Using manipulatives in the foundations of arithmetic: Making Numbers

The images used in this presentation are copyright and should not be reproduced without express permission.

Rose Griffiths & Jenni Back University of Leicester Sue Gifford University of Roehampton

What are manipulatives?

Objects that can be handled and moved and are used to develop learners' understanding of a mathematical situation

- everyday, 'home-made' or commercial
- not virtual manipulatives

The project

Focus on children aged 3 – 9 years (but expecting results to be useful for 3 to 12).

- How were teachers using manipulatives in the teaching of arithmetic?
- What guidance would be useful to improve this?

What were teachers doing?

Survey in 3 geographical areas in England (questionnaire with convenience sample)

- 35 primary schools; more than 450 teachers
- 'What manipulatives have the <u>children</u> used in the last 4 weeks for work on number?'

Questionnaire results

	Low attainers	Middle attainers	High attainers	Number of classes
3-5 years	98	98	95	87
5-7 years	98	95	87	152
7-9 years	93	80	52	114
9-11 years	92	70	45	131
TOTAL	94	85	68	484

Results are given as percentages Counters and interlocking cubes most common

Next steps...

Teachers said they lacked knowledge of

how to use manipulatives

- the value of manipulatives for all learners

We used the questionnaires, interviews with focus groups, and workshops with an international group to identify priorities.

Focus on number sense not just standard methods

- number symbols, vocabulary and meaning
- systematic counting, ordinality and cardinality
- comparisons between different magnitudes
- different representations of number
- simple arithmetical operations
- number patterns

Back, Andrews & Sayers 2013

Number sense

Counting Comparison Composition

Task design

- Activities developed on the basis of research evidence, our combined teaching experience and observations of children
- Iterative trials with groups of children and teachers

Counting

Counting large numbers

Comparison: Who has the most?

Comparison: how many in a handful?

- Estimate
- Count and label
- Put in order

Composition: Eight ducks in the lake

Ways of making 87

Power of manipulatives

- Give children and teachers tools to explore and explain mathematics – supporting understanding
- Encourage visualisation supporting shift to abstract reasoning and the use of symbols
- Make children's thinking and understanding more transparent
- Increase children's engagement and enjoyment

Issues from the Literature

- How does the manipulative represent the mathematics?
- Are some representations too opaque or complex for some children?
- How does children's understanding move from concrete to abstract relationships?

CPA (Concrete, Pictorial, Abstract)

- eg cubes number line equation
- Bruner: not a linear progression
 - enactive: muscle memory
 - iconic: mental imagery
 - symbolic: language & signs
- Mason: different worlds of experience
 - manipulating, specialising, exemplifying
 - getting a sense of, diagramatising to capture relationships
 - articulating generalisations, formal expressions, reification

Do, balk.

...and record How many packs of 4 yoghurts are needed for 135 children?

it's the 4x tables 4,8.12 $30 \times 4 = 120$ |20 + |33| + |33| = |28|128 + [3] = 132extra 3 left 33 packs

What else do you know?

7 Bees have 6 legs all to gever=42

so 14 Bees have 42+42 Legs = 84 legs.

Pedagogical implications

- Check children's prior knowledge
- Choose appropriate manipulatives for the maths
- Give opportunities for familiarisation
- Provide varied and open-ended challenges
- Develop maths discussion for reasoning and generalizing
- Imagine the materials visualisation
- Record informally and symbolically
- Maintain an inclusive learning community

And so...

Children do not learn from manipulatives. They learn from the activities which they do with manipulatives.

(Sfard interviewing Skemp 1990)

Outputs

Nuffield website:

Main report Literature review Examples for teachers

Oxford University Press: *Making Numbers* Stop frame animations Talking heads videos with demonstrations

Animations

- Five friends counting
- Ten fishes in the sea
- Half a hundred hedgehogs
- Ten tens and a dragon

Available free of charge on Oxford Owl: (go to Professional Development, then PD books) <u>https://www.oxfordowl.co.uk/for-school/default</u>

Further questions

- Has our guidance made a difference? Which aspects influenced teachers' activity in the classroom? Which aspects most improved children's learning?
- What characterises teachers' use of manipulatives which enhances understanding for all children?
- What other areas of mathematics teaching need better use of practical activity?
- What else could benefit from research-informed task design?

References

Back, J., Sayers, J. Andrews, P. (2013) The development of foundational number sense in England and Hungary: a case study. Congress of European Research in Mathematics Education 8
Bruner, J. (1966) Towards a theory of instruction. Cambridge, Massachusetts: Harvard University Press

Goldin, G.A. (2002) 'Representation in mathematical learning' in English, L.E. (ed) *Handbook of international research in mathematics education* Hillsdown, NJ: Lawrence Erlbaum Associates 206-216

Goswami, U. & Bryant, P. (2007) *Children's cognitive development and learning* (Primary Review research survey 2/1a) Cambridge: University of Cambridge Faculty of Education

Hiebert, J. & Carpenter, T. P. (1992) Learning and Teaching with Understanding. In Grouws, D. A. (ed.) *Handbook of Research on Mathematics Teaching and Learning*. New York: National Council of Teachers of Mathematics / Macmillan, 65-97

Mason, J. & Johnston-Wilder S. (2006) *Designing and using mathematical tasks* St Albans: Tarquin / Open University

Sfard, A. (1990) An Interview with Richard Skemp. Mathematics Teaching. 133, 49 – 51

Vergnaud, G. (1998) A comprehensive theory of representation *Journal of Mathematical Behavior* 17(2) 167-181

Jenni Back <u>jenni@backfamily.me.uk</u> Sue Gifford <u>S.Gifford@roehampton.ac.uk</u> Rose Griffiths <u>rnag1@leicester.ac.uk</u>

All photos are the copyright of Oxford University Press or Jonny Back so should not be used without permission.