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Abstract

In this paper we discuss two alternative approaches to constructing complete adult life-cycles using data from

an 18-year panel. The �rst of these is a splicing approach - closely related to imputation - that involves stitching

together individuals observed at di�erent ages. The second is a microsimulation approach that uses panel data

to estimate transition probabilities between di�erent states at adjacent ages and then simulates a large number

of individuals with di�erent initial values. Our aim throughout is to construct life-cycle pro�les of employment,

earnings and family circumstances that are representative of UK individuals born between 1945 and 1954. On

balance, we �nd the microsimulation approach is to be preferred because it allows us to correct for observable

di�erences across cohorts, and it is more amenable to counterfactual modelling.

1 Introduction

There is a growing recognition of the need to measure policy outcomes over horizons longer than a snapshot. For
example, it makes a big di�erence whether wage returns to a given education policy last for just one year or
persist throughout life. Likewise, it is important to know whether a health-related advertising campaign a�ects
consumption choices in the long run as well as the short run. One area where a life-cycle perspective is particularly
pertinent is the tax and bene�t system. Snapshot measures of the impact of taxes and bene�ts obscure the fact that
much of the diversity across individuals simply re�ects individuals' stage in life, and ignore the fact that individuals
can transfer resources across time through saving and borrowing. Moreover, some of the most interesting questions
about the tax and bene�t system explicitly relate to the life-cycle: what proportion bene�ts received by individuals
are e�ectively self-�nanced by taxes paid at other times in life? How much insurance do taxes and bene�ts provide?
How should the tax and bene�t system optimally vary with age and circumstances?

To answer such questions, a long panel dataset covering individuals from early-adulthood until death is needed.
In some countries, notably in Scandinavia, increasing availability of long time series of administrative records is
beginning to make this possible for a small number of cohorts. But in many countries such data are not readily
available. This has led researchers in several countries to attempt to construct data on full life-cycles based on short
panels and cross-sectional data (e.g. Falkingham and Hills, 1995, Bovenberg et al., 2008, Congressional Budget
O�ce, 2009, Waaijers and Lever, 2013). So far two basic approaches have been employed. The �rst of these is
a splicing approach � closely related to imputation � that involves stitching together individuals observed at
di�erent ages. The second is a microsimulation approach that uses panel data to estimate transition probabilities
between di�erent states at adjacent ages and then simulates a large number of individuals with di�erent initial
values. However, as far as we are aware, little work has been done to compare the strengths and weaknesses
of these two approaches. In this paper we implement and discuss these two alternatives using of a short panel
dataset supplemented by cross-sectional information from another survey. Our own aim throughout is to construct
life-cycles that are representative of UK individuals born between 1945 and 1954 (which we label the `baby-boom'
cohort), an important group who have now begun to retire.

On balance, we �nd that of the two approaches, the microsimulation approach is preferable for this purpose.
This is because it is easier to adjust in ways that better replicate the experiences of the baby-boom cohort, and it is
more amenable to modelling counterfactual outcomes (e.g. the possible future paths an individual could experience,
and how the tax and bene�t system insures them against future shocks).

The rest of this paper is structured as follows. In section 2, we describe the datasets we use for both approaches.
Section 3 then discusses the splicing approach, and section 4 discusses how we have implemented the microsimulation
approach. Section 5 provides evidence on the performance of the two methods by comparing them against available
data sources. Section 6 summarises key considerations when comparing the two approaches.

∗Levell and Shaw are both at the Institute for Fiscal Studies and University College London. The authors gratefully acknowledge
a grant from the Nu�eld Foundation (OPD/40976) and co-funding from the ESRC-funded Centre for the Microeconomic Analysis of
Public Policy at IFS (RES-544-28-5001). All remaining errors and omissions are the responsibility of the authors.
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2 Data

We rely primarily on two datasets: the British Household Panel Survey (BHPS) and the Living Costs and Food
Survey (LCFS).

The BHPS is a panel survey that ran for 18 waves from 1991 to 2008, collecting a wide range of demographic
and socio-economic information. The survey followed individuals and their descendants over successive waves.
The original sample comprised around 10,000 individuals in 5,500 households and was nationally representative.
Booster samples were introduced for Scotland and Wales in 1999. In each wave, the survey aimed to interview all
individuals aged 16+ in each household, including children who reach adulthood after the survey began and adults
who moved into households that were previously surveyed. If an individual was too ill or busy for a full interview,
some information may have been collected through a telephone interview or by consulting a proxy (such as a partner
or adult child).

The Living Costs and Food Survey (LCFS) is the latest name for a long-running, annual (for most of its history),
cross-sectional survey of household spending patterns in the UK. It was known as the Family Expenditure Survey
(FES) between 1957 and 2001 and the Expenditure and Food Survey (EFS) between 2001 and 2008. The LCFS
collects data on household incomes from various sources over the past 12 months, employment, family characteristics
and expenditures. Education is only included from 1978 onwards. We make use of the LCFS/EFS/FES between
1968 and 2012.

3 Splicing approach

3.1 Overview of approach

Our splicing approach develops that of Bovenberg, Hansen and Sorensen (2008) (henceforth BHS) which, in turn, was
inspired by Hussénius and Selén (1994). The approach is analogous to �hot-deck� imputation in that observations
for ages when we do not observe an individual (a �recipient�) are taken from another individual with similar
characteristics (a �donor�) from our data.1 The approach will reconstruct accurate life-cycles provided donors
(who will in general come from di�erent cohorts to recipients) are representative of what recipients would have
experienced in those years we do not observe them, and that appropriate donors can be found. We aim to splice
together histories for individuals rather than households.

To implement the splicing approach we take BHPS data for the years 1991 to 2008, and then employ the following
steps

1. Take all individuals aged 50 in waves 5-14 (the years 1995-2004 and hence those born between 1945 and 1954)

2. For each individual, �nd backward matches going back to age 16. For instance, if an individual we start with
is observed at ages 40-55 in 1993-2008, we begin by �nding an individual with similar characteristics at age
40 and who is observed beforehand (to `�ll in' what happened to the individual at earlier ages). We may for
example match him to an individual who is observed over the ages 30-40 from 1995-2005. Linking these two
individuals together creates a spliced individual that covers the ages 30-55. The individual aged 30 in 1995
may then be linked to another individual who is seen aged 25-30 over the period 2003-2008. We then continue
to try to �nd additional matches going backward in time until we have constructed a complete history from
age 16 until the last year we observe the original individual.

