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3 Key understandings in mathematics learning

Headlines
• Fractions are used in primary school to represent

quantities that cannot be represented by a single
whole number. As with whole numbers, children
need to make connections between quantities and
their representations in fractions in order to be
able to use fractions meaningfully.

• There are two types of situation in which fractions
are used in primary school. The first involves
measurement: if you want to represent a quantity
by means of a number and the quantity is smaller
than the unit of measurement, you need a fraction
– for example, a half cup or a quarter inch. The
second involves division: if the dividend is smaller
than the divisor, the result of the division is
represented by a fraction. For example, when you
share 3 cakes among 4 children, each child receives
¾ of a cake. 

• Children use different schemes of action in these
two different situations. In division situations, they
use correspondences between the units in the
numerator and the units in the denominator. In
measurement situations, they use partitioning.

• Children are more successful in understanding
equivalence of fractions and in ordering fractions 
by magnitude in situations that involve division than
in measurement situations.

• It is crucial for children’s understanding of fractions
that they learn about fractions in both types of
situation: most do not spontaneously transfer what
they learned in one situation to the other. 

• When a fraction is used to represent a quantity,
children need to learn to think about how the

numerator and the denominator relate to the 
value represented by the fraction. They must think
about direct and inverse relations: the larger the
numerator, the larger the quantity but the larger
the denominator, the smaller the quantity.

• Like whole numbers, fractions can be used to
represent quantities and relations between
quantities, but in primary school they are rarely
used to represent relations. Older students 
often find it difficult to use fractions to 
represent relations.

There is little doubt that students find fractions a
challenge in mathematics. Teachers often say that it
is difficult to teach fractions and some think that it
would be better for everyone if children were not
taught about fractions in primary school. In order
to understand fractions as numbers, students must
be able to know whether two fractions are
equivalent or not, and if they are not, which one is
the bigger number. This is similar to understanding
that 8 sweets is the same number as 8 marbles and
that 8 is more than 7 and less than 9, for example.
These are undoubtedly key understandings about
whole numbers and fractions. But even after the
age of 11 many students have difficulty in knowing
whether two fractions are equivalent and do not
know how to order some fractions. For example, in
a study carried out in London, students were asked
to paint 2/3 of figures divided in 3, 6 and 9 equal
parts. The majority solved the task correctly when
the figure was divided into 3 parts but 40% of the
11- to 12-year-old students could not solve it
when the figure was divided into 6 or 9 parts,
which meant painting an equivalent fraction 
(4/6 and 6/9, respectively).

Summary of paper 3: 
Understanding 
rational numbers and
intensive quantities 
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Fractions are used in primary school to represent
quantities that cannot be represented by a single
whole number. If the teaching of fractions were to be
omitted from the primary school curriculum, children
would not have the support of school learning to
represent these quantities. We do not believe that it
would be best to just forget about teaching fractions
in primary school because research shows that
children have some informal knowledge that could be
used as a basis for learning fractions. Thus the question
is not whether to teach fractions in primary school
but what do we know about their informal knowledge
and how can teachers draw on this knowledge.

There are two types of situation in which fractions
are used in primary school: measurement and
division situations.

When we measure anything, we use a unit of
measurement. Often the object we are measuring
cannot be described only with whole units, and we
need fractions to represent a part of the unit. In the
kitchen we might need to use a ½ cup of milk and
when setting the margins for a page in a document
we often need to be precise and define the margin
as, for example, as 3.17 cm. These two examples
show that, when it comes to measurement, we 
use two types of notation, ordinary and decimal
notation. But regardless of the notation used, we
could not accurately describe the quantities in these
situations without using fractions. When we speak 
of ¾ of a chocolate bar, we are using fractions in a
measurement situation: we have less than one unit,
so we need to describe the quantity using a fraction.

In division situations, we need a fraction to represent a
quantity when the dividend is smaller than the divisor.
For example, if 3 cakes are shared among 4 children, it
is not possible for each one to have a whole cake, but
it is still possible to carry out the division and to
represent the amount that each child receives using 
a number, ¾. It would be possible to use decimal
notation in division situations too, but this is rarely the
case. The reason for preferring ordinary fractions in
these situations is that there are two quantities in
division situations: in the example, the number of 
cakes and the number of children. An ordinary 
fraction represents each of these quantities by a whole
number: the dividend is represented by the numerator,
the divisor by the denominator, and the operation of
division by the dash between the two numbers.

Although these situations are so similar for adults, we
could conclude that it is not necessary to distinguish

between them, however, research shows that
children think about the situations differently.
Children use different schemes of action in each 
of these situations. 

In measurement situations, they use partitioning. If 
a child is asked to show ¾ of a chocolate, the child
will try to cut the chocolate in 4 equal parts and
mark 3 parts. If a child is asked to compare ¾ and
6/8, for example, the child will partition one unit in 
4 parts, the other in 8 parts, and try to compare the
two. This is a difficult task because the partitioning
scheme develops over a long period of time and
children have to solve many problems to succeed 
in obtaining equal parts when partitioning. Although
partitioning and comparing the parts is not the only
way to solve this problem, this is the most likely
solution path tried out by children, because they
draw on their relevant scheme of action.

In division situations, children use a different scheme
of action, correspondences. A problem analogous to
the one above in a division situation is: there are 4
children sharing 3 cakes and 8 children sharing 6
identical cakes; if the two groups share the cakes
fairly, will the children in one group get the same
amount to eat as the children in the other group?
Primary school pupils often approach this problem
by establishing correspondences between cakes and
children. In this way they soon realise that in both
groups 3 cakes will be shared by 4 children; the
difference is that in the second group there are two
lots of 3 cakes and two lots of 4 children, but this
difference does not affect how much each child gets.

From the beginning of primary school, many children
have some informal knowledge about division that
could be used to understand fractional quantities.
Between the ages of five and seven years, they are
very bad at partitioning wholes into equal parts 
but can be relatively good at thinking about the
consequences of sharing. For example, in one study
in London 31% of the five-year-olds, 50% of the six-
year-olds and 81% of the seven-year-olds understood
the inverse relation between the divisor and the
shares resulting from the division: they knew that the
more recipients are sharing a cake, the less each one
will receive. They were even able to articulate this
inverse relation when asked to justify their answers.
It is unlikely that they had at this time made a
connection between their understanding of
quantities and fractional representation; actually, it is
unlikely that they would know how to represent the
quantities using fractions. 
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The lack of connection between students’
understanding of quantities in division situations and
their knowledge about the magnitude of fractions is
very clearly documented in research. Students who
have no doubt that recipients of a cake shared
between 3 people will fare better than those of a
cake shared between 5 people may, nevertheless, say
that 1/5 is a bigger fraction than 1/3 because 5 is a
bigger number than 3. Although they understand the
inverse relation in the magnitude of quantities in a
division situation, they do not seem to connect this
with the magnitude of fractions. The link between
their understanding of fractional quantities and
fractions as numbers has to be developed through
teaching in school.

There is only one well-controlled experiment which
compared directly young children’s understanding of
quantities in measurement and division situations. In
this study, carried out in Portugal, the children were
six- to seven-years-old. The context of the problems
in both situations was very similar : it was about
children eating cakes, chocolates or pizzas. In the
measurement problems, there was no sharing, 
only partitioning. For example, in one of the
measurement problems, one girl had a chocolate bar
which was too large to eat in one go. So she cut her
chocolate in 3 equal pieces and ate 1. A boy had an
identical bar of chocolate and decided to cut his into
6 equal parts, and eat 2. The children were asked
whether the boy and the girl ate the same amount
of chocolate. The analogous division problem was
about 3 girls sharing one chocolate bar and 6 boys
sharing 2 identical chocolate bars. The rate of correct
responses in the partitioning situation was 10% for
both six- and seven-year-olds and 35% and 49%,
respectively, for six- and seven-year-olds in the
division situation. 

These results are relevant to the assessment of
variations in mathematics curricula. Different
countries use different approaches in the initial
teaching of fraction, some starting from division 
and others from measurement situations. There is 
no direct evidence from classroom studies to 
show whether one starting point results in higher
achievement in fractions than the other. The scarce
evidence from controlled studies supports the idea
that division situations provide children with more
insight into the equivalence and order of quantities
represented by fractions and that they can learn how
to connect these insights about quantities with
fractional representation. The studies also indicate
that there is little transfer across situations: children

who succeed in comparing fractional quantities and
fractions after instruction in division situations do 
no better in a post-test when the questions are
about measurement situations than other children 
in a control group who received no teaching. The
converse is also true: children taught in measurement
situations do no better than a control group in
division situations.

A major debate in mathematics teaching is 
the relative weight to be given to conceptual
understanding and procedural knowledge in teaching.
The difference between conceptual understanding
and procedural knowledge in the teaching of
fractions has been explored in many studies. These
studies show that students can learn procedures
without understanding their conceptual significance.
Studies with adults show that knowledge of
procedures can remain isolated from understanding
for a long time: some adults who are able to
implement the procedure they learned for dividing
one fraction by another admit that they have no idea
why the numerator and the denominator exchange
places in this procedure. Learners who are able to
co-ordinate their knowledge of procedures with
their conceptual understanding are better at solving
problems that involve fractions than other learners
who seem to be good at procedures but show less
understanding than expected from their knowledge
of procedures. These results reinforce the idea that it
is very important to try to make links between
children’s knowledge of fractions and their
understanding of fractional quantities.

Finally, there is little, if any, use of fractions to
represent relations between quantities in primary
school. Secondary school students do not easily
quantify relations that involve fractions. Perhaps 
this difficulty could be attenuated if some teaching
about fractions in primary school involved
quantifying relations that cannot be described 
by a single whole number. 
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Recommendations

Research about mathematical
learning

Children’s knowledge of fractional
quantities starts to develop before they
are taught about fractions in school.

There are two types of situation relevant
to primary school teaching in which
quantities cannot be represented by a
single whole number: measurement and
division. 

Children do not easily transfer their
understanding of fractions from division to
measurement situations and vice-versa. 

Many students do no make links between
their conceptual understanding of fractions
and the procedures that they are taught
to compare and operate on fractions in
school.

Fractions are taught in primary school only
as representations of quantities.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of children’s insights
regarding quantities that are represented by fractions and
make connections between their understanding of these
quantities and fractions.

Teaching The primary school curriculum should include the
study of both types of situation in the teaching of fractions.
Teachers should be aware of the different types of reasoning
used by children in each of these situations.
Research Evidence from experimental studies with larger
samples and long-term interventions in the classroom are
needed to establish whether division situations are indeed 
a better starting point for teaching fractions.

Teaching Teachers should consider how to establish links
between children’s understanding of fractions in division and
measurement situations.
Research Investigations on how links between situations can
be built are needed to support curriculum development and
classroom teaching.

Teaching Greater attention may be required in the teaching
of fractions to creating links between procedures and
conceptual understanding.
Research There is a need for longitudinal studies designed 
to clarify whether this separation between procedural and
conceptual knowledge does have important consequences for
further mathematics learning.

Teaching Consideration should be given to the inclusion of
situations in which fractions are used to represent relations.
Research Given the importance of understanding and
representing relations numerically, studies that investigate
under what circumstances primary school students can use
fractions to represent relations between quantities are
urgently needed.



