children of 9 to 12 years do succeed in these 
problems they usually do so on the basis of working out the ratios between different numbers in 
the sample space rather than by working with fractions. The possibility that children work with 
ratios better than with fractions to solve probability problems may also be the underlying reason 
why they are much more likely to solve conditional probability problems when they are given 
absolute rather than proportional values for the elements in the sample space. 
 
In the section on correlations, we dealt with children’s reasoning about situations in which two 
variables are significantly, but imperfectly, associated. Correlations are therefore about the 
probability of a relationship, and correlational reasoning diverges from reasoning about 
deterministic connections in many ways. Correlational reasoning involves dealing both with 
confirming and with disconfirming evidence in order to quantify the strength of the association, 
and the degree of uncertainty that it entails. Research on students’ reactions to correlational 
problems shows that these are generally difficult even for people in their final years at school. 
However, there is now some evidence that children’s correlational reasoning improves as a 
result of teaching about the underlying concepts of proportion and probability. 
 
In the report, we make two main recommendations about research on children and probability. 
The first is to take advantage of research designs that have been successful in research on 
other aspects of children’s intellectual development. In particular, we recommend the combined 
use of intervention and longitudinal methods to study the links between the four aspects of 
probability that we have discussed in this report.  
 
The second recommendation is that researchers on children’s understanding of probability 
should pay much more attention than they do at the moment to the great amount of related data 
on other aspects of cognitive development. Probability, as we have seen, makes a number of 
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different cognitive demands and most of these demands are shared with other aspects of 
cognitive development about which we know a great deal. Probability is an intensive quantity, 
but so are density and temperature. Analyses of the sample space require combinatorial 
reasoning: so do many branches of scientific thinking. We think that many people doing 
research on probability have paid very little attention to research on these related topics, and 
have missed out on potentially valuable information. 
 
Nevertheless, research on children’s understanding of probability is a thriving concern. It 
continues to produce interesting ideas and striking empirical results. It deserves a great deal of 
attention and encouragement. 
 
......................................................................................................................................................... 
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