3. Then we repeat the process going forwards until the whole adult life-cycle is complete. For our example
individual we �nd a match who we see aged 55 and afterwards (to represent what would have happened to
that individual at later ages), and continue matching the individual to future donors until death.

We stop splicing when the individual or one of his/her donors dies in the data, or when no further matches can be
found.

3.2 Matching

To form a match, we insist that the two individuals have the same age, sex, education level (GCSEs or less, A-levels
and vocational higher, university), employment status, couple status, number of children, partner employment
status and renter/owner housing status. We also ensure that they are the same in terms of whether the individual
receives a private pension, whether their partner is aged over 60, whether the partner receives a private pension,
whether the individual receives disability living allowance, and whether the individual receives incapacity bene�t.
We also make sure the the youngest child in the household of the donor is within ±2 years of the youngest child of

1See Andridge et al. (2010) for a survey of hot-deck imputation.
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the recipient. Out of the set of possible donors (those who meet these requirements), we then �nd the closest match
across a number of dimensions, namely: rank in the cross-sectional earnings distribution for their age in that year,
rank in the distribution of partner's income for the individual's age in that year, rank in the distribution of rental
costs, and hours worked. The �closest� match is de�ned according to the Mahalanobis distance

M = (x− µ)′W−1(x− µ)

where x is the vector of characteristics of the potential donor, µ represents the characteristics of the recipient andW
is the variance-covariance matrix for these variables. Variances and covariances are calculated using the residuals in
panel regressions of each of our matching variables on individual-level �xed e�ects, so that the variances represent
individual-level volatility (as opposed to cross-sectional variances). Using the Mahalanobis distance ensures that
characteristics are weighted depending on how volatile they are: less importance is attached to variables that vary
more from one period to the next. A given match can be used several times across di�erent individuals and there
are no restrictions on how long a match would need to last beyond that it should provide at least one additional year
of data (meaning a match can last from 2 years to 18 years � which is the maximum length of time an individual
can be observed for in the BHPS).

Given the limited size of the BHPS dataset, it is not feasible to insist on exact matches for all possible
characteristics�otherwise we would very soon run out of data. As a result, there will be discontinuities in variables
for which we do not insist on an exact match. For example, there is no guarantee that partner age or child ages
will be consistent between donor and recipient. However, once the splicing procedure is complete we make these
variables consistent for our constructed life-cycles. The age of a given child is made consistent by subtracting the
parent's age when that child �rst appears in the household from the parent's current age (any children leaving the
household, permanently or temporarily, are assumed to be the oldest children). We match according to whether or
not the individual's partner's age is over 60, and by taking the age at which this �rst occurs, we can also make a
consistent partner age using the simple formula

age of i's partner = 60 + (current age of i - age of iwhen partner turns 60)

Some characteristics such as partner's education are left inconsistent over time as they are not relevant for tax
and bene�t calculations.

3.3 Splicing approach assumptions

The splicing approach matches people of the same age, but from di�erent cohorts and time periods. Cohort di�er-
ences mean that even when we achieve a �good� match by our criteria, outcomes and covariates might systematically
di�er between our donor and our recipient. We will therefore require an assumption that conditional on the variables
we match on across cohorts, outcomes are the same as they would have been for our cohort of interest. We can
illustrate why such an assumption is required using the following simple example of a splice made when we have
two cohorts and two ages (a more detailed discussion of the required assumptions is provided in Kim et al. (2014)).

Let our aim be to draw from the joint distribution of (Y1, Y2) for cohort C = 2 (where the subscripts on Y
indicate ages). We observe Y1 for individuals in cohort C = 2 and Y 2 for individuals in cohort C = 1 and want to
use the latter as a proxy for Y 2 in cohort C = 2, which we don't observe.

We can factor the joint density of outcomes for cohort C = 2 as follows

fY1,Y2|C(y1, y2 | C = 2) = fY1|C(y1 | C = 2)fY2|Y1,C(y2 | y1, C = 2)

We observe draws corresponding to the term fY1|C(y1 | C = 2) but we must proxy for the term fY2|Y1,C(y2 |
y1, C = 2). For the latter, all we observe is draws from fY2|C(y2 | C = 1). To use these as a proxy for draws from
fY2|Y1,C(y2 | y1, C = 2) we must assume

fY2|Y1,C(y2 | y1, C = 2) = fY2|C(y2 | C = 1)

A su�cient condition for this is fY2|Y1,C(y2 | y1, C) = fY2(y2) i.e Y2 ⊥⊥ Y1, C (Y2 is independent of the joint
distribution of Y1 and C).

When we apply this method in our own multiperiod setting, we make matches conditional on characteristics
when both donors and recipients are observed. Letting Ya denote a vector of outcomes at age a, the assumption we
require for matching forward in time is therefore

Ya ⊥⊥ Ya−2, Ya−3, . . . , C | Ya−1 (1)

where we are conditioning on the past value of Y (Ya−1) when making matches. This assumption can be split into
two
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Ya ⊥⊥ C | Ya−1 (2)

Ya ⊥⊥ Ya−2, Ya−3, . . . | Ya−1, C (3)

We call the �rst of these the cohort independence assumption. This prevents cohort di�erences between donors
and recipients causing us problems. The second is a Markov assumption that precludes outcomes at age a also
depending on a − 2 (or earlier periods) conditional on information in a − 1 (allowing us to match on one period's
characteristics only).

For matches backward in time, the required assumption is

Ya ⊥⊥ Ya+2, Ya+3, . . . , C | Ya+1 (4)

As with the forward matching case, this can be split into a cohort independence assumption and a Markov assump-
tion.