Introduction
Rational numbers, like natural numbers, can be used
to represent quantities. There are some quantities
that cannot be represented by a natural number, and
to represent these quantities, we must use rational
numbers. We cannot use natural numbers when the
quantity that we want to represent numerically:
• is smaller than the unit used for counting,

irrespective of whether this is a natural unit 
(e.g. we have less than one banana) or a
conventional unit (e.g. a fish weighs less than a kilo)

• involves a ratio between two other quantities (e.g.
the concentration of orange juice in a jar can be
described by the ratio of orange concentrate to
water ; the probability of an event can be described
by the ratio between the number of favourable
cases to the total number of cases).1

The term ‘fraction’ is often identified with situations
where we want to represent a quantity smaller than
the unit. The expression ‘rational number’ usually
covers both sorts of examples. In this paper, we will
use the expressions ‘fraction’ and ‘rational number’
interchangeably. Fractions are considered a basic
concept in mathematics learning and one of the
foundations required for learning algebra (Fennell,
Faulkner, Ma, Schmid, Stotsky, Wu et al. (2008); so
they are important for representing quantities and
also for later success in mathematics in school.

In the domain of whole numbers, it has been known
for some time (e.g. Carpenter and Moser, 1982;
Ginsburg, 1977; Riley, Greeno and Heller, 1983) that
it is important for the development of children’s
mathematics knowledge that they establish
connections between the numbers and the
quantities that they represent. There is little
comparable research about rational numbers 

(but see Mack, 1990), but it is reasonable to expect
that the same hypothesis holds: children should learn
to connect quantities that must be represented by
rational numbers with their mathematical notation.
However, the difficulty of learning to use rational
numbers is much greater than the difficulty of
learning to use natural numbers. This paper discusses
why this is so and presents research that shows
when and how children have significant insights into
the complexities of rational numbers. 

In the first section of this paper, we discuss what
children must learn about rational numbers and why
these might be difficult for children once they have
learned about natural numbers. In the second section
we describe research which shows that these are
indeed difficult ideas for students even at the end of
primary school. The third section compares children’s
reasoning across two types of situations that have
been used in different countries to teach children
about fractions. The fourth section presents a brief
overview of research about children’s understanding
of intensive quantities. The fifth section considers
whether children develop sound understanding of
equivalence and order of magnitude of fractions
when they learn procedures to compare fractions.
The final section summarises our conclusions and
discusses their educational implications.

What children must know in
order to understand rational
numbers

Piaget’s (1952) studies of children’s understanding 
of number analysed the crucial question of whether

7 Key understandings in mathematics learning
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young children can understand the ideas of
equivalence (cardinal number) and order (ordinal
number) in the domain of natural numbers. He also
pointed out that learning to count may help the
children to understand both equivalence and order.
All sets that are represented by the same number
are equivalent; those that are represented by a
different number are not equivalent. Their order of
magnitude is the same as the order of the number
labels we use in counting, because each number label
represents one more than the previous one in the
counting string.

The understanding of equivalence in the domain 
of fractions is also crucial, but it is not as simple
because language does not help the children in 
the same way. Two fractional quantities that have
different labels can be equivalent, and in fact there 
is an infinite number of equivalent fractions: 1/3, 2/6,
6/9, 8/12 etc. are different number labels but they
represent equivalent quantities. Because rational
numbers refer, although often implicitly, to a whole, it
is also possible for two fractions that have the same
number label to represent different quantities: 1/3 of
12 and 1/3 of 18 are not representations of
equivalent quantities. 

In an analogous way, it is not possible simply to
transfer knowledge of order from natural to rational
numbers. If the common fraction notation is used,
there are two numbers, the numerator and the
denominator, and both affect the order of magnitude
of fractions, but they do so in different ways. If the
denominator is constant, the larger the numerator,
the larger is the magnitude of the fraction; if the
numerator is constant, the larger the denominator,
the smaller is the fraction. If both vary, then more
knowledge is required to order the fractions, and it 
is not possible to tell which quantity is more by
simply looking at the fraction labels.

Rational numbers differ from whole numbers also in
the use of two numerical signs to represent a single
quantity: it is the relation between the numbers, not
their independent values, that represents the
quantity. Stafylidou and Vosniadou (2004) analysed
Greek students’ understanding of this form of
numerical representation and observed that most
students in the age range 11 to 13 years did not
seem to interpret the written representation of
fractions as involving a multiplicative relation
between the numerator and the denominator: 
20% of the 11-year-olds, 37% of the 12-year-olds 
and 48% of the 13-year-olds provided this type of

interpretation for fractions. Many younger students
(about 38% of the 10-year-olds in grade 5) seemed
to treat the numerator and denominator as
independent numbers whereas others (about 20%)
were able to conceive fractions as indicating a part-
whole relation but many (22%) are unable to offer 
a clear explanation for how to interpret the
numerator and the denominator. 

Rational numbers are also different from natural
numbers in their density (see, for example,
Brousseau, Brousseau and Warfield, 2007;
Vamvakoussi and Vosniadou, 2004): there are no
natural numbers between 1 and 2, for example, 
but there is an infinite number of fractions between
1 and 2. This may seem unimportant but it is this
difference that allows us to use rational numbers to
represent quantities that are smaller than the units.
This may be another source of difficulty for students.

Rational numbers have another property which is
not shared by natural numbers: every non-zero
rational number has a multiplicative inverse (e.g. the
inverse of 2/3 is 3/2). This property may seem
unimportant when children are taught about
fractions in primary school, but it is important for
the understanding of the division algorithm (i.e. we
multiply the fraction which is the dividend by the
inverse of the fraction that is the divisor) and will be
required later in school, when students learn about
algebra. Booth (1981) suggested that students often
have a limited understanding of inverse relations,
particularly in the domain of fractions, and this
becomes an obstacle to their understanding of
algebra. For example, when students think of
fractions as representing the number of parts into
which a whole was cut (denominator) and the
number of parts taken (numerator), they find it very
difficult to think that fractions indicate a division and
that it has, therefore, an inverse.

Finally, rational numbers have two common written
notations, which students should learn to connect: 1/2
and 0.5 are conceptually the same number with two
different notations. There isn’t a similar variation in
natural number notation (Roman numerals are
sometimes used in specific contexts, such as clocks
and indices, but they probably play little role in the
development of children’s mathematical knowledge).
Vergnaud (1997) hypothesized that different
notations afford the understanding of different
aspects of the same concept; this would imply that
students should learn to use both notations for
rational numbers. On the one hand, the common
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fractional notation 1/2 can be used to help students
understand that fractions are related to the operation
of division, because this notation can be interpreted
as ‘1 divided by 2’. The connection between fractions
and division is certainly less explicit when the decimal
notation 0.5 is used. It is reasonable to expect that
students will find it more difficult to understand what
the multiplicative inverse of 0.5 is than the inverse of
1/2, but unfortunately there seems to be no evidence
yet to clarify this. 

On the other hand, adding 1/2 and 3/10 is a
cumbersome process, whereas adding the same
numbers in their decimal representation, 0.5 and 0.3,
is a simpler matter. There are disagreements regarding
the order in which these notations should be taught
and the need for students to learn both notations in
primary school (see, for example, Brousseau,
Brousseau and Warfield, 2004; 2007), but, to our
knowledge, no one has proposed that one notation
should be the only one used and that the other one
should be banned from mathematics classes. There is
no evidence on whether children find it easier to
understand the concepts related to rational numbers
when one notation is used rather than the other.

Students’ difficulties 
with rational numbers
Many studies have documented students’ difficulties
both with understanding equivalence and order of
magnitude in the domain of rational numbers (e.g.
Behr, Harel, Post and Lesh, 1992; Behr, Wachsmuth,
Post and Lesh, 1984; Hart, 1986; Hart, Brown,
Kerslake, Küchermann and Ruddock, 1985; Kamii
and Clark, 1995; Kerslake, 1986). We illustrate here
these difficulties with research carried out in the
United Kingdom.

The difficulty of equivalence questions varies across
types of tasks. Kerslake (1986) noted that when
students are given diagrams in which the same shapes
are divided into different numbers of sections and
asked to compare two fractions, this task is relatively
simple because it is possible to use a perceptual
comparison. However, if students are given a diagram
with six or nine divisions and asked to mark 2/3 of
the shape, a large proportion of them fail to mark
the equivalent fractions, 4/6 and 6/9. Hart, Brown,
Kerslake, Küchermann and Ruddock (1985), working
with a sample of students (N =55) in the age range
11 to 13 years, found that about 60% of the 11- to
12-year-olds and about 65% of the 12- to 13-year-

olds were able to solve this task. We (Nunes, Bryant,
Pretzlik and Hurry, 2006) gave the same item more
recently to a sample of 130 primary school students
in Years 4 and 5 (mean ages, respectively, 8.6 and 9.6
years). The rate of correct responses across these
items was 28% for the children in Year 4 and 49% for
the children in Year 5. This low percentage of correct
answers could not be explained by a lack of
knowledge of the fraction 2/3: when the diagram was
divided into three sections, 93% of the students in
the study by Hart el al. (1985) gave a correct answer;
in our study, 78% of the Year 4 and 91% of the Year 5
students’ correctly shaded 2/3 of the figure.

This quantitative information is presented here to
illustrate the level of difficulty of these questions. 
A different approach to the analysis of how the level
of difficulty can vary is presented later, in the third
section of this paper.

Students often have difficulty in ordering fractions
according to their magnitude. Hart et al. (1985) asked
students to compare two fractions with the same
denominator (3/7 and 5/7) and two with the same
numerator (3/5 and 3/4). When the fractions have the
same denominator, students can respond correctly by
considering the numerators only and ordering them as
if they were natural numbers. The rate of correct
responses in this case is relatively high but it does not
effectively test students’ understanding of rational
numbers. Hart et al. (1985) observed approximately
90% correct responses among their students in the
age range 11 to 13 years and we (Nunes et al., 2006)
found that 94% of the students in Year 4 and 87% of
the students in Year 5 gave correct responses. In
contrast, when the numerator was the same and the
denominator varied (comparing 3/5 and 3/4), and the
students had to consider the value of the fractions in a
way that is not in agreement with the order of natural
numbers, the rate of correct responses was
considerably lower: in the study by Hart et al.,
approximately 70% of the answers were correct,
whereas in our study the percent of correct responses
were 25% in Year 4 and 70% among in Year 5. 

These difficulties are not particular to U.K. students:
they have been widely reported in the literature on
equivalence and order of fractions (for examples in
the United States see Behr, Lesh, Post and Silver, 1983;
Behr, Wachsmuth, Post and Lesh 1984; Kouba, Brown,
Carpenter, Lindquist, Silver and Swafford, 1988). 

