Activity description

(Interactive not shown on this sheet.)

Pupils start by exploring the patterns generated by moving counters between two stacks according to a fixed rule, doubling the size of the smaller stack. They are then asked to explore and describe the patterns arising from using different numbers of counters.

Suitability

Pupils working at all levels; individuals or groups

Time

2 hours

AMP resources

Pupil stimulus, Flash interactive

Equipment

Counters or multilink cubes Spreadsheet

Key mathematical language

cycle, repeat, sequence, reflection, predict, conjecture, proof

Key processes

Representing Identifying which variables and other mathematical aspects to focus on; devising appropriate forms of representation.

Analysing Working systematically; forming conjectures about relationships.

Interpreting and evaluating Exploring, verifying and justifying patterns and generalisations.

Communicating and reflecting Describing decisions, conclusions and reasoning clearly.

Teacher guidance

Ensure that the pupils understand the rule for creating the sequences of stacks and that they have equipment to experiment with. The rule can be demonstrated using large discs, an overhead projector, the interactive program, or using pupils in two rows to enact the movements between them.

Explore with pupils at least two different starting stacks for a chosen total of counters. Pupils should determine how they will gather and record results.

During the activity

Pupils who stop when the second stack is bigger than the first should be reminded that the rule is to double the smaller stack.

Make sure that pupils are clear about why they are stopping when they finish exploring a particular starting point.

A potential stumbling block with this activity is that, given the wealth of results, it can be difficult to manage all the data and to sort meaningful connections from red herrings. Pupils will need time, and may need some help, in establishing a systematic approach and a clear recording system.

As presented, this is a 2-variable problem – for instance the total number of counters and the number in one of the stacks to start with. Encourage pupils to be clear about any labels they choose for different numbers (variables) to lessen the chances of confusion.

If necessary, help pupils see that a useful strategy can be to explore all possibilities with a given total number of counters before moving on to a different total number.

There is potential in this activity to extend even the most capable pupils, but to do this they may need to be encouraged to continue when they have found generalisations for a limited set of numbers of counters.

As pupils become familiar with the practical process of moving the counters, they may naturally move to more abstract representations. After this has happened, some may prefer to record their results in a spreadsheet.

Encourage sharing between pupils of areas they have explored.

Areas pupils might have explored include:

- exploring which starting numbers produce a complete set of possible column heights;
- exploring which starting numbers produce 'reversing' chains, such as

 $(2,3)>(4,1)>(3,2)>(1,4)>(2,3)>\ldots;$

- exploring which starting numbers produce different types of 'subcycles';
- discovering results about specific families of numbers, such as prime numbers or powers of two.

Probing questions and feedback

AMP activities are well suited to formative assessment, enabling pupils to discuss their understanding and decide how to move forward. See <u>www.nuffieldfoundation.org/whyAMP</u> for related reading.

- How do you know when you have got all possible configurations for a given number of counters?
- Can you see patterns that are in common? See if you can group your results to highlight any patterns.
- Have you made any predictions? How will you decide if you are correct?
- Can you conjecture any general rules? If so, what are they?
- Explain or prove why your rules must be true.

Progression table

The table below can be used to:

- share with pupils the aims of their work
- facilitate self- and peer-assessment
- help pupils review their work and improve on it

The table supports formative assessment but does not provide a procedure for summative assessment. It also does not address the rich overlap between the processes nor the interplay of processes and activity-specific content. Please edit it as necessary.

Representing Choice(s) about mathematical features to investigate; choice of variables	Analysing Working systematically; forming conjectures about relationships	Interpreting and evaluating Exploring, verifying and justifying patterns and generalisations	Communicating and reflecting Describing decisions, conclusions and reasoning clearly
Applies the rule and keeps a record of results Pupils A, B	Accurately generates sequences for one or more total numbers of counters Pupils A, B	Understands that the defining rule can be applied to any number of counters	Communicates a finding sufficiently clearly for someone else to understand Pupils C, E
Presents results clearly and consistently, e.g. in a table, as number pairs or a mapping diagram Pupil C	Makes some attempt to select and control variables	Demonstrates, possibly by stopping, that a stacking sequence is determined when the original pair of numbers is reached, or when a number pair is repeated Pupils A, B	Describes a stacking sequence they have found, and describes their approach in a way that is fairly easy to follow Pupil B
Recognises the need to collect all possible results for a given total number of counters, and uses a systematic approach to do this Pupil C	Seeks a relationship, e.g. 'Is there a connection between the total number of counters and the number of steps?' Pupil D	Makes a simple observation, e.g. 'some chains have all possible numbers in them; others don't' Pupils C, D, E	Communicates patterns in some detail Pupil D
Uses algebraic terms in attempting to generalise stacking sequences Pupil E	Uses an effective method to work towards a solution, including developing conjectures and considering counter- examples	Develops a coherent picture by collating and building on their findings	Communicates findings clearly and shows some evidence of reflecting on their approach
By working through different examples, searches for a general classification of stacking sequences	Systematically explores relationships between the nature of the stacking sequences and the starting stack sizes	Justifies accurate generalisations for relationships between stacking sequences and the starting stack sizes	Describes decisions, conclusions and reasoning clearly and reflects on their approach

Pupil A

Pupil A understands and applies the rule and records results systematically. The columns are labelled in a way that initially represents the variable number of counters in each column, but this breaks down.