3.4 Earnings and rents

Our approach to matching on earnings (and rents) di�ers from that employed in BHS.2 In BHS, individuals are
matched on the basis of predicted incomes (estimated using a regression of incomes on various demographics) within
income deciles. Actual incomes of donors and recipients (uprated with average income growth) are then used to give
a life-cycle income pro�le. This approach is unlikely to be appropriate for us as we are attempting to reconstruct
earnings pro�les for a particular cohort. Cohort di�erences in earnings may mean that actual incomes of donors
are not representative of what recipients experienced. Donors are also likely to have experienced a di�erent set of
economy-wide shocks (such as booms and recessions) to recipients. Instead we match on earnings ranks. By doing
this we can ignore di�erences in cohort and period e�ects, and instead assume that transitions between di�erent
parts of the earnings distribution within cohorts are stable over time. We can then ��ll in� actual earnings/rents
from the cross-sectional earnings distribution observed in successive years of the LCFS for the cohort of individuals
born in 1945-54. This ensures that the distribution of earnings and rents for our spliced individuals at each age
will automatically match real-world cross-sectional distributions (in terms of mean, variance and other features).
As we only observe this cohort in the LCFS from 1968 until 2012, we project earnings forward beyond 2012 by
uprating the distribution for the last age each cohort is observed with forecasts for average earnings growth taken
for the O�ce for Budget Responsibility up to age 75 (after age 75 we impose that all individuals are retired). Some
cohorts reach 16 prior to 1968 leaving us with a few ages when their earnings distributions are not observed. To
obtain earnings distributions for these cohorts, we take the distributions at the appropriate ages from later cohorts
and downrate them with average earnings growth.

The assumption that transitions in earnings at di�erent ages are stable across time is testable. To test it, we make
use of a test proposed in Bickenbach et al. (2001). This involves splitting the BHPS into three di�erent subsamples
corresponding to the periods 1991-1996, 1997-2003, and 2004-2009. We then compare transition probabilities for
ages 16-64 across earnings quartiles in the subsample to transition probabilities in the whole sample using Pearson's
χ2 tests. Three of the 48 tests we do at age 16 -64 reject the null at the 5% level, a result which is roughly what we
would expect through chance alone � lending some support the idea that transitions observed in the BHPS may
serve as adequete representations of what the baby-boom cohort would have experienced.

As far as possible, we want to avoid dropping observations that have missing values at certain ages, as this not
only reduces the pool of potential donors but also the length of each match. To do this we assign lags or leads of the
partner's rank in the earnings distribution and hours worked as well as the household's rank in the rent distribution
when this information is not recorded. Those who do not participate in a full interview for the survey are sometimes
asked to give their earnings in bands (with a top band of �>¿480 a week�) rather than an actual amount. We assign
these individuals the midpoint of their band before calculating earning ranks, and for those in the top band we
assign a random rank in a location of the earnings distribution above ¿480. If we did not impute in this way, it
could potentially lead us to throw out many years of useful data. In the end only a very small proportion (less than
1%) of the observations in our completed life-cycles are imputed.

3.5 Private pensions

We use private pension income reported in the BHPS for individuals and their partners in�ated or de�ated using
average earnings growth.

2Earnings here includes self-employment income. We do not treat self-employment di�erently to other forms of employment, here or
elsewhere.
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4 Microsimulation approach

4.1 Overview of approach

In this second approach we hope to simulate plausible life-cycles with experiences representative of the baby-boom
cohort (those born between 1945 and 1954). We make use of both panel data from the BHPS and cross-sectional
data from the LCFS. The microsimulation approach proceeds through the following steps

1. Estimation stage

(a) Run regressions to predict the probability of moving from one state to another for individuals with
a given set of characteristics at each age. The outcomes we simulate are those that are central to
determining taxes and bene�ts: mortality, partnering, separation, child arrival and departure, movements
into and out of disability, movements in and out of employment, movements between full-time and
part-time work, movements between locations in the earnings distribution, movements into and out of
rented accommodation, and movements between council tax bands (which determine what property taxes
individuals must pay). A summary of the exact speci�cations we use in the estimation stage 1(a) are set
out in Tables 1 and 2.

2. Simulation stage

(a) Start simulating in 1960 when all individuals are in childhood. Initial conditions (education levels,
likelihood of being a renter and so on) are set using data on the baby-boom cohort from the LCFS.

(b) Simulate transitions for all our variables of interest between years t and t+ 1 using the regression results
from 1(a) above.

(c) Scale these transitions up or down by multiplicative factors so as to achieve the overall averages for
di�erent subgroups of the baby-boomer cohort in the LCFS data.

(d) Advance the year by one and repeat previous three steps until complete life-cycles are simulated for all
individuals in the cohort.

3. Imputation stage

(a) Use the LCFS data to impute actual earnings levels given the locations in the earnings distribution we
have simulated year-by-year. Since these are imputed according to the earnings ranks (which we model),
they will have an appropriate time series process. The same is done for rents.

(b) Use the English Longitundinal Study of Ageing (ELSA) to impute private pension income to simulated
individuals.

We use this procedure to simulate 5,000 life-cycles.
As it is not possible to determine all variables of the system simultaneously during the simulation in a given

period, variables must be determined in a sequential manner. Figure 1 shows the order we impose on the determi-
nation agents' outcomes in each period (private pensions are determined after the simulations are complete). First
we determine whether or not the agent lives or dies in the period. We then randomly assign births to individuals
according to probabilities of child arrival that we have estimated, and determine whether children between ages 16
and 18 leave the household. Individuals in our simulation then partner or separate. Childbirth is determined prior
to partnering so that it will depend on lagged rather than current partner status (thus allowing for a nine month
gestation period). We then determine whether or not individuals receive Incapacity bene�t (IB), Disability Living
Allowance (DLA) or both, before we assigning an employment status, and a location in the earnings distribution
(we impose that all those who are disabled are unemployed). Finally we determine whether or not the individual is
a renter and the household's council tax band, before incrementing individuals' ages and repeating the process. The
order imposed here represents assumptions about the way in which outcomes are determined. For example, since
child arrival and departure are determined before partnering and separation, the number of children an individual
has this period can a�ect his probability of being in a couple this period, but not vice-versa. (The number of
children last period can a�ect the probability of being in a couple this period).
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Figure 1: Microsimulation approach
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4.2 Microsimulation assumptions

The microsimulation approach requires us to specify a set of parametric models for the nature of transitions over
time. The speci�cation of these models (and the order in which variables are modelled) need to be reasonable. In
addition, the microsimulation approach does not avoid the problems of cohort di�erences that a�ect the splicing
approach (although by scaling our transition probabilities as we discuss below, we can mitigate them) and so further
assumptions are needed. In particular, if we are to estimate next period's transition probabilities for characteristics
Y on the basis of current information only, using data from cohorts other than the baby-boom cohort we require
that

Ya ⊥⊥ Ya−2, Ya−3, . . . , C | Ya−1

which is equivalent to the cohort independence assumption (2) made in the splicing approach

Ya ⊥⊥ C | Ya−1

and the Markov assumption (3)
Ya ⊥⊥ Ya−2, Ya−3, . . . | Ya−1, C

We do not however require the backward matching assumptions that we made for the splicing approach as we only
model transitions going from younger to older ages. For more details, see Kim et al. (2014).3 In the microsimulation
approach, we have also found it relatively simple to relax the Markov assumption for some processes by including
additional lags of variables when modelling transition probabilities (particularly for earnings and employment as
we discuss below). Something similar could in principle be done to relax the Markov assumption in the splicing
approach, though at the cost of making it harder to �nd matches (and by reducing the pool of potential donors,
worsening the match quality for other variables we match on).