Difficulties in comparing rational numbers are not
confined to fractions. Resnick, Nesher, Leonard,

9 Key understandings in mathematics learning
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Magone, Omanson and Peled (1989) have shown 
that students have difficulties in comparing decimal
fractions when the number of places after the decimal
point differs. The samples in their study were relatively
small (varying from 17 to 38) but included students
from three different countries, the United States, Israel
and France, and in three grade levels (4th to 6th). The
children were asked to compare pairs of decimals
such as 0.5 and 0.36, 2.35 and 2.350, and 4.8 and 4.63.
The rate of correct responses varied between 36%
and 52% correct, even though all students had
received instruction on decimals. A more recent study
(Lachance and Confrey, 2002) of 5th grade students
(estimated age approximately 10 years) who had
received an introduction to decimal fractions in the
previous year showed that only about 43% were able
to compare decimal fractions correctly.2 Rittle-Johnson,
Siegler and Alibali (2001) confirmed students’
difficulties when comparing the magnitude of 
decimals: the rate of correct responses by the
students (N = 73; 5th grade; mean age 11 years 8
months) in their study was 19%.

In conclusion, the very basic ideas about equivalence
and order of fractions by magnitude, without which we
could hardly say that the students have a good sense
for what fractions represent, seems to elude many
students for considerable periods of time. In the
section that follows, we will contrast two situations
that have been used to introduce the concept of
fractions in primary school in order to examine the
question of whether children’s learning may differ as 
a function of these differences between situations.

Children’s schemas 
of action in division situations
Mathematics educators and researchers may not
agree on many things, but there is a clear consensus
among them on the idea that rational numbers are
numbers in the domain of quotients (Brousseau,
Brousseau and Warfield, 2007; Kieren, 1988; 1993;
1994; Ohlsson, 1988): that is, numbers defined by the
operation of division. So, it seems reasonable to seek
the origin of children’s understanding of rational
numbers in their understanding of division.3

Our hypothesis is that in division situations children
can develop some insight into the equivalence and
order of quantities in fractions; we will use the term
fractional quantities to refer to these quantities.
These insights can be developed even in the
absence of knowledge of representations for fractions,

either in written or in oral form. Two schemes 
of action that children use in division have been
analysed in the literature: partitioning and
correspondences (or dealing). 

Behr, Harel, Post and Lesh (1992; 1993) pointed out
that fractions represent quantitites in a different way
across two types of situation. The first type is the part-
whole situation. Here one starts with a single quantity,
the whole, which is divided into a certain number of
parts (y), out of which a specified number is taken (x);
the symbol x/y represents this quantity in terms of
part-whole relations. Partitioning is the scheme of
action that children use in part-whole tasks. The most
common type of fraction problem that teachers give
to children is to ask them to partition a whole into a
fixed number of parts (the denominator) and show a
certain fraction with this denominator. For example,
the children have to show what 3/5 of a pizza is.4

The second way in which fractions represent
quantities is in quotient situations. Here one starts
with two quantities, x and y, and treats x as the
dividend and y as the divisor, and by the operation of
division obtains a single quantity x/y. For example, the
quantities could be 3 chocolates (x) to be shared
among 5 children (y).The fractional symbol x/y
represents both the division (3 divided by 5) and the
quantity that each one will receive (3/5). A quotient
situation calls for the use of correspondences as the
scheme of action: the children establish
correspondences between portions and recipients.
The portions may be imagined by the children, not
actually drawn, as they must be when the children
are asked to partition a whole and show 3/5.5

When children use the scheme of partitioning in
part-whole situations, they can gain insights about
quantities that could help them understand some
principles relevant to the domain of rational numbers.
They can, for example, reason that, the more parts
they cut the whole into, the smaller the parts will be.
This could help them understand how fractions are
ordered. If they can achieve a higher level of precision
in reasoning about partitioning, 
they could develop some understanding of the
equivalence of fractions: they could come to
understand that, if they have twice as many parts,
each part would be halved in size. For example, you
would eat the same amount of chocolate after
cutting one chocolate bar into two parts and eating
one part as after cutting it into four parts and eating
two, because the number of parts and the size of the
parts compensate for each other precisely. It is an
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empirical question whether children attain these
understandings in the domain of whole numbers and
extend them to rational numbers.

Partitioning is the scheme that is most often used 
to introduce children to fractions in the United
Kingdom, but it is not the only scheme of action
relevant to division. Children use correspondences
in quotient situations when the dividend is one
quantity (or measure) and the divisor is another
quantity. For example, when children share out
chocolate bars to a number of recipients, the
dividend is in one domain of measures – the
number of chocolate bars – and the divisor is in
another domain – the number of children. The
difference between partitioning and correspondence
division is that in partitioning there is a single whole
(i.e. quantity or measure) and in correspondence
there are two quantities (or measures).

Fischbein, Deri, Nello and Marino (1985) hypothesised
that children develop implicit models of division
situations that are related to their experiences. We
use their hypothesis here to explore what sorts of
implicit models of fractions children may develop from
using the partitioning or the correspondence scheme
in fractions situations. Fischbein and colleagues
suggested, for example, that children form an implicit
model of division that has a specific constraint: the
dividend must be larger than the divisor. We ourselves
hypothesise that this implicit model is developed only
in the context of partitioning. When children use the
correspondence scheme, precisely because there are
two domains of measures, young children readily
accept that the dividend can be smaller than the
divisor: they are ready to agree that it is perfectly
possible to share one chocolate bar among 
three children.

At first glance, the difference between these two
schemes of action, partitioning and correspondence,
may seem too subtle to be of interest when we are
thinking of children’s understanding of fractions.
Certainly, research on children’s understanding of
fractions has not focused on this distinction so far.
However, our review shows that it is a crucial
distinction for children’s learning, both in terms 
of what insights each scheme of action affords and 
in terms of the empirical research results. 

There are at least four differences between what
children might learn from using the partitioning
scheme or the scheme of correspondences. 

• The first is the one just pointed out: that, when
children set two measures in correspondence, there
is no necessary relation between the size of the
dividend and of the divisor. In contrast, in partitioning
children form the implicit model that the sum of the
parts must not be larger than the whole. Therefore,
it may be easier for children to develop an
understanding of improper fractions when they form
correspondences between two fields of measures
than when they partition a single whole. They might
have no difficulty in understanding that 3 chocolates
shared between 2 children means that each child
could get one chocolate plus a half. In contrast, in
partitioning situations children might be puzzled if
they are told that someone ate 3 parts of a
chocolate divided in 2 parts.

• A second possible difference between the two
schemes of action may be that, when using
correspondences, children can reach the conclusion
that the way in which partitioning is carried out does
not matter, as long as the correspondences between
the two measures are ‘fair’. They can reason, for
example, that if 3 chocolates are to be shared by 2
children, it is not necessary to divide all 3 chocolates
in half, and then distribute the halves; giving a whole
chocolate plus a half to each child would accomplish
the same fairness in sharing. It was argued in the first
section of this paper that this an important insight in
the domain of rational numbers: different fractions
can represent the same quantity.

• A third possible insight about quantities that can
be obtained from correspondences more easily
than from partitioning is related to ordering of
quantities. When forming correspondences,
children may realize that there is an inverse
relation between the divisor and the quotient: the
more people there are to share a cake, the less
each person will get: Children might achieve the
corresponding insight about this inverse relation
using the scheme of partitioning: the more parts
you cut the whole into, the smaller the parts.
However, there is a difference between the
principles that children would need to abstract
from each of the schemes. In partitioning, they
need to establish a within-quantity relation (the
more parts, the smaller the parts) whereas in
correspondence they need to establish a
between-quantity relation (the more children, 
the less cake). It is an empirical matter to find out
whether or not it is easier to achieve one of
these insights than the other.
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• Finally, both partitioning and correspondences
could help children to understand something
about the equivalence between quantities, but the
reasoning required to achieve this understanding
differs across the two schemes of action. When
setting chocolate bars in correspondence with
recipients, the children might be able to reason
that, if there were twice as many chocolates and
twice as many children, the shares would be
equivalent, even though the dividend and the
divisor are different. This may be easier than the
comparable reasoning in partitioning. In
partitioning, understanding equivalence is based 
on inverse proportional reasoning (twice as many
pieces means that each piece is half the size)
whereas in contexts where children use the
correspondence scheme, the reasoning is based on
a direct proportion (twice as many chocolates and
twice as many children means that everyone still
gets the same).

This exploratory and hypothetical analysis of how
children can reach an understanding of equivalence
and order of fractions when using partitioning or
correspondences in division situations suggests that
the distinction between the two schemas is worth
investigating empirically. It is possible that the scheme
of correspondences affords a smoother transition
from natural to rational numbers, at least as far as
understanding equivalence and order of fractional
quantities is concerned. 

We turn now to an empirical analysis of this question.
The literature about these schemes of action is vast
but this paper focuses on research 
that sheds light on whether it is possible to find
continuities between children’s understanding of
quantities that are represented by natural numbers
and fractional quantities. We review research on
correspondences first and then research on
partitioning.

Children’s use of the
correspondence scheme in
judgements about quantities
Piaget (1952) pioneered the study of how and when
children use the correspondence scheme to draw
conclusions about quantities. In one of his studies,
there were three steps in the method.

• First, Piaget asked the children to place one pink
flower into each one of a set of vases; 

• next, he removed the pink flowers and asked the
children to place a blue flower into each one of the
same vases; 

• then, he set all the flowers aside, leaving on the
table only the vases, and asked the children to take
from a box the exact number of straws required if
they wanted to put one flower into each straw. 

Without counting, and only using correspondences,
five- and six-year old children were able to make
inferences about the equivalence between straws and
flowers: by setting two straws in correspondence with
each vase, they constructed a set of straws equivalent
to the set of vases. Piaget concluded that the children’s
judgements were based on ‘multiplicative equivalences’
(p. 219) established by the use of the correspondence
scheme: the children reasoned that, if there is a 2-to-1
correspondence between flowers and vases and a 2-
to-1 correspondence between straws and vases, the
number of flowers and straws must be the same.

In Piaget’s study, the scheme of correspondence 
was used in a situation that involved ratio but not
division. Frydman and Bryant (1988) carried out 
a series of studies where children established
correspondences between sets in a division situation
which we have described in more detail in Paper 2,
Understanding whole numbers. The studies showed
that children aged four often shared pretend sweets
fairly, using a one-for-you one-for-me type of
procedure. After the children had distributed the
sweets, Frydman and Bryant asked them to count
the number of sweets that one doll had and then
deduce the number of sweets that the other doll
had. About 40% of the four-year-olds were able to
make the necessary inference and say the exact
number of sweets that the second doll had; this
proportion increased with age. This result extends
Piaget’s observations that children can make
equivalence judgements not only in multiplication but
also in division problems by using correspondence.

Frydman and Bryant’s results were replicated in a
number of studies by Davis and his colleagues (Davis
and Hunting, 1990; Davis and Pepper, 1992; Pitkethly
and Hunting, 1996), who refer to this scheme of
action as ‘dealing’. They used a variety of situations,
including redistribution when a new recipient comes,
to study children’s ability to use correspondences in
division situations and to make inferences about
equality and order of magnitude of quantities. They
also argue that this scheme is basic to children’s
understanding of fractions (Davis and Pepper, 1992).
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Correa, Nunes and Bryant (1998) extended these
studies by showing that children can make inferences
about quantities resulting from a division not only
when the divisors are the same but also when they
are different. In order to circumvent the possibility
that children feel the need to count the sets after
division because they think that they could have
made a mistake in sharing, Bryant and his colleagues
did not ask the children to do the sharing: the
sweets were shared by the experimenter, outside the
children’s view, after the children had seen that the
number of sweets to be shared was the same. 