Probing questions

- Are your column headings consistent with your work? If not, how could you address this?
- What happens next if you apply the rule to the last step?

Pupil B

Pupil B has presented results clearly and consistently, and has demonstrated that a stacking sequence ends when the original pair of numbers is reached, or when a number pair is repeated.

The selection of starting numbers appears random, suggesting that the value of focused work has not yet been recognised – for example by collecting all possible results for a given total number of counters.

Probing questions

- How have you selected your starting numbers?
- Could you make other patterns starting with 9 counters?

Pupil C

Reality Odd Numbers 14 14 14 14 14 14 L R L R 3 11 9 5 13 1 4 2 7 6 10 4 7 4 2 2 6 8 6 8 10 4 2 2 12 2 8 6 2 12 2 12 12 8 6 2 12 2 12 12 8 6 2 12 2 12 12 8 6 2 12 2 14 12 2 12 2 14 14 10 12 2 12 2 8 6 10 4 10 4 10 12 2 6 8 10 12 2 <td>The even numbers that add up to 14 all contain 4 and 10, 8 and 6, 2 and 12 and then they repeat themselves. The other one contains these numbers aswell but the opposite way. They both take 2 moves until they get back to the beginning again $\frac{11}{6}5$ This takes 10 moves to 1 10 get back to the beginning 29 the same way round. 47 8 3 5 6 10 1 9 2 7 4 3 8 65</td>	The even numbers that add up to 14 all contain 4 and 10, 8 and 6, 2 and 12 and then they repeat themselves. The other one contains these numbers aswell but the opposite way. They both take 2 moves until they get back to the beginning again $\frac{11}{6}5$ This takes 10 moves to 1 10 get back to the beginning 29 the same way round. 47 8 3 5 6 10 1 9 2 7 4 3 8 65

Pupil C uses an effective recording system, improving as the work progresses in accuracy and, mostly, recognising when to stop.

Some attempt to control variables is shown by considering odd then even starting numbers, and simple statements are made for each, but without connecting the two. The result for 11 counters is correct, and it is recognised that getting back to the beginning 'the same way round' is important.

Probing questions

- What can you tell me if I start with 14 counters altogether?
- What are you going to look at next?

Pupil D

Pupil D has made some significant progress in managing the range of possible variables.

This work is close to a generalisation where the smaller stack starts at 1, but the explanation could be clearer.

With prime numbers, there is a description of emerging patterns, but with missing elements.

3 6 12 24	.3	5 7
2 1- 5 1 11 1 23 1	2 1 4	6 1
1 2 4 2- 10 2 22 2	1 2 3	52 52
2 4 8 4- 20 4	2 1	4 3 4
4 8 6 8-	3 moves	23 6 1
-= when the pattern starts 8 16		A . A moves
so on a it starts on the first one on		meyes 17.
6 the second on 12 the third and on 24 the		16
Fourth and one of the starting number must be 1.		13 15 2
Sinto 6 = C so the pattern starts	10 1 16	2 0 0
on 2 and so on through the	9 2 11	
sequence	7 4 9	9 1 16
15 you start on any prime number	3 0 7	2 1 13
and double it like there done with	6 5 10	6 0 0
3_U_WORK_just_like_with_6	2 9 1	12 14 1
To bell and all the astronomy	47 2	
L worked out an Fre prime numers	03 4	9
the only ones which don't severe	56 2	5
themselves in the number of	101 3	10
counters to the number of Mayes	11 maps 6	7
But 37 does work	12	· 1
	13	moves

Probing questions and feedback

- See if you can clarify your statement about prime numbers working 'just like with 3'.
- Make a general statement which you think would be true for any prime number of starting counters.
- Explore patterns obtained when you start with a smaller stack of size other than 1.

Pupil E

Pupil E has not summarised or otherwise presented how the work was tackled, but a systematic approach can be inferred since a relevant sub-set has been identified. (A spreadsheet to generate and record data may have been used.)

For 2, 4, 6, 8, 16, 32 etc stopping stack is stopping stack will be 32

A general formula is found for pairs of stacks containing 2ⁿ counters but no explanation given for the variables. There is no attempt made to justify generalisation or explain the significance of dividing by 2, and the conclusion is so brief that no other mathematical insight is shown.

Probing questions

- Explain how you have arrived at your conclusion.
- Why do you think this rule works?