3In the microsimulation approach, the Markov assumption needs to hold for all ages, while in the splicing approach it only needs to
hold for ages from which we make forward matches (with the (4) required for ages when making backward matches).
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Table 1: Estimation equations
Outcome Method Subsamples Independent variables

Mortality Logit Cubic in age, dummy for receipt of disability bene�ts, couple status, education dummies and

earnings quintile

Child arrival LPM Run separately for women For childless women: quadratic in age, dummy for ever had kids, number of kids ever had

in couples and single For women in couples: as for childless but also banded number of kids (0,1,2, and 3 or more)

women in household, age of youngest child, age of youngest child interacted with age

Child departure LPM Run separately by age of child (16-19) Dummies for mothers and fathers education

Partnering Logit Run separately for 3 Quartic in age, dummy for employed last period, dummies for number of kids

education groups and sex in household (0,1,and 2 or more), dummies for couple status in previous three periods,

dummy for single status last period interacted with age

Separating Logit Run separately for Quartic in age, employed last period, partner employed last period, dummies for banded

own education and sex number of kids in household (0,1,and 2 or more), cubic in current relationship length,

age of youngest child, dummy for education same as partner

Health Logit For IB: quartic in age, 4 lags of employment status (interacted), 4 lags of IB status

(IB and DLA (interacted) earnings quartile last period

receipt) For DLA: quartic in age, 4 lags of employment status (interacted), 4 lags of DLA status

(interacted) earnings quartile last period and 2 lags of IB status

Renter Logit Run separately for current Age of head of household, education of head of household, earnings quintile last

(21 and over) owners and current renters period of head of household, banded number of kids (0,1,2 or 3 or more), couple status,

and for over and under 21s relationship length dummy for rented last period, 4 lags of ownership status

Rank in rent OL Run separately for Age of head of household, education of head of household, earnings quintile last

distribution owners, and renters period of head of household, banded number of kids (0,1,2 or 3 or more), couple status,

(21 and over) in each of 5 rent relationship length dummy for rented last period, 4 lags of ownership status

quintiles

Renter status MNL Age of head of household, Age of head of household squared,

and rank (under 21)

Council tax OL Run separately for each of cubic in age, banded number of children (0,1,2,3, 4 or more) renter status earnings quartile

band 8 possible prior bands of household head, employment status

Notes: LPM = Linear probability model, OL = Ordered Logit, MNL =multinomial logit
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Table 2: Estimation equations for employment and earnings
Outcome Method Subsamples Independent variables

Employment (22 Logit Run separately for males and females, Education dummies, quartic in age, age-education interactions, dummy for over state

and over) by employment in prior wave and by pension age, dummy for having kids, dummy for couple status, dummy for having kids

employment 2 waves ago under 5, kids under 5 interacted with cubic in age, 3 lags of full-time status, banded number

of kids (0,1,2 and 3 or more), couple status, couple-age interaction, lagged full-time

status, lagged earnings rank,dummies for earnings quartiles (and 5 lags), employment

status 3, 4,5 and 6 waves ago (and interactions), lagged disability status

Earnings quartile and MNL Run separately for each of 5 possible prior Education dummies, quartic in age, age-education interactions, dummy for over state pension

part-time/full-time states: in part-time work, in full-time age, dummy for has kids, couple status, dummy for kids under 5, 3 lags of full-time status,

status (22 and over) work and in 4 earnings quartiles current earnings rank (and 3 lags), 3 lags of earnings quartile dummies, 3 lags of employment

and separately for males and females status (interacted)

Employment and MNL Run separately for each of 6 prior possible Sex, education dummies, dummy for has kids and age

earnings states: unemployment, in part-time work,

(under 22) in full-time work and in 4 earnings

quartiles

Earnings rank OLS Run separately by prior state and sex cubics in 4 lagged (within bin) ranks interacted with cubic in age, education dummies,

within `bin' (20 and over) dummies for `bin' in previous 4 periods

Earnings rank OLS Run separately by prior state and sex cubics in lagged (within bin) ranks interacted with cubic in age, education dummies

within `bin' (under 20)

Notes: MNL =multinomial logit
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4.3 Scaling BHPS transition probabilities

In this section, we describe the scaling procedure we use to bring our pro�les of our simulated individuals closer to
the experiences of the baby-boom cohort.

Our aim is to replicate the experiences of the baby-boom cohort, in terms of employment rates, partnering and
separation rates and so on. The problem is that we do not have panel data that covers all the years of that cohort.
Instead, we have to make use of data from later cohorts when estimating transitions at younger ages in the BHPS
and earlier cohorts when estimating transitions at older ages. Di�erences across cohorts may mean that these
individuals do not provide a realistic representation of what happened to baby-boomers. For example individuals
from later cohorts may be less likely to partner, may have fewer children and may have them later. However we do
observe the evolution of these variables in a succession of cross-sections from the LCFS. This can be used to adjust
estimates of transition probabilities based on the BHPS such that the transitions are consistent with the aggregate
levels of the baby-boom cohort observed in the LCFS. This is something that is relatively easy to implement in the
microsimulation approach, but is much harder to do in the splicing approach.