There were two conditions in this study: same
dividend and same divisor versus same dividend 
and different divisors. In the same dividend and same
divisor condition, the children should be able to
conclude for the equivalence between the sets that
result from the division; in the same dividend and
different divisor condition, the children should
conclude that the more recipients there are, the
fewer sweets they receive; i.e. in order to answer
correctly, they would need to use the inverse
relation between the divisor and the result as a
principle, even if implicitly. 

About two-thirds of the five-year-olds, the vast
majority of the six-year-olds, and all the seven-year-
olds concluded that the recipients had equivalent
shares when the dividend and the divisor were the
same. Equivalence was easier than the inverse
relation between divisor and quotient: 34%, 53% 
and 81% of the children in these three age levels,
respectively, were able to conclude that the more
recipients there are, the smaller each one’s share will
be. Correa (1994) also found that children’s success
in making these inferences improved if they solved
these problems after practising sharing sweets
between dolls; this indicates that thinking about how
to establish correspondences improves their ability
to make inferences about the relations between the
quantities resulting from sharing.

In all the previous studies, the dividend was
composed of discrete quantities and was larger 
than the divisor. The next question to consider is
whether children can make similar judgements about
equivalence when the situations involve continuous
quantities and the dividend is smaller than the
divisor : that is, when children have to think about
fractional quantities. 

Kornilaki and Nunes (2005) investigated this
possibility by comparing children’s inferences in

division situations in which the quantities were
discrete and the dividends were larger than the
divisors to their inferences in situations in which the
quantities were continuous and dividends smaller
than the divisors. In the discrete quantities tasks, the
children were shown one set of small toy fishes to
be distributed fairly among a group of white cats and
another set of fishes to be distributed to a group of
brown cats; the number of fish was always greater
than the number of cats. In the continuous quantities
tasks, the dividend was made up of fish-cakes, to be
distributed fairly among the cats: the number of
cakes was always smaller than the number of cats,
and varied between 1 and 3 cakes, whereas the
number of cats to receive a portion in each group
varied between 2 and 9. Following the paradigm
devised by Correa, Nunes and Bryant (1998), the
children were neither asked to distribute the fish nor
to partition the fish cakes. They were asked whether,
after a fair distribution in each group, each cat in one
group would receive the same amount to eat as
each cat in the other group.6

In some trials, the number of fish (dividend) and cats
(divisor) was the same; in other trials, the dividend
was the same but the divisor was different. So in the
first type of trials the children were asked about
equivalence after sharing and in the second type the
children were asked to order the quantities obtained
after sharing. 

The majority of the children succeeded in all the
items where the dividend and the divisor were the
same: 62% of the five-year-olds, 84% of the six-year-
olds and all the seven-year-olds answered all the
questions correctly. When the dividend was the same
and the divisors differed, the rate of success was
31%, 50% and 81%, respectively, for the three age
levels. There was no difference in the level of success
attained by the children with discrete versus
continuous quantities.

In almost all the items, the children explained their
answers by referring to the type of relation between
the dividends and the divisors: same divisor, same
share or, with different divisors, the more cats
receiving a share, the smaller their share. The use 
of numbers as an explanation for the relative size of
the recipients’ shares was observed in 6% of answers
by the seven-year-olds when the quantities were
discrete and less often than this by the younger
children. Attempts to use numbers to speak about
the shares in the continuous quantities trials were
practically non-existent (3% of the seven-year-olds’

13 Key understandings in mathematics learning



14 SUMMARY – PAPER 2: Understanding whole numbers

explanations). Thus, the analysis of justifications
supports the idea that the children were reasoning
about relations between quantities rather than using
counting when they made their judgments of
equivalence or ordered the quantities that would be
obtained after division.

This study replicated the previous findings, which 
we have mentioned already, that young children can
use correspondences to make inferences about
equivalences and also added new evidence relevant
to children’s understanding of fractional quantities:
many young children who have never been taught
about fractions used correspondences to order
fractional quantities. They did so successfully when
the division would have resulted in unitary fractions
and also when the dividend was greater than 1 and
the result would not be a unitary fraction (e.g. 2 fish
cakes to be shared by 3, 4 or 5 cats). 

A study by knowledge Mamede, Nunes and Bryant
(2005) confirmed that children can make inferences
about the order of magnitude of fractions in sharing
situations where the dividend is smaller than the
divisor (e.g. 1 cake shared by 3 children compared 
to 1 cake shared by 5 children). She worked with
Portuguese children in their first year in school, who
had received no school instruction about fractions.
Their performance was only slightly weaker than that
of British children: 55% of the six-year-olds and 71%
of the seven-year-olds were able to make the
inference that the larger the divisor, the smaller the
share that each recipient would receive.

These studies strongly suggest that children can
learn principles about the relationship between
dividend and divisor from experiences with sharing
when they establish correspondences between the
two domains of measures, the shared quantities
and the recipients. They also suggest that children
can make a relatively smooth transition from
natural numbers to rational numbers when they
use correspondences to understand the relations
between quantities. This argument is central to
Streefland’s (1987; 1993; 1997) hypothesis about
what is the best starting point for teaching
fractions to children and has been advanced by
others also (Davis and Pepper, 1992; Kieren, 1993;
Vergnaud, 1983).

This research tell an encouraging story about
children’s understanding of the logic of division even
when the dividend is smaller than the divisor, but
there is one further point that should be considered

in the transition between natural and rational
numbers. In the domain of rational numbers there is
an infinite set of equivalences (e.g. 1/2 = 2/4 = 3/6
etc) and in the studies that we have described so far
the children were only asked to make equivalence
judgements when the dividend and the divisor in the
equivalent fractions were the same. Can they still
make the inference of equivalence in sharing
situations when the dividend and the divisor are
different across situations, but the dividend-divisor
ratio is the same? 

Nunes, Bryant, Pretzlik, Bell, Evans and Wade (2007)
asked British children aged between 7.5 and 10 years,
who were in Years 4 and 5 in school, to make
comparisons between the shares that would be
received by children in sharing situations where the
dividend and divisor were different but their ratio was
the same. Previous research (see, for example, Behr,
Harel, Post and Lesh, 1992; Kerslake, 1986) shows that
children in these age levels have difficulty with the
equivalence of fractions. The children in this study had
received some instruction on fractions: they had been
taught about halves and quarters in problems about
partitioning. They had only been taught about one pair
of equivalent fractions: they were taught that one half
is the same as two quarters. In the correspondence
item in this study, the children were presented with
two pictures: in the first, a group of 4 girls was going to
share fairly 1 pie; in the second, a group of 8 boys was
going to share fairly 2 pies that were exactly the same
as the pie that the girls had. The question was whether
each girl would receive the same share as each boy.
The overall rate of correct responses was 73% (78%
in Year 4 and 70% in Year 5; this difference was not
significant). This is an encouraging result: the children
had only been taught about halves and quarters;
nevertheless, they were able to attain a high rate of
correct responses for fractional quantities that could
be represented as 1/4 and 2/8.

In the studies reviewed so far the children were
asked about quantities that resulted from division
and always included two domains of measures; thus
the children’s correspondence reasoning was
engaged in these studies. However, they did not
involve asking the children to represent these
quantities through fractions. The final study reviewed
here is a brief teaching study (Nunes, Bryant, Pretzlik,
Evans, Wade and Bell, 2008), where the children
were taught to represent fractions in the context of
two domains of measures, shared quantities and
recipients, and were asked about the equivalence
between fractions. The types of arguments that the
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children produced to justify the equivalence of the
fractions were then analyzed and compared to the
insights that we hypothesized would emerge in the
context of sharing from the use of the
correspondence scheme.

Brief teaching studies are of great value in research
because they allow the researchers to know what
understandings children can construct if they are
given a specific type of guidance in the interaction
with an adult (Cooney, Grouws and Jones, 1988;
Steffe and Tzur, 1994; Tzur, 1999; Yackel, Cobb, 
Wood, Wheatley and Merkel, 1990). They also have
compelling ecological validity: children spend much 
of their time in school trying to use what they have
been taught to solve new mathematics problems.
Because this study has only been published in a
summary form (Nunes, Bryant, Pretzlik and Hurry,
2006), some detail is presented here.

The children (N = 62) were in the age range from
7.5 to 10 years, in Years 4 and 5 in school. Children in
Year 4 had only been taught about half and quarters
and the equivalence between half and two quarters;
children in Year 5 had been taught also about thirds.
They worked with a researcher outside the
classroom in small groups (12 groups of between 4
and 6 children, depending on the class size) and were
asked to solve each problem first individually, and
then to discuss their answers in the group. The
sessions were audio- and video-recorded. The
children’s arguments were transcribed verbatim; the
information from the video-tapes was later
coordinated with the transcripts in order to help the
researchers understand the children’s arguments.

In this study the researchers used problems
developed by Streefland (1990). The children solved
two of his sharing tasks on the first day and an
equivalence task on the second day of the teaching
study. The tasks were presented in booklets with
pictures, where the children also wrote their
answers. The tasks used in the first day were:

• Six girls are going to share a packet of biscuits. The
packet is closed; we don’t know how many biscuits
are in the packet. (a) If each girl received one
biscuit and there were no biscuits left, how many
biscuits were in the packet? (b) If each girl received
a half biscuit and there were no biscuits left, how
many biscuits were in the packet? (c) If some more
girls join the group, what will happen when the
biscuits are shared? Do the girls now receive 
more or less each than the six girls did?

• Four children will be sharing three chocolates. (a)
Will each child be able to get one bar of chocolate?
(b) Will each child be able to get at least a half bar
of chocolate? (c) How would you share the
chocolate? (The booklets contained a picture with
three chocolate bars and four children and the
children were asked to show how they would share
the chocolates) Write what fraction each one gets. 

After the children had completed these tasks, 
the researcher told them that they were going to
practice writing fractions which they had not yet
learned in school. The children were asked to write
‘half ’ with numerical symbols, which they knew
already. The researcher taught the children to write
fractions that they had not yet learned in school in
order to help the children re-interpret the meaning
of fractions. The numerator was to be used to
represent the number of items to be divided, the
denominator should represent the number of
recipients, and the dash between them two numbers
should represent the sign for division (for a discussion
of children’s interpretation of fraction symbols in this
situation, see Charles and Nason, 2000, and Empson,
Junk, Dominguez and Turner, 2005). 

The equivalence task, presented on the second 
day, was:

• Six children went to a pizzeria and ordered two
pizzas to share between them. The waiter brought
one first and said they could start on it because it
would take time for the next one to come. (a)
How much will each child get from the first pizza
that the waiter brought? Write the fraction that
shows this. (b) How much will each child get from
the second pizza? Write your answer. (c) If you add
the two pieces together, what fraction of a pizza
will each child get? You can write a plus sign
between the first fraction and the second fraction,
and write the answer for the share each child gets
in the end. (d) If the two pizzas came at the same
time, how could they share it differently? (e) Are
these fractions (the ones that the children wrote
for answers c and d equivalent?

According to the hypotheses presented in the
previous section, we would expect children to
develop some insights into rational numbers by
thinking about different ways of sharing the same
amount. It was expected that they would realize that: 
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1 it is possible to divide a smaller number by a larger
number 

2 different fractions might represent the same
amount 

3 twice as many things to be divided and twice as
many recipients would result in equivalent amounts

4 the larger the divisor, the smaller the quotient.

The children’s explanations for why they thought
that the fractions were equivalent provided evidence
for all these insights, and more, as described below. 

It is possible to divide a smaller
number by a larger number 
There was no difficulty among the students in
attempting to divide 1 pizza among 6 children. In
response to part a of the equivalence problem, all
children wrote at least one fraction correctly (some
children wrote more than one fraction for the same
answer, always correctly). 

In response to part c, when the children were asked
how they could share the 2 pizzas if both pizzas
came at the same time and what fraction would
each one receive, some children answered 1/3 and
others answered 2/12 from each pizza, giving a total
share of 4/12. The latter children, instead of sharing 
1 pizza among 3 girls, decided to cut each pizza in
12 parts: i.e. they cut the sixths in half. 

Different fractions can represent the
same amount
The insight that different fractions can represent 
the same amount was expressed in all groups. For
example, one child said that, ‘They’re the same
amount of people, the same amount of pizzas, and
that means the same amount of fractions. It doesn’t
matter how you cut it.’ Another child said, ‘Because it
wouldn’t really matter when they shared it, they’d get
that [3 girls would get 1 pizza], and then they’d get
that [3 girls would get the other pizza], and then it
would be the same.’ Another child said, ‘It’s the same
amount of pizza. They might be different fractions
but the same amount [this child had offered 4/12 as
an alternative to 2/6].’ Another child said: ‘Erm, well
basically just the time doesn’t make much difference,
the main thing is the number of things.’

When the dividend is twice as large
and the divisor is also twice as large,
the result is an equivalent amount

The principle that when the dividend is twice as
large and the divisor is also twice as large, the result
is an equivalent amount was expressed in 11 of the
12 groups. For example, one child said, ‘It’s half the
girls and half the pizzas; three is a half of six and one
is a half of two.’ Another child said, ‘If they have two
pizzas, then they could give the first pizza to three
girls and then the next one to another three girls.
(…) If they all get one piece of that each, and they
get the same amount, they all get the same amount’. 

So all three ideas we thought that could appear in
this context were expressed by the children. But 
two other principles, which we did not expect to
observe in this correspondence problem, were also
made explicit by the children.

The number of parts and size of
parts are inversely proportional
The principle that the number of parts and size of
parts are inversely proportional was enunciated in 8 of
the 12 groups. For example, one child who cut the
pizzas the second time around in 12 parts each said,
‘Because it’s double the one of that [total number of
pieces] and it’s double the one of that [number of
pieces for each], they cut it twice and each is half the
size; they will be the same’. Another child said, ‘Because
one sixth and one sixth is actually a different way in
fractions [from 1 third] and it doubled [the number of
pieces] to make it [the size of the piece] littler, and
halving [the number of pieces] makes it [the size of the
piece] bigger, so I halved it and it became one third’.

The fractions show the same 
part-whole relation
The reasoning that the fractions show the same
part-whole relation, which we had not expected to
emerge from the use of the correspondence
scheme, was enunciated in only one group (out of
12), initially by one child, and was then reiterated by
a second child in her own terms. The first child said,
‘You need three two sixths to make six [6/6 – he
shows the 6 pieces marked on one pizza], and you
need three one thirds to make three (3/3 – shows
the 3 pieces marked on one pizza). [He wrote the
computation and continued] There’s two sixths, add
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two sixths three times to make six sixths. With one
third, you need to add one third three times to
make three thirds.’ 

To summarize: this brief teaching experiment was
carried out to elicit discussions between the
children in situations where they could use the
correspondence scheme in division. The first set of
problems, in which they are asked about sharing
discrete quantities, created a background for the
children to use this scheme of action. The
researchers then helped them to construct an
interpretation for written fractions where the
numerator is the dividend, the denominator is the
divisor, and the line indicates the operation of
division. This interpretation did not replace their
original interpretation of number of parts taken
from the whole; the two meanings co-existed and
appeared in the children’s arguments as they
explained their answers. In the subsequent
problems, where the quantity to be shared was
continuous and the dividend was smaller than the
divisor, the children had the opportunity to
explore the different ways in which continuous
quantities can be shared. They were not asked to
actually partition the pizzas, and some made marks
on the pizzas whereas others did not. The most
salient feature of the children’s drawings was that
they were not concerned with partitioning per se,
even when the parts were marked, but with the
correspondences between pizzas and recipients.
Sometimes the correspondences were carried out
mentally and expressed verbally and sometimes
the children used drawings and gestures which
indicated the correspondences.

Other researchers have identified children’s use of
correspondences to solve problems that involve
fractions, although they did not necessarily use this
label in describing the children’s answers. Empson
(1999), for example, presented the following
problem to children aged about six to seven years
(first graders in the USA): 4 children got 3 pancakes
to share; how many pancakes are needed for 12
children in order for the children to have the same
amount of pancake as the first group? She reported
that 3 children solved this problem by partitioning
and 3 solved it by placing 3 pancakes in
correspondence to each group of 4 children. Similar
strategies were reported when children solved
another problem that involved 2 candy bars shared
among 3 children.

Kieren (1993) also documented children’s use of
correspondences to compare fractions. In his
problem, the fractions were not equivalent: there
were 7 recipients and 4 items in Group A and 4
recipients and 2 items in Group B. The children
were asked how much each recipient would get 
in each group and whether the recipients in both
groups would get the same amount. Kieren
presents a drawing by an eight-year-old, where 
the items are partitioned in half and the
correspondences between the halves and the
recipients are shown; in Group A, a line without a
recipient shows that there is an extra half in that
group and the child argues that there should be
one more person in Group A for the amounts to
be the same. Kieren termed this solution
‘corresponding or ‘ratiolike’ thinking’ (p. 54). 

Conclusion

The scheme of correspondences develops relatively
early: about one-third of the five-year-olds, half of six-
year-olds and most seven-year-olds can use
correspondences to make inferences about
equivalence and order in tasks that involve fractional
quantities. Children can use the scheme of
correspondences to:
• establish equivalences between sets that have the

same ratio to a reference set (Piaget, 1952)
• re-distribute things after having carried out one

distribution (Davis and Hunting, 1990; Davis and
Pepper, 1992; Davis and Pitkethly, 1990; Pitkethly
and Hunting, 1996);

• reason about equivalences resulting from division
both when the dividend is larger or smaller than
the divisor (Bryant and colleagues: Correa, Nunes
and Bryant, 1994; Frydman and Bryant, 1988; 1994;
Empson, 1999; Nunes, Bryant, Pretzlik and Hurry,
2006; Nunes, Bryant, Pretzlik, Bell, Evans and Wade,
2007; Mamede, Nunes and Bryant, 2005);

• order fractional quantities (Kieren, 1993; Kornilaki
and Nunes, 2005; Mamede, 2007). 

These studies were carried out with children up to
the age of ten years and all of them produced
positive results. This stands in clear contrast with the
literature on children’s difficulties with fractions and
prompts the question whether the difficulties might
stem from the use of partitioning as the starting
point for the teaching of fractions (see also Lamon,
1996; Streefland, 1987). The next section examines
the development of children’s partitioning action and
its connection with children’s concepts of fractions.
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Children’s use of the scheme 
of partitioning in making
judgements about quantities
The scheme of partitioning has been also named
subdivision and dissection (Pothier and Sawada,
1983), and is consistently defined as the process 
of dividing a whole into parts. This process is
understood not as the activity of cutting something
into parts in any way, but as a process that must be
guided from the outset by the aim of obtaining a
pre-determined number of equal parts.

Piaget, Inhelder and Szeminska (1960) pioneered the
study of the connection between partitioning and
fractions. They spelled out a number of ideas that
they thought were necessary for children to develop
an understanding of fractions, and analysed them in
partitioning tasks. The motivation for partitioning was
sharing a cake between a number of recipients, but
the task was one of partitioning. They suggested that
‘the notion of fraction depends on two fundamental
relations: the relation of part to whole (…) and the
relation of part to part’ (p. 309). Piaget and colleagues
identified a number of insights that children need to
achieve in order to understand fractions:

1 the whole must be conceived as divisible, an idea
that children under the age of about two do not
seem to attain

2 the number of parts to be achieved is determined
from the outset

3 the parts must exhaust the whole (i.e. there
should be no second round of partitioning and no
remainders)

4 the number of cuts and the number of parts are
related (e.g. if you want to divide something in 2
parts, you should use only 1 cut)

5 all the parts should be equal

6 each part can be seen as a whole in itself, nested
into the whole but also susceptible of further
division

7 the whole remains invariant and is equal to the
sum of the parts.

Piaget and colleagues observed that children rarely
achieved correct partitioning (sharing a cake) before
the age of about six years. There is variation in the

level of success depending on the shape of the whole
(circular areas are more difficult to partition than
rectangles) and on the number of parts. A major
strategy in carrying out successful partitioning was the
use of successive divisions in two: so children are able
to succeed in dividing a whole into fourths before
they can succeed with thirds. Successive halving
helped the children with some fractions: dividing
something into eighths is easier this way. However, it
interfered with success with other fractions: some
children, attempting to divide a whole into fifths,
ended up with sixths by dividing the whole first in
halves and then subdividing each half in three parts. 

Piaget and colleagues also investigated children’s
understanding of their seventh criterion for a true
concept of fraction, i.e. the conservation of the
whole. This conservation, they argued, would require
the children to understand that each piece could 
not be counted simply as one piece, but had to be
understood in its relation to the whole. Some
children aged six and even seven years failed to
understand this, and argued that if someone ate a
cake cut into 1/2 + 2/4 and a second person ate a
cake cut into 4/4, the second one would eat more
because he had four parts and the first one only had
three. Although these children would recognise that
if the pieces were put together in each case they
would form one whole cake, they still maintained
that 4/4 was more than 1/2 + 2/4. Finally, Piaget and
colleagues also observed that children did not have
to achieve the highest level of development in the
scheme of partitioning in order to understand the
conservation of the whole.

Children’s difficulties with partitioning continuous
wholes into equal parts have been confirmed many
times in studies with pre-schoolers and children in
their first years in school (e.g. Hiebert and
Tonnessen, 1978; Hunting and Sharpley, 1988 b,)
observed that children often do not anticipate the
number of cuts and fail to cut the whole extensively,
leaving a part of the whole un-cut. These studies also
extended our knowledge of how children’s expertise
in partitioning develops. For example, Pothier and
Sawada (1983) and Lamon (1996) proposed more
detailed schemes for the analysis of the development
of partitioning schemes and other researchers
(Hiebert and Tonnessen, 1978; Hunting and Sharpley,
1988 a and b; Miller, 1984; Novillis, 1976) found that
the difficulty of partitioning discrete and continuous
quantities is not the same, as hypothesized by Piaget.
Children can use a procedure for partitioning
discrete quantities that is not applicable to
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continuous quantities: they can ‘deal out’ the discrete
quantities but not the continuous ones. Thus they
perform significantly better with the former than the
latter. This means that the transition from discrete to
continuous quantities in the use of partitioning is not
difficult, in contrast to the smooth transition noted in
the case of the correspondence scheme. 

These studies showed that the scheme of
partitioning continuous quantities develops slowly,
over a longer period of time. The next question to
consider is whether partitioning can promote the
understanding of equivalence and ordering of
fractions once the scheme has developed. 