We start by noting that by the law of total probability gives us[
πt00 πt10
πt01 πt11

]
×
[
πt0
πt1

]
=

[
πt+1
0

πt+1
1

]
where πti is the probability of being in state in i in period t (e.g being employed), and πtij denotes the probability
of moving from state i in period t to state j in period t+ 1. πti can be observed in the LCFS data, but the elements
of the transition matrix (what we are interested in) are unknown. Since there are more unknowns than equations,
the system does not have a unique solution. In order to choose from possible solutions, we choose the solution that
is closest to the transition matrix estimated from the BHPS. We do this by minimising the norm of log di�erences
between candidate transition matrices and transition matrices estimated from the BHPS. This gives us the smallest
multiplicative factor that we would need to apply to our transition probabilities to reach the observed probabilities
of being employed and so on in the LCFS data.4 The resulting transition probabilities are used to produce the
correct proportions for couples, renters, and employment.5

So far, we have been describing the scaling procedure as if it is applied once at the aggregate level. We can,
however, scale separately for di�erent population cells. For instance, we can scale transition matrices to match
employment rates separately for those with children and those without. This allows us to capture di�erences in the
likelihood of parents being employed in our cohort of interest relative to the cohorts observed in the BHPS. Table
3 sets out the cells within which we match. Adopting this approach means that the scaling factors applied to each
of the variables we are adjusting will vary by cell, and year.

Table 3: Cells within which probabilities are matched to the LCFS
State Cells

Couple Age, year, sex, has children
Renter Age, year
Employed Age, year, sex, has children

We scale the mortality rate using a simpler method. For this we take data from the O�ce for National Statistics
Life Tables which provide average mortality rates for men and women at di�erent ages for di�erent birth years. We
then use the di�erence between these and average mortality rates for individuals in the BHPS to scale mortality
rates as predicted by a logit regression on income, disability bene�t receipt, education and couple status.

4.4 Partnering

In the simulation, the aim in the partnering module is to partner individuals within the simulated sample (i.e. if
one individual has a partner then his partner will also be in the sample). Thus all matches are assumed to take
place within the same (nine year) birth cohort. This is in contrast to the splicing approach where partnering within
the sample was not feasible. We allow for assortative matching in the choice of partners on the basis of education
level, such that university-educated individuals are more likely to match with other university-educated individuals
than those with GCSEs or less are. In order to implement this, we match potential partners based on an index that
depends on education level and a random shock:

4Probabilities are smoothed over time within cohort. Although this might limit the role of business cycles to contribute to changes
in year to year employment for instance, it also prevents sampling variation spuriously adding volatility to our processes.

5It was not found necessary to scale child arrival rates.
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I = ed2 + βed3 + u

where the values of the unknown parameters β and σ2 are chosen such that the distance between the simulated
three-by-three matrix of education group against partner education group is as close to the empirical one as possible.

Which potential couples are realised, and which actual couples are dissolved, depends on partner arrival and
departure probabilities estimated from our panel data.6 New couples and newly single individuals do not return to
the partnering market until the following period. These probabilities are then scaled to match the marriage rates
observed in repeated cross-sections of the baby-boom cohort we are interested in (see section 4.3). Each couple
requires a male and a female, and so a mismatch in the numbers of each can lead to too few matches being formed
relative to what what our estimated probabilities would imply. To avoid this happening, probabilities of partnering
are scaled again to achieve the expected number of matches. Matches can only occur between individuals who are
both aged 16 or older.

All matches are assumed to take place within the same cohort, however we also wish to allow for the fact that
males in couples in the 1945-54 cohort seen in the LCFS are on average just over 2 years older older than females.
(This is important because it has a knock-on e�ect on the ages at which children are born). To achieve this, our
simulated males are born in the years 1945-52 while females are born between 1947-1954. This means in each
period that the marriage market will be composed of females that are on average 2 years younger than their male
counterparts.

4.5 Employment and earnings

A standard regression model of earnings can accurately capture changes in means and variances of earnings dynamics
over time. However, as pointed out in Bowlus and Robin (2012), they su�er from the drawback of typically assuming
that increases and decreases in earnings are equally likely regardless of where individuals are located in the earnings
distribution. As a result, they will typically not capture key features of earnings mobility well (particularly mobility
for the tails of the earnings distribution). Those in the top of the earnings distribution, for example, should be
more likely to see their earnings fall than those at the bottom.

An alternative is to model transition probabilities between di�erent segments of the distribution. We do this using
a procedure that develops on that used in Bowlus and Robin (2012). Bowlus and Robin model transitions between
segments of the residual distribution after a �xed-e�ects earnings regression. One concern with this approach is that
when applied to a short panel, an earnings regression may con�ate cohort and age e�ects on earnings levels (since
those seen at older ages will tend to be from earlier cohorts). An alternative approach is to model movements within
the earnings distribution of the cohort (i.e. earnings ranks). As with the splicing approach this would assume no
cohort or period di�erences in the nature of transitions, but the exercise in section 3.3 suggests that this assumption
may not be too unreasonable (and in any case we would need to make a similar assumption if modelling residual
transitions). Importantly, it would however allow for entirely arbitrary period and cohort e�ects in earnings levels.

To model movements in and out of the labour market, movements between part-time and full-time work, and
movements around positions in the earnings distribution, we proceed through the following three steps:

1. Determine employment status: We estimate transition matrices for employment status separately for males
and females and according to individuals' employment status over the previous two waves. The probabilities
making up this matrix are estimated through a set of logit models which include several lags of employment
status (and interactions thereof) to help us match the high persistence of employment status observed in
the data. They are also scaled so as to match the observed unemployment rates at di�erent ages for the
baby-boom cohort in the cross-sectional LCFS data (as discussed above).

2. Place the individual in an earnings `bin': Once an individual's employment status is determined, we then
place the individual in one of 5 possible states or `bins': in part-time work, or in full-time work and in one of
four di�erent earnings quartiles. Distinguishing between part- and full-time work is important for the receipt
of tax credits. We assume that part-time work corresponds to 20 hours per week and full-time work to 40
hours. To determine which bin an individual should be placed in we estimate multinomial logits from each of
the six possible prior states i (which include unemployment)

Pr(i, j|xht) =
exp(xhtκ(i, j))∑N

m=0 exp(xhtκ(i,m))

6The lower of the two male and female probabilities are used to calcualte the probability of separation for couples. This is to allow
us to better match the persistence of couples observed in the data.
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The set of covariates included in x includes a cubic in age, education, a dummy for whether individuals have
children or not, and a dummy for whether they have children under the age of 5, sex (as well as various
interactions of all of these), their current earnings rank (entering linearly) as well as lags of full-time and
employment status and lagged earnings quartiles.