Many studies investigated children’s understanding of
equivalence of fractions in partitioning contexts (e.g.
Behr, Lesh, Post and Silver, 1983; Behr, Wachsmuth,
Post and Lesh, 1984; Larson, 1980; Kerslake, 1986),
but differences in the methods used in these studies
render the comparisons between partitioning and
correspondence studies ambiguous. For example, if
the studies start with a representation of the
fractions, rather than with a problem about
quantities, they cannot be compared to the studies
reviewed in the previous section, in which children
were asked to think about quantities without
necessarily using fractional representation. We shall
not review all studies but only those that use
comparable methods.

Kamii and Clark (1995) presented children with
identical rectangles and cut them into fractions using
different cuts. For example, one rectangle was cut
horizontally in half and the second was cut across a
diagonal. The children had the opportunity to verify
that the rectangles were the same size and that the
two parts from each rectangle were the same in size.
They asked the children: if these were chocolate
cakes, and the researcher ate a part cut from the 
first rectangle and the child ate a part cut from the
second, would they eat the same amount? This
method is highly comparable to the studies by
Kornilaki and Nunes (2005) and by Mamede (2007),
where the children do not have to carry out the
actions, so their difficulty with partitioning does not
influence their judgements. They also use similarly
motivated contexts, ending in the question of whether
recipients would eat the same amount. However, the
question posed by Kamii and Clark draws on the
child’s understanding of partitioning and the relations
between the parts of the two wholes because each
whole corresponds to a single recipient. 

The children in Kamii’s study were considerably older
than those in the correspondence studies: they were
in the fifth or sixth year in school (approximately 11
and 12 years). Both groups of children had been
taught about equivalent fractions. In spite of having
received instruction, the children’s rate of success
was rather low: only 44% of the fifth graders and
51% of the sixth graders reasoned that they would
eat the same amount of chocolate cake because
these were halves of identical wholes.

Kamii and Clark then showed the children two
identical wholes, cut one in fourths using a horizontal
and a vertical cut, and the other in eighths, using only
horizontal cuts. They discarded one fourth from the
first ‘chocolate cake’, leaving three fourths be eaten,
and asked the children to take the same amount
from the other cake, which had been cut into
eighths, for themselves. The percentage of correct
answers was this time even lower: 13% of the fifth
graders and 32% of the sixth graders correctly
identified the number of eighths required to take the
same amount as three fourths.

Recently, we (Nunes and Bryant, 2004) included a
similar question about halves in a survey of English
children’s knowledge of fractions. The children in our
study were in their fourth and fifth year (mean ages
eight and a half and nine and a half, respectively) in
school. The children were shown pictures of a boy
and a girl and two identical rectangular areas, the
‘chocolate cakes’. The boy cut his cake along the
diagonal and the girl cut hers horizontally. The
children were asked to indicate whether they ate the
same amount of cake and, if not, to mark the child
who ate more. Our results were more positive than
Kamii and Clark’s: 55% of the children in year four
(eight and a half year olds) in our study answered
correctly. However, these results are weak by
comparison to children’s rate of correct responses
when the problem draws on their understanding of
correspondences. In the Kornilaki and Nunes study,
100% of the seven-year-olds (third graders) realized
that two divisions that have the same dividend and
the same divisor result in equivalent shares. Our
results with fourth graders, when both the dividend
and the divisor were different, still shows a higher
rate of correct responses when correspondences are
used: 78% of the fourth graders gave correct answers
when comparing one fourth and two eighths.

In the preceding studies, the students had to think
about the quantities ignoring their perceptual
appearance. Hart et al. (1985) and Nunes et al.
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(2004) presented students with verbal questions,
which did not contain drawings that could lead to
incorrect conclusions based on perception. In both
studies, the children were told that two boys had
identical chocolate bars; one cut his into 8 parts and
ate 4 and the other cut his into 4 parts and ate 2.
Combining the results of these two studies, it is
possible to see how the rate of correct responses
changed across age: 40% at ages 8 to 9 years, 74% at
10 to11 years, 60% at 11 to 12 years, and 64% at 12
to 13 years. The students aged 8 to 10 were
assessed by Nunes et al. and the older ones by Hart
et al. These results show modest progress on the
understanding of equivalence questions presented in
the context of partitioning even though the
quantities eaten were all equivalent to half.

Mamede (2007) carried out a direct comparison
between children’s use of the correspondence and
the partitioning scheme in solving equivalence and
order problems with fractional quantities. In this well-
controlled study, she used story problems involving
chocolates and children, similar pictures and
mathematically identical questions; the division
scheme relevant to the situation was the only
variable distinguishing the problems. In
correspondence problems, for example, she asked
the children: in one party, three girls are going to
share fairly one chocolate cake; in another party, six
boys are going to share fairly two chocolate cakes.
The children were asked to decide whether each
boy would eat more than each girl, each girl would
eat more than each boy, or whether they would
have the same amount to eat. In the partitioning
problems, she set the following scenario: This girl and
this boy have identical chocolate cakes; the cakes are
too big to eat at once so the girl cuts her cake in 
3 identical parts and eats one and the boy cuts his
cake in 6 identical parts and eats 2. The children
were asked whether the girl and the boy ate the
same amount or whether one ate more than the
other. The children (age range six to seven) were
Portuguese and in their first year in school; they had
received no instruction about fractions. 

In the correspondence questions, the responses of
35% of the six-year-olds and 49% of the seven-year-
olds were correct; in the partitioning questions, 10%
of the answers of children in both age levels were
correct. These highly significant differences suggest
that the use of correspondence reasoning supports
children’s understanding of equivalence between
fractions whereas partitioning did not seem to afford
the same insights.

Finally, it is important to compare students’ arguments
for the equivalence and order of quantities
represented by fractions in teaching studies where
partitioning is used as the basis for teaching. Many
teaching studies that aim at promoting students’
understanding of fractions through partitioning have
been reported in the literature (e.g., Behr, Wachsmuth,
Post and Lesh, 1984; Brousseau, Brousseau and
Warfield, 2004; 2007; Empson, 1999; Kerslake, 1986;
Olive and Steffe, 2002; Olive and Vomvoridi, 2006;
Saenz-Ludlow, 1994; Steffe, 2002). In most of these
studies, students’ difficulties with partitioning are
circumvented either by using pre-divided materials
(e.g. Behr, Wachsmuth, Post and Lesh, 1984) or by
using computer tools where the computer carries 
out the division as instructed by the student 
(e.g. Olive and Steffe, 2002; Olive and Vomvoridi, 2006). 

Many studies combine partitioning with
correspondence during instruction, either because
the researchers do not use this distinction (e.g.
Saenz-Ludlow, 1994) or because they wish to
construct instruction that combines both schemes 
in order to achieve a better instructional program
(e.g. Brousseau, Brousseau and Warfield, 2004; 2007).
These studies will not be discussed here. Two studies
that analysed student’s arguments focus the
instruction on partitioning and are presented here. 

The first study was carried out by Berhr, Wachsmuth,
Post and Lesh (1984). The researchers used objects
of different types that could be manipulated during
instruction (e.g. counters, rectangles of the same size
and in different colours, pre-divided into fractions
such as halves, quarters, thirds, eighths) but also
taught the students how to use algorithms (division
of the denominator by the numerator to find a
ratio) to check on the equivalence of fractions. The
students were in fourth grade (age about 9) and
received instruction over 18 weeks. Behr et al.
provided a detailed analysis of children’s arguments
regarding the ordering of fractions. In summary, they
report the following insights after instruction.

• When ordering fractions with the same numerator
and different denominators, students seem to be able
to argue that there is an inverse relation between the
number of parts into which the whole was cut and
the size of the parts. This argument appears either
with explicit reference to the numerator (‘there are
two pieces in each, but the pieces in two fifths are
smaller.’ p. 328) or without it (‘the bigger the number
is, the smaller the pieces get.’ p. 328).
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• A third fraction can be used as a reference point
when two fractions are compared: three ninths is
less than three sixths because ‘three ninths is …
less than half and three sixths is one half ’ (p. 328). 
It is not clear how the students had learned that
3/6 and 1/2 are equivalent but they can use this
knowledge to solve another comparison.

• Students used the ratio algorithm to verify whether
the fractions were equivalent: 3/5 is not equivalent
to 6/8 because ‘if they were equal, three goes into
six, but five doesn’t go into eight.’ (p. 331).

• Students learned to use the manipulative materials
in order to carry out perceptual comparisons: 6/8
equals 3/4 because ‘I started with four parts. Then I
didn’t have to change the size of the paper at all. I
just folded it, and then I got eight.’ (p. 331).

Behr et al. report that, after 18 weeks of instruction,
a large proportion of the students (27%) continued
to use the manipulatives in order to carry our
perceptual comparisons; the same proportion (27%)
used a third fraction as a reference point and a
similar proportion (23%) used the ratio algorithm
that they had been taught to compare fractions. 

Finally, there is no evidence that the students were
able to understand that the number of parts and size
of parts could compensate for each other precisely 
in a proportional manner. For example, in the
comparison between 6/8 and 3/4 the students could
have argued that there were twice as many parts
when the whole was cut into 8 parts in comparison
with cutting in 4 parts, so you need to take twice as
many (6) in order to have the same amount. 

In conclusion, students seemed to develop some
insight into the inverse relation between the divisor
and the quantity but this only helped them when the
dividend was kept constant: they could not extend
this understanding to other situations where the
numerator and the denominator differed.

The second set of studies that focused on
partitioning was carried out by Steffe and his
colleagues (Olive and Steffe, 2002; Olive and
Vomvoridi, 2006; Steffe, 2002). Because the aim of
much of the instruction was to help the children
learn to label fractions or compose fractions that
would be appropriate for the label, it is not possible
to extract from their reports the children’s
arguments for equivalence of fractions. 

However, one of the protocols (Olive and Steffe,
2002) provides evidence for the student’s difficulty
with improper fractions, which, we hypothesise, could
be a consequence of using partitioning as the basis
for the concept of fractions. The researcher asked Joe
to make a stick 6/5 long. Joe said that he could not
because ‘there are only five of them’. After prompting,
Joe physically adds one more fifth to the five already
used, but it is not clear whether this physical action
convinces him that 6/5 is mathematically appropriate.
In a subsequent example, Joe labels a stick made with
9 sticks, which had been defined as ‘one seventh’ of
an original stick, 9/7, but according to the researchers
‘an important perturbation’ remains. Joe later counts
8 of a stick that had been designated as ‘one seventh’
but doesn’t use the label ‘eight sevenths’. When the
researcher proposes this label, he questions it: ‘How
can it be EIGHT sevenths?’ (Olive and Steffe, 2002, 
p. 426). Joe later refused to make a stick that is 10/7,
even though the procedure is physically possible.
Subsequently, on another day, Joe’s reaction to
another improper fraction is: ‘I still don’t understand
how you could do it. How can a fraction be bigger
than itself? (Olive and Steffe, 2002, p. 428; emphasis 
in the original).

According to the researchers, Joe only sees that
improper fractions are acceptable when they
presented a problem where pizzas were to be shared
by people. When 12 friends ordered 2 slices each of
pizzas cut into 8 slices, Joe realized immediately that
more than one pizza would be required; the traditional
partitioning situation, where one whole is divided into
equal parts, was transformed into a less usual one,
where two wholes are required but the size of the
part remains fixed.

This example illustrates the difficulty that students
have with improper fractions in the context of
partitioning but which they can overcome by
thinking of more than one whole.

Conclusion

Partitioning, defined as the action of cutting a 
whole into a pre-determined number of equal parts,
shows a slower developmental process than
correspondence. In order for children to succeed,
they need to anticipate the solution so that the right
number of cuts produces the right number of equal
parts and exhausts the whole. Its accomplishment,
however, does not seem to produce immediate
insights into equivalence and order of fractional
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quantities. Apparently, many children do not see it as
necessary that halves from two identical wholes are
equivalent, even if they have been taught about the
equivalence of fractions in school. 

In order to use this scheme of action as the basis 
for learning about fractions, teaching schemes and
researchers rely on pre-cut wholes or computer
tools to avoid the difficulties of accurate partitioning.
Students can develop insight into the inverse relation
between the number of parts and the size of the
parts through the partitioning scheme but there is
no evidence that they realize that if you cut a whole
in twice as many parts each one will be half in size.
Finally, improper fractions seem to cause uneasiness
to students who have developed their conception of
fractions in the context of partitioning; it is important
to be aware of this uneasiness if this is the scheme
chosen in order to teach fractions.

Rational numbers and children’s
understanding of intensive
quantities
In the introduction, we suggested that rational
numbers are necessary to represent quantities that
are measured by a relation between two other
quantities. These are called intensive quantities and
there are many examples of such quantities both 
in everyday life and in science. In everyday life, we
often mix liquids to obtain a certain taste. If you 
mix fruit concentrate with water to make juice, the
concentration of this mixture is described by a
rational number: for example, 1/3 concentrate and
2/3 water. Probability is an intensive quantity that is
important both in mathematics and science and is
measured as the number of favourable cases divided
by the number of total cases.7

The conceptual difficulties involved in understanding
intensive quantities are largely similar to those
involved in understanding the representation of
quantities that are smaller than the whole. In 
order to understand intensive quantities, students 
must form a concept that takes two variables
simultaneously into account and realise that there is
an inverse relation between the denominator and
the quantity represented.

Piaget and Inhelder described children’s thinking
about intensive quantities as one of the many
examples of the development of the scheme of
proportionality, which they saw as one of the

hallmarks of adolescent thinking and formal
operations. They devoted a book to the analysis of
children’s understanding of probabilities (Piaget and
Inhelder, 1975) and described in great detail the
steps that children take in order to understand the
quantification of probabilities. In the most
comprehensive of their studies, the children were
shown pairs of decks of cards with different numbers
of cards, some marked with a cross and others
unmarked. The children were asked to judge which
deck they would choose to draw from if they
wanted to have a better chance of drawing a 
card marked with a cross. 

Piaget and Inhelder observed that many of the
young children treated the number of marked and
unmarked cards as if they were independent:
sometimes they chose one deck because it had
more marked cards than the other and sometimes
they chose a deck because it had fewer blank cards
than the other. This approach can lead to correct
responses when either the number of marked cards
or the number of unmarked cards is the same in
both decks, and children aged about seven years
were able to make correct choices in such problems.
This is rather similar to the observations of children’s
successes and difficulties in comparing fractions
reported earlier on: they can reach the correct
answer when the denominator is constant or when
the numerator is constant, as this allow them to
focus on the other value. When they must think of
different denominators and numerators, the
questions become more difficult.

Around the age of nine, children started making
correspondences between marked and unmarked
cards within each deck and were able to identify
equivalences using this type of procedure. For
example, if asked to compare a deck with one
marked and two unmarked cards (1/3 probability)
with another deck with two marked and four
unmarked cards (2/6 probability), the children would
re-organise the second deck in two lots, setting one
marked card in correspondence with two unmarked,
and conclude that it did not make any difference
which deck they picked a card from. Piaget and
Inhelder saw these as empirical proportional
solutions, which were a step towards the abstraction
that characterises proportional reasoning.

Noelting (1980 a and b) replicated these results with
another intensive quantity, the taste of orange juice
made from a mixture of concentrate and water. In
broad terms, he described children’s thinking and its
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development in the same way as Piaget and Inhelder
had done. This is an important replication of Piaget’s
results results considering that the content of the
problems differed marked across the studies,
probability and concentration of juice.

Nunes, Desli and Bell (2003) compared students’
ability to solve problems about extensive and
intensive quantities that involved the same type of
reasoning. Extensive quantities can be represented
by a single whole number (e.g. 5 kilos, 7 cows, 4
days) whereas intensive quantities are represented
by a ratio between two numbers. In spite of these
differences, it is possible to create problems which
are comparable in other aspects but differ with
respect to whether the quantities are extensive or
intensive. Intensive quantities problems always
involve three variables. For example, three variables
might be amount of orange concentrate, amount of
water, and the taste of the orange juice, which is
the intensive quantity. The amount of orange
concentrate is directly related to how orangey the
juice tastes whereas the amount of water is
inversely related to how orangey the juice tastes. 
A comparable extensive quantities problem would
involve three extensive quantities, with the one
under scrutiny being inversely proportional to one
of the variables and directly proportional to the
other. For example, the number of days that the
food bought by a farmer lasts is directly
proportional to the amount of food purchased and
inversely proportional to the number of animals
she has to feed. In our study, we analysed students’
performance in comparison problems where they
had to consider either intensive quantities (e.g. how
orangey a juice would taste) or extensive quantities
(e.g. the number of days the farmer’s food supply
would last). Students performed significantly better
in the extensive quantities problems even though
both types of problem involved proportional
reasoning and the same number of variables. So,
although the difficulties shown by children across
the two types of problem are similar, their level of
success was higher with extensive than intensive
quantities. This indicates that students find it difficult
to form a concept where two variables must be
coordinated into a single construct,8 and therefore
it may be important for schools and teachers to
consider how they might promote this
development in the classroom.

We shall not review the large literature on intensive
quantities here (see, for example, Erickson, 1979;
Kaput, 1985; Schwartz, 1988; Stavy, Strauss, Orpaz

and Carmi, 1982; Stavy and Tirosh, 2000), but there is
little doubt that students’ difficulties in understanding
intensive quantities are very similar to those that
they have when thinking about fractions which
represent quantities smaller than the unit. They treat
the values independently, they find it difficult to think
about inverse relations, and they might think of the
relations between the numbers as additive instead of
multiplicative.

There is presently little information to indicate
whether students can transfer what they have
learned about fractions in the context of
representing quantities smaller than the unit to the
representation and understanding of intensive
quantities. Brousseau, Brousseau, and Warfield (2004)
suggest both that teachers believe that students will
easily go from one use of fractions to another, and
that nonetheless the differences between these two
types of situation could actually result in interference
rather than in easy transfer of insights across
situations. In contrast, Lachance and Confrey (2002)
developed a curriculum for teaching third grade
students (estimated age about 8 years) about ratios
in a variety of problems, including intensive quantities
problems, and then taught the same students in
fourth grade (estimated age about 9 years) about
decimals. Their hypothesis is that students would
show positive transfer from learning about ratios to
learning about decimals. They claimed that their
students learned significantly more about decimals
than students who had not participated in a similar
curriculum and whose performance in the same
questions had been described in other studies.

We believe that it is not possible at the moment to
form clear conclusions on whether knowledge of
fractions developed in one type of situation transfers
easily to the other, shows no transfer, or actually
interferes with learning about the other type of
situation. In order to settle this issue, we must 
carry out the appropriate teaching studies and
comparisons. 

However, there is good reason to conclude that the
use of rational numbers to represent intensive
quantities should be explicitly included in the
curriculum. This is an important concept in everyday
life and science, and causes difficulties for students. 
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Learning to use mathematical
procedures to determine the
equivalence and order 
of rational numbers
Piaget’s (1952) research on children’s understanding
of natural numbers shows that young children, aged
about four, might be able to count two sets of
objects, establish that they have the same number,
and still not conclude that they are equivalent if the
sets are displayed in very different perceptual
arrangements. Conversely, they might establish the
equivalence between two sets by placing their
elements in correspondence and, after counting the
elements in one set, be unable to infer what the
number in the other set is (Piaget, 1952; Frydman
and Bryant, 1988). As we noted in Paper 2,
Understanding whole numbers, counting is a
procedure for creating equivalent sets and placing
sets in order but many young children who know
how to count do not use counting when asked to
compare or create equivalent sets (see, for example,
Michie, 1984, Cowan and Daniels, 1989; Cowan,
1987; Cowan, Foster and Al-Zubaidi, 1993; Saxe,
Guberman and Gearhart, 1987). 

Procedures to establish the equivalence and order 
of fractional quantities are much more complex than
counting, particularly when both the denominator
and the numerator differ. Students are taught
different procedures in different countries. The
procedure that seems most commonly taught in
England is to check the equivalence by analysing 
the multiplicative relation between or within the
fractions. For example, when comparing 1/3 with
4/12, students are taught to find the factor that
connects the numerators (1 and 4) and then apply
the same factor to the denominators. If the
numerator and the denominator of the second
fraction are the product of the numerator and the
denominator of the first fraction by the same
number, 4 in this case, they are equivalent. An
alternative approach is to find whether the
multiplicative relation between the numerator 
and the denominator of each fraction is the same 
(3 in this case): if it is, the fractions are equivalent.

If students learned this procedure and applied it
consistently, it should not matter whether the factor
is, for example, 2, 3 or 5, because these are well-
known multiplication associations. It should also not
matter whether the fraction with larger numerator
and denominator is the first or the second. However,
research shows that these variations affect students’

performance. Hart et al. (1985) presented students
with the task of identifying the missing values in
equivalent fractions. The children were presented
with the item below and asked which numbers
should replace the square and the triangle: 

2/7 = �/14 = 10/�

The rate of correct responses by 11 to 12 and 12- to
13-year-olds for the second question was about half
that for the first one: about 56% for the first question
and 24% for the second. The within-fraction method
cannot be easily applied in these cases but the factors
are 2 and 5, and these multiplication tables should be
quite easy for students at this age level.

We recently replicated these different levels of
difficulty in a study with 8- to 10-year-olds. The
easiest questions were those where the common
factor was 2; the rates of correct responses for 
1/3 = 2/� and 6/8 = 3/� were 52% and 45%,
respectively. The most difficult question was 4/12 
= 1/� this was only answered correctly by 16% 
of the students. It is unlikely that the difficulty of
computation could explain the differences in
performance: even weak students in this age range
should be able to identify 3 as the factor connecting
4 and 12, if they had been taught the within-fraction
method, or 4 as the factor connecting 1 and 4, if
they were taught the between-fractions method.

A noteworthy aspect of our results was the low
correlations between the different items: although
most were significant (due to the large sample size;
N = 188), only two of the nine correlations were
above .4. This suggests that the students were not
able to use the procedure that they learned
consistently to solve five items that had the same
format and could be solved by the same procedure.