3. Determine the individual's precise earnings rank: The results from these models can be used to estimate the
probability of moving between unemployment, part-time and full-time work and the di�erent income quartiles.
However, it does not place individuals precisely within these quartiles. One approach is to deal with this is
to match simulated individuals to real-world individuals who made the same transitions as they did and use
these individuals' new ranks to determine the simulated individual's new locations (the approach adopted by
Bowlus and Robin). We found that in our case we were better able to match the persistence in earnings ranks
by using a parametric approach. We predict ranks using the following regression

Φ−1(ri,t) =

4∑
τ

∑
j

δj0D
i
Qt−τ=j +

4∑
τ

∑
j

δj1D
i
Qt−τ=j × ri,t−1 +

4∑
τ

∑
j

δj1D
i
Qt−1=j × r

2
i,t−1... (5)

where ri,t the within-bin rank of individual i in period t, and Di
Qt−τ=j

is a dummy which equals one if the

individual was located in bin j in period t − τ . Φ−1(.) is the inverse of the CDF of the normal distribution.
Linearly predicting Φ−1(ri,t) (and then feeding this prediction through Φ(.)) ensures that the predicted within
bin rank always lies between 0 and 1. The polynomial of past ranks (up to a cubic) included in this regression
is also interacted with a cubic in age in order to help us match the di�ering persistence of earnings over the
life-cycle. In our simulations, we add a normally distributed noise term with the variance of residuals seen in
the data to a linear prediction made using (5) to match the variance of ranks observed in the data.

Younger individuals (who do not have all the lags needed to be included in the regression models mentioned so far)
have their status determined by a multinomial logit (across our �ve possible bins and unemployment) and a within
bin regression involving only one lag. Once we have individuals' ranks in the earnings distribution we can then
�ll actual values of earnings using cross-sectional data for the relevant cohort from the LCFS. As in the splicing
approach, this means we will automatically capture changes in inequality, means and variances and other moments
of the cohort of interest.

4.6 Rent

For rental payments and ownership status, we adopt a very similar procedure to that for earnings. We �rst use
the estimates of a logit to determine whether an individual is an owner or a renter. For those who are renters, we
then use the estimates of an ordered logit to predict their rent quintile; controlling for education of the household
head (assumed to be the male in any couple), a cubic in age for the household head, couple status, relationship
length, banded number of children and several lags of past renter status and past quintiles of the rent distribution.
Placement within rental quintiles is random (the variance of the rental distribution is not as great as that of earnings
meaning the exact placement within quintiles matters less). If the lagged variables di�er between two members of
a couple, they are taken from the household head. For younger individuals for whom we do not have a complete set
of lags (those under 21), we run a simpler multinomial logit to determine transitions across all the possible states.

4.7 Private pensions

For private pensions we combine information from two datasets. The �rst consists of estimates of the discounted
value of future private pension incomes for individuals in the BHPS survey from Disney et al. (2007). These
estimates give the present value of future incomes for individuals if had they retired in 2001 or earlier, as well as
projections for the future value of private pension wealth if individuals had continued in their present employment
status until state retirement age. They are calculated using information from the special module of questions on
private pensions included in the 2001 wave of the survey.7 The second is a set of predicted future private pension
incomes for individuals seen in 2008 of the English Longitudinal Study of Ageing (ELSA). These include projected
income streams conditional on individuals beginning to draw their private pensions in di�erent years from 2008
onwards. The authors are indebted to Rowena Crawford, Soumaya Keynes and Gemma Tetlow for producing these
projections and sharing them with us. Details of their methodology can be found in Crawford (2012) with an
example of their use in Banks et al. (2014).

The approach we follow allows us to match real-world private pension income pro�les to our simulated individuals
on the basis of their labour market histories and other characteristics. We implement it in the following steps (once
our simulations have completed)

7The data itself was generously deposited in the UK Data Archive.
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1. We �rst estimate a probability that a simulated individual will ever receive a private pension using an in-
dividuals' characteristics in 2001. We do this by estimating a logit model in the BHPS for that year. This
regresses a dummy for positive projected private pension wealth in 2001 on sex and education dummies (and
interactions of these), dummies for the number of the previous 5 years the individual was employed and
dummies for the individuals' decile of a 5 year moving average of previous earnings ranks.

2. We then predict the 2001 private pension `wealth' (de�ned in here as the discounted value of future private
pension incomes) for those simulated individuals who are to receive private pensions. This is done using the
results of a regression of pension wealth in 2001 on a cubic in age, education dummies (and interactions of
these) sex, years employed and a moving average of past earnings in the BHPS to which we add a normally
distributed noise term.

3. We then calculate the simulated individuals' ranks in this distribution within cells de�ned by age and year
and use these to match them to a future stream of private pension income at the same rank from the ELSA
data within cells de�ned by cohort, sex and couple status in 2008 (or earlier if they retire before this).

An individual's retirement age is de�ned as the maximum of the �nal age at which they stopped working and 55.
The ELSA data only predicts pension income for those who retire from 2008 onwards. For those who retire earlier
than this, we de�ate pension pro�les associated with their retirement age using average earnings growth between
2008 and the year of their retirement. Earnings growth is what would determine private pension income for prior
years from a de�ned bene�t �nal salary scheme. The matching procedure works well, with on average 100 potential
matches for each individual and an average distance between the ranks of donors and recipients of less than 1
percentage point.

5 Validation

5.1 Summary statistics for the splicing approach

Table 4 shows some summary statistics for the life-cycles we construct using the splicing approach. We fully
or partially construct just over 1,900 life-cycles, on average completing 88% of the years between 16 and 83 (or
death). However, only 514 (26%) complete fully from age 16 until an individual's veri�able death. This is because
matches for individuals cannot always be found in some circumstances (with particular di�culties at older ages
when attrition from the BHPS sample for reasons other than death may be greater). At each join point there are
an average of just over 35 potential matches, and on average our synthetic life-cycles are composed of 8.48 di�erent
individuals. The standard approach to dealing with data where there is non-random attrition or non-response is to
weight observations according to their sampling probabilities as calculated from more representative data (such as
population censuses or administrative sources). Unfortunately, this approach is not open to us as there is no source
from which we can obtain weights for complete life-cycles.

Table 4: Summary statistics (splicing approach)
Number of synthetic life-cycles 1,952
Number of individuals used in splicing 5,806
Average number of splices per life-cycle 8.48
Average number of possible matches at joins 35.4
Proportion of years 16-83 (or death) covered 88%
Completed until death 514

5.2 Quality of matches in the splicing approach

One test of the quality of our matches in the splicing approach is to compare the autocorrelations of spliced variables
at joint points (across two ages when a splice occurs) and at non-join points for variables which we do not insist
on a perfect match for. When matches are not perfect, there is likely to be a slight discontinuity in outcomes at
join points, which will give rise to a lower autocorrelation than that observed when no join is made. Tables 5-8
compare the two sets of autocorrelations for di�erent �ve-year age groups. Despite matching across many di�erent
dimensions, autocorrelations at match points are not too dissimilar from autocorrelations observed in the data.
Our matching procedure is less e�ective at capturing autocorrelations for the ranks of the rent distribution and for
ranks of the earnings distribution and hours for over 65 year olds (due to the fact that fewer earners are available
for matches in these years).
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Table 5: Autocorrelations in ranks for earnings
Age group Autocorrelations when N Autocorrelations when N

match occurs no match occurs

16-23 0.58 1,115 0.63 5,010
24-29 0.69 1,202 0.82 5,401
30-35 0.75 1,114 0.85 6,265
36-41 0.84 1,173 0.88 6,832
42-47 0.81 1,110 0.88 7,440
48-53 0.77 694 0.87 7,578
54-59 0.76 1,052 0.87 6,102
60-65 0.73 787 0.85 3,140
66-71 0.36 119 0.68 1,299

Table 6: Autocorrelations in ranks for partner's earnings
Age group Autocorrelations when N Autocorrelations when N

match occurs no match occurs

16-23 0.45 410 0.66 1,228
24-29 0.64 998 0.78 4,046
30-35 0.76 913 0.86 5,261
36-41 0.67 1,015 0.83 5,829
42-47 0.78 924 0.83 6,041
48-53 0.75 560 0.80 6,312
54-59 0.67 832 0.80 4,862
60-65 0.50 526 0.73 2,493
66-71 0.34 134 0.68 969

Table 7: Autocorrelations in ranks for hours worked
Age group Autocorrelations when N Autocorrelations when N

match occurs no match occurs

16-23 0.39 1,310 0.47 6,115
24-29 0.37 1,321 0.65 5,752
30-35 0.61 1,188 0.74 6,618
36-41 0.65 1,224 0.75 7,183
42-47 0.61 1,152 0.74 7,752
48-53 0.60 730 0.72 7,924
54-59 0.68 1,085 0.76 6,363
60-65 0.58 811 0.76 3,351
66-71 -0.02 151 0.63 1,418

Table 8: Autocorrelations in ranks for rent
Age group Autocorrelations when N Autocorrelations when N

match occurs no match occurs

16-23 0.54 529 0.70 2,324
24-29 0.69 446 0.82 1,893
30-35 0.40 295 0.78 1,418
36-41 0.37 226 0.78 1,334
42-47 0.61 259 0.77 1,477
48-53 0.70 195 0.79 1,476
54-59 0.50 180 0.77 1,209
60-65 0.50 142 0.78 980
66-71 0.63 103 0.76 558

There is no analog in the microsimulation approach for the above statistics. There are no join points over which
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di�culties can arise and of course all simulated life-cycles cover the whole period from childhood until death.
The following two subsections discuss measures which can be used to compare the performance of the two

methods directly.

5.3 Life-cycle pro�les

Figures 2-7 show how age pro�les for males and females from our simulated and spliced individuals compare to
those observed for the baby-boom cohort in the LCFS for couple status, parenthood, single parenthood, number of
children, renters and employment.

The �gures show that the microsimultion approach performs well. Averages from our simulations need not
automatically match those in the LCFS even with our scaling procedure. For instance, even if we accurately
reproduced probabilities of being in a couple for those who have children and those who don't, the proportion of
couples would not match those in the LCFS if we did not also have the correct probabilities of being a parent at
each age. Nonetheless, the match between the simulated individuals and cross-sectional averages in the data is
excellent for all variables and both sexes. A di�erence in employment rates between the simulations and the data
for younger ages is due to the fact that we impose that all those who have not completed full-time education are
unemployed. A similar di�erence in the proportion of parents who are single in �gure 5 is due to the fact that, for
years when cohorts are unobserved, we set the marriage rate for under 18s to be zero.

Our splicing procedure also does a good job of matching the experiences of the baby-boom cohort for couple
status (�gure 3), parenthood (�gure 4) and number of children (�gure 6). For other variables, the pro�les of our
spliced individuals are however a little di�erent those from the baby-boom cohort, re�ecting cohort di�erences
between the baby-boomers and individuals we observe in the BHPS. For instance, our spliced individuals are much
more likely to be single parents at younger ages (�gure 5) re�ecting the increase in lone parenthood over recent
decades. Female employment rates also tend to be higher for our spliced individuals at younger ages and lower
at older ages (�gure 2). Male employment rates are however captured quite well (except at younger ages when
our spliced individuals are more likely to still be in education than the baby boomers). Figure 7 perhaps best
illustrates some of the problems that can be created by cohort di�erences between individuals in the BHPS and the
baby-boomers. It shows the proportion of individuals renting at di�erent ages. It is apparent that individuals in
the baby-boom cohort were far more likely to rent than our spliced individuals at younger ages. This likely re�ects
changes in the pattern of tenure in the UK, in particular the so-called �right-to-buy� reforms introduced in the 1980
Housing Act which gave those who had been renting social housing for at least 3 years the right to purchase their
homes at a substantial discount. The e�ect of the policy was to dramatically reduce the number of social renters
and increase home ownership from 59% in 1983 to 69% in 2003 (Chandler et al., 2014). This explains why those
from later cohorts who comprise the donors to our spliced individuals at younger ages tend to be much more likely
to own than the baby-boomers were at the same ages. The di�culty of capturing such cohort di�erences in the
splicing approach tends in our view to favour microsimulation.