Our assessment, like the one by Hart et al. (1985),
also included an equivalence question set in the
context of a story: two boys have identical chocolate
bars, one cuts his into 8 equal parts and eats 4 and
the other cuts his into 4 equal parts and eats 2; the
children are asked to indicate whether the boys eat
the same amount of chocolate and, if not, who eats
more. This item is usually seen as assessing children’s
understanding of quantities as it is not expressed in
fraction terms. In our sample, no student wrote the
fractions 4/8 and 2/4 and compared them by means
of a procedure. We analysed the correlations
between this item and the five items described in
the previous paragraph. If the students used the
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same reasoning or the same procedure to solve the
items, there should be a high correlation between
them. This was not so: the highest of the correlations
between this item and each of the five previous ones
was 0.32, which is low. This result exemplifies the
separation between understanding fractional
quantities and knowledge of procedures in the
domain of rational numbers. This is much the same
as observed in the domain of natural numbers. 

It is possible that understanding the relations between
quantities gives students an advantage in learning the
procedures to establish the equivalence of fractions,
but it may not guarantee that they will actually learn it
if teachers do connect their understanding with the
procedure. When we separated the students into two
groups, one that answered the question about the
boys and the chocolates correctly and the other that
did not, there was a highly significant difference
between the two groups in the rate of correct
responses in the procedural items: the group who
succeeded in the chocolate question showed 38%
correct responses to the procedural items whereas
the group who failed only answered 18% of the
procedural questions correctly.

A combination of longitudinal and intervention
studies is required to clarify whether students who
understand fractional quantities benefit more when
taught how to represent and compare fractions.
There are presently no studies to clarify this matter.

Research that analyses students’ knowledge of
procedures used to find equivalent fractions and its
connection with conceptual knowledge of fractions
has shown that there can be discrepancies between
these two forms of knowledge. Rittle-Johnson, Siegler
and Alibali (2001) argued that procedural and
conceptual knowledge develop in tandem but
Kerslake (1986) and Byrnes and colleagues (Byrnes,
1992; Byrnes and Wasik, 1991), among others,
identified clear discrepancies between students’
conceptual and procedural knowledge of fractions.
Recently we (Hallett, Nunes and Bryant, 2007)
analysed a large data set (N = 318 children in Years
4 and 5) and observed different profiles of relative
performance in items that assess knowledge of
procedures to compare fractions and understanding
of fractional quantities. Some children show greater
success in procedural questions than would be
expected from their performance in conceptual
items, others show better performance in conceptual
items than expected from their performance in the
procedural items, and still others do not show any

discrepancy between the two. Thus, some students
seem to learn procedures for finding equivalent
fractions without an understanding of why the
procedures work, others base their approach to
fractions on their understanding of quantities without
mastering the relevant procedures, and yet others
seem able to co-ordinate the two forms of
knowledge. Our results show that the third group is
more successful not only in a test about fractions but
also in a test about intensive quantities, which did
not require the use of fractions in the representation
of the quantities.

Finally, we ask whether students are better at using
procedures to compare decimals than to compare
ordinary fractions. The students in some of the grade
levels studied by Resnick and colleagues (1989)
would have been taught how to add and subtract
decimals: they were in grades 5 and 6 (the estimated
age for U.S. students is about 10 and 11 years) and
one of the early uses of decimals in the curriculum
in the three participating countries is addition and
subtraction of decimals. When students are taught to
align the decimal numbers by placing the decimal
points one under the other before adding – for
example, when adding 0.8, 0.26 and 0.361 you need
to align the decimal points before carrying out the
addition – they may not realise that they are using a
procedure that automatically converts the values to
the same denominator: in this case, x/1000. It is
possible that students may use this procedure of
aligning the decimal point without fully understanding
that this is a conversion to the same denominator
and thus that it should help them to compare the
value of the fractions: after learning how to add and
subtract with decimals, they may still think that 0.8 is
less than 0.36 but probably would not have said that
0.80 is less than 0.36.

To conclude, we find in the domain of rational
numbers a similar separation between
understanding quantities and learning to operate
with representations when judging the equivalence
and order of magnitude of quantities. Students are
taught procedures to test whether fractions are
equivalent but their knowledge of these procedures
is limited, and they do not apply it across items
consistently. Similarly, students who solve
equivalence problems in context are not necessarily
experts in solving problems when the fractions are
presented without context. 

The significance of children’s difficulties in
understanding equivalence of fractions cannot be

25 Key understandings in mathematics learning



26 SUMMARY – PAPER 2: Understanding whole numbers

overstressed: in the domain of rational numbers,
students cannot learn to add and subtract with
understanding if they do not realise that fractions
must be equivalent in order to be added. Adding 1/3
and 2/5 without transforming one of these into an
equivalent fraction with the same denominator as
the other is like adding bananas and tins of soup: it
makes no sense. Above and beyond the fact that
one cannot be said to understand numbers without
understanding their equivalence and order, in the
domain of rational numbers equivalence is a core
concept for computing addition and subtraction.
Kerslake (1986) has shown that students learn to
implement the procedures for adding and
subtracting fractions without having a glimpse at 
why they convert the fractions into common
denominators first. This separation between the
meaning of fractions and the procedures cannot
bode well for the future of these learners. 

Conclusions and educational
implications
• Rational numbers are essential for the

representation of quantities that cannot be
represented by a single natural number. For this
reason, they are needed in everyday life as well as
science, and should be part of the curriculum in the
age range 5 to 16.

• Children learn mathematical concepts by applying
schemes of action to problem solving and reflecting
about them. Two types of action schemes are
available in division situations: partitioning, which
involves dividing a whole into equal parts, and
correspondence situations, where two quantities
(or measures) are involved, a quantity to be shared
and a number of recipients of the shares. 

• Children as young as five or six years in age are
quite good at establishing correspondences to
produce equal shares, whereas they experience
much difficulty in partitioning continuous quantities.
Reflecting about these schemes and drawing insights
from them places children in different paths for
understanding rational number. When they use the
correspondence scheme, they can achieve some
insight into the equivalence of fractions by thinking
that, if there are twice as many things to be shared
and twice as many recipients, then each one’s share
is the same. This involves thinking about a direct
relation between the quantities. The partitioning
scheme leads to understanding equivalence in a

different way: if a whole is cut into twice as many
parts, the size of each part will be halved. This
involves thinking about an inverse relation between
the quantities in the problem. Research consistently
shows that children understand direct relations
better than inverse relations. 

• There are no systematic and controlled
comparisons to allow for unambiguous conclusions
about the outcomes of instruction based on
correspondences or partitioning. The available
evidence suggests that testing this hypothesis
appropriately could result in more successful
teaching and learning of rational numbers.

• Children’s understanding of quantities is often
ahead of their knowledge of fractional
representations when they solve problems using
the correspondence scheme. Schools could make
use of children’s informal knowledge of fractional
quantities and work with problems about
situations, without requiring them to use formal
representations, to help them consolidate this
reasoning and prepare them for formalization.

• Research has identified the arguments that children
use when comparing fractions and trying to see
whether they are equivalent or to order them by
magnitude. It would be important to investigate
next whether increasing teachers’ awareness of
children’s own arguments would help teachers
guide children’s learning more effectively.

• In some countries, greater attention is given to
decimal representation than to ordinary fractions
in primary school whereas in others ordinary
fractions continue to play an important role. The
argument that decimals are easier to understand
than ordinary fractions does not find support in
surveys of students’ performance: students find it
difficult to make judgements of equivalence and
order both with decimals and with ordinary
fractions.

• Some researchers (e.g. Nunes, 1997; Tall, 1992;
Vergnaud, 1997) argue that different
representations shed light onto the same concepts
from different perspectives. This would suggest 
that a way to strengthen students’ learning of
rational numbers is to help them connect both
representations. Moss and Case (1999) analysed
this possibility in the context of a curriculum based
on measurements, where ordinary fractions and
percentages were used to represent the same
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information. Their results are encouraging, but the
study does not include the appropriate controls
that would allow for establishing firmer conclusions.

• Students can learn procedures for comparing,
adding and subtracting fractions without connecting
these procedures with their understanding of
equivalence and order of fractional quantities,
independently of whether they are taught with
ordinary or decimal representation. This is not a
desired outcome of instruction, but seems to be a
quite common one. Research that focuses on the
use of children’s informal knowledge suggests that it
is possible to help students make connections (e.g.
Mack, 1990), but the evidence is limited. There is
now considerably more information regarding
children’s informal strategies to allow for new
teaching programmes to be designed and assessed.

• Finally, this review opens the way for a fresh
research agenda in the teaching and learning of
fractions. The source for the new research
questions is the finding that children achieve insights
into relations between fractional quantities before
knowing how to represent them. It is possible to
envisage a research agenda that would not focus
on children’s misconceptions about fractions, but
on children’s possibilities of success when teaching
starts from thinking about quantities rather than
from learning fractional representations.

Endnotes

1 Rational numbers can also be used to represent relations that
cannot be described by a single whole number but the
representation of relations will not be discussed here.

2 The authors report a successful programme of instruction
where they taught the students to establish connections
between their understanding of ratios and decimals. The
students had received two years of instruction on ratios. A full
discussion of this very interesting work is not possible here as
the information provided in the paper is insufficient.

3 There are different hypotheses regarding what types of
subconstructs or meanings for rational numbers should be
distinguished (see, for example, Behr, Harel, Post and Lesh,
1992; Kieren, 1988) and how many distinctions are justifiable.
Mathematicians and psychologists may well use different
criteria and consequently reach different conclusions.
Mathematicians might be looking for conceptual issues in
mathematics and psychologists for distinctions that have an
impact on children’s learning (i.e. show different levels of
difficulty or no transfer of learning across situations). We have
decided not to pursue this in detail but will consider this
question in the final section of the paper.

4 Steffe and his colleagues have used a different type of problem,
where the size of the part is fixed and the children have to
identify how many times it fits into the whole.

5 This classification should not be confused with the classification
of division problems in the mathematics education literature.
Fischbein, Deri, Nello and Marino (1985) define partitive
division (which they also term sharing division) as a model for
situations in which ‘an object or collection of objects is divided
into a number of equal fragments or sub-collections. The
dividend must be larger than the divisor ; the divisor (operator)
must be a whole number; the quotient must be smaller than
the dividend (operand)… In quotative division or measurement
division, one seeks to determine how many times a given
quantity is contained in a larger quantity. In this case, the only
constraint is that the dividend must be larger than the divisor. If
the quotient is a whole number, the model can be seen as
repeated subtraction.’ (Fischbein, Deri, Nello and Marino, 1985,
p.7). In both types of problems discussed by Fishbein et al., the
scheme used in division is the same, partitioning, and the
situations are of the same type, part-whole.

6 Empson, Junk, Dominguez and Turner (2005) have stressed that
‘the depiction of equal shares of, for example, sevenths in a
part–whole representation is not a necessary step to
understanding the fraction 1/7 (for contrasting views, see
Charles and Nason, 2000; Lamon, 1996; Pothier and Sawada,
1983). What is necessary, however, is understanding that 1/7 is
the amount one gets when 1 is divided into 7 same-sized parts.’

7 Not all intensive quantities are represented by fractions;
speed, for example, is represented by a ratio, such as in 70
miles per hour. 

8 Vergnaud (1983) proposed this hypothesis in his comparison
between isomorphism of measures and product of measures
problems. This issue is discussed in greater detail in another
paper 4 of this review.
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