Figure 2: Employment: two approaches vs. LCFS, 1945-54 cohort
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Figure 3: Proportion in couples: two approaches vs. LCFS, 1945-54 cohort
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Figure 4: Proportion parents: two approaches vs. LCFS, 1945-54 cohort
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Figure 5: Proportion of parents that are single parents: two approaches vs. LCFS, 1945-54 cohort
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Figure 6: Number of children: two approaches vs. LCFS, 1945-54 cohort
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Figure 7: Proportion renters: two approaches vs. LCFS, 1945-54 cohort
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5.4 Transitions

It is important that our spliced and simulated individuals do a good job at replicating the average lifetime pro�les
of the baby-boom cohort for our characteristics of interest. But since we intend to use our spliced individuals for
distributional analysis of lifetime outcomes it is also important that the persistence of these variables match those
of the data. Unfortunately we are not able to compare autocorrelations of our spliced and simulated individuals
directly with individuals from the baby-boom cohort throughout the whole life-cycle, because we do not have access
to a panel dataset covering the whole of the adult life-cycle for the baby boomers. Instead, we plot autocorrelations
for our spliced individuals against those individuals seen in the BHPS. These are intended to show whether the
transitions we obtain are plausible but cannot be used to see whether they are representative of the baby-boomers.
Figures 8-11 plot autocorrelations for 1 year ahead, 5 years ahead and 10 years ahead for males and females from
ages 16-65 for employment status, earnings ranks, couple status, and parent status.8

Our splicing procedure might not match the persistence of these variables in the BHPS if there are frequent joins
or if matches only give appropriate continuations of earnings, couple status and so on for a few periods ahead. It
is clear however that our spliced individuals match the transitions and persistence in the data well across all ages.

The processes experienced by our microsimulated individuals tend to have similiar persistence to those observed
in the BHPS, although the di�erence is perhaps slightly greater than for the splicing approach. For example �gure
9 shows that for our simulated individuals, ranks in the earnings distribution are less persistent at middle ages
for longer horizons than earnings ranks in the BHPS, and a little more persistent at older ages. The di�erence is

8The persistence of renter status is likely to be very di�erent in the BHPS from the baby-boom cohort as a result of the much
steeper declines experienced by the baby-boomers relative to those in later years illustrated in �gure 7. As a result we do not show the
autocorrelations for this variable.
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a little larger for males than for females. Employment, couple, and parent status have similar persistence in our
simulations to the data � even over 10 a year horizon. Overall the �t appears to be about as good as under the
splicing approach.

Figure 8: Autocorrelations for employment status: two approaches vs. BHPS, ages 16-65
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Figure 9: Autocorrelations in earnings ranks: two approaches vs. BHPS, ages 16-65
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Figure 10: Autocorrelations for couple status: two approaches vs. BHPS, ages 16-65
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Figure 11: Autocorrelations for parent status: two approaches vs. BHPS, ages 16-65
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As an additional check on the performance of our simulations, we can compare our simulated and spliced
individuals to those from the same cohort in the waves they are observed in the BHPS. Table 9 shows the proportions
always employed, always unemployed, always in a couple and always single over 10 years from 1995 to 2004 (inclusive)
in the BHPS, under the splicing approach, and in our simulations. The sample size in the splicing column di�ers
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from the number of synthetic life-cycles shown in table 4 as some individuals die in the period 1995-2004 (and so
are not observed over the whole 10 years).

Our microsimulations come very close to matching the proportions always employed and always in a couple
although they appear to slightly underpredict the number of people always unemployed and always single. The
splicing approach appears to a do a little better but the di�erences are not great.

Table 9: Persistence of employment and couple status for 1945-54 cohort in BHPS, spliced life-cycles, and simulations
(1995-2004)

BHPS Splicing Microsimulation

Always employed 55.9% 55.8% 56.3%
Always unemployed 12.4% 10.2% 11.4%
Always couple 73.7% 73.7% 73.6%
Always single 15.6% 15.1% 12.9%
N 676 1807 4666
Notes: BHPS probabilities weighted for probability of attrition.

5.5 Validation summary

We judge our two approaches by their ability to replicate the experiences of the baby-boom cohort.
The splicing approach does well at recreating the transitions across the earnings distribution and between

couple and tenure status that we observe in the BHPS, but is less good at replicating the average lifetime pro�les
of characteristics that di�er greatly between cohorts. It is also not always feasible to �nd appropriate matches,
meaning that only around a third of our spliced individuals produce complete life-cycles that run from age 16 until
death. To the extent that the pro�les which complete are non-random, this likely introduces a selection issue.

The microsimulation approach does not su�er from this particular drawback. Another key advantage over the
splicing approach is that we are able to adjust transition probabilities estimated using panel data so as to match the
age pro�les we observe in a long-running cross-sectional survey. The match achieved in this respect is near perfect.
Comparing the autocorrelations of variables over time suggests that our microsimulated processes also achieve a
similar persistence to that observed in the BHPS. Thus we favour microsimulation.

6 Summary

In this paper, we have outlined the practical steps we have taken to implement two di�erent approaches to con-
structing full-adult life-cycles. Both approaches have strengths and weaknesses. The imputation literature provides
helpful analogies when it comes to comparing the two methods. In this �eld, researchers often have a choice of im-
puting missing data using real-world data from similar individuals (a �hot-deck� imputation) or predicting it using
a parametric approach estimated on the rest of the sample. The splicing approach has obvious similarities with the
former method, while the microsimulation approach is closer to the latter. When is one approach to be preferred
over the other? Andridge and Little (2010) compare these two approaches in a review of hot deck procedures,
concluding from the available literature that �the relative performance of the methods depends on the validity of
the parametric model and the sample size.� The hot deck approach is less vulnerable to model misspeci�cation than
the predicted outcome approach, but when the sample size is small, and the pool of potential matches diminishes,
good matches can be di�cult to �nd. Small sample sizes (or, for the same reasons, there being a large number of
outcomes that need to be matched on) would therefore seem to favour the microsimulation approach. In a similar
way, the splicing approach avoids the parametric assumptions of the microsimulation approach but matches may
become less appropriate in smaller datasets where the pool of potential donors is smaller.

On balance we believe that for our application the microsimulation approach is to be preferred. While it is
potentially sensitive to model misspeci�cation, the assumptions it makes on transitions are slightly weaker than
those of the splicing approach. In addition, it has the advantage that we can apply corrections to ensure that
average outcomes are more similar to those experienced by the baby-boom cohort. Finally, the microsimulation
approach is more amenable to simulating counterfactual outcomes (for instance, di�erent future outcomes for the
same individual).
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