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A. The Nuffield Project 
 
This literature review comprises the first part of a project funded by the Nuffield 
Foundation to develop guidance for teachers of 3 to 9 year olds in the use of 
manipulatives to teach arithmetic. The authors would like to thank the Nuffield 
Foundation for funding this work and trust that it will prove valuable to them 
and all teachers of elementary arithmetic who engage with its findings and 
outputs.  
 
The Nuffield Foundation is endowed charitable trust that aims to improve social 
well-being in its widest sense. It funds research and innovation in education and 
social policy and also works to build capacity in education, science and social 
science research. The Nuffield Foundation has funded this project, but the views 
expressed are those of the authors and not necessarily those of the Foundation. 
More information is available at www.nuffieldfoundation.org.  
 
Our thanks also go to our advisory panel: Professor Janet Ainley, Dr Ian Jones, 
Professor Tim Rowland and Professor Anne Watson.  
 
Professor Rose Griffiths and Dr Jenni Back are from the University of Leicester 
and Dr Sue Gifford is from the University of Roehampton. We would like to thank 
out universities for their support.  
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B. Introduction and background 

What are manipulatives? 
The National Curriculum in England (Department for Education (DfE) 2013) 
requires learners ‘to move fluently between representations of mathematical 
ideas’ (DfE, 2013: 3). However, in the absence of guidance, it is not immediately 
obvious to mathematics educators how we help learners to do this. Teachers of 
younger children have traditionally begun by using practical resources or 
manipulatives, including everyday objects, counters or mathematically 
structured apparatus, of which there is a wide variety currently marketed. 
Particularly in relation to arithmetic, there is a lack of published consensus about 
their relative merits or use. Although government inspectors advocate the use of 
practical resources they have also criticized schools for the way they use them:  

 ‘Carefully chosen practical activities and resources … have two principal 
benefits: they aid conceptual understanding and make learning more 
interesting. Too few of the schools used these resources well.’ (Office for 
Standards in Education (Ofsted), 2012: 27) 

In the National Curriculum (DfE, 2013) ‘concrete objects’ and materials are 
mentioned only for Key Stage One, for 5 to 7 year olds: elsewhere references are 
to a ‘range of representations’ and to arrays and number lines in particular.  
Practical resources were not permitted in recent national tests, even for six and 
seven year olds, presumably deterring teachers further.  

Therefore official guidance gives mixed messages about the desirability of the 
use of manipulatives, especially for the over sevens. As Brown (2014) noted, 
generally the use of manipulatives has declined in recent years.  

For the purpose of this review, we define manipulatives as  
‘objects that can be handled and moved, and are used to develop 
understanding of a mathematical situation’. 

 
This includes structured materials like hundreds, tens and ones apparatus and 
unstructured resources like counters or beans. Our definition of manipulatives 
reflects current literature. Whereas many studies just refer to ’concrete objects’, 
some focus on structured materials:  

 Manipulative materials are objects designed to represent explicitly and 
concretely mathematical ideas that are abstract. (Moyer, 2001:176) 
 

Others, like Uttall et al. (2013), distinguish between ‘informal’ and ‘formal’ or 
structured manipulatives. Some also specify a pedagogical function, as for 
instance, with Swan and Marshall’s (2010) definition:  

 A mathematics manipulative material is an object that can be handled by 
an individual in a sensory manner during which conscious and 
unconscious mathematical thinking will be fostered. (2010:14)  
 

This is also consistent with Carbonneau, Marley and Selig (2013:381), who refer 
to students ‘manipulating concrete objects to represent mathematical concepts’. 
Like them, most authors exclude measuring tools and calculators, but include 
fingers. Virtual manipulatives are beyond the scope of this review, although they 
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undoubtedly have advantages (as noted for instance by Dunphy, Dooley and 
Shiel, 2014). 
 
In the UK, in recent years, the English government’s numeracy projects have 
been highly influenced by the Dutch research into teaching mental arithmetic: 
beadstrings and empty number lines were recommended in official guidance 
(Department for Children, Schools and Families (DCSF), 2003; Beshuizen, 2010). 
However, according to Brown (2014:7), practical work has steadily declined, ‘ 
being a victim as much of the advent of interactive white boards and cuts in 
equipment budgets as of reduced teacher training periods’.  
 
More recently, the English government has been influenced by high performing 
jurisdictions, such as Singapore. Brown (2014: 7) points out that the Singapore 
curriculum is one which the UK ‘exported to Singapore in the 1950s, having then 
abandoned it ourselves as being widely dysfunctional’. Nevertheless, she points 
out that practical work has become fashionable there, commenting that this 
factor seems to have escaped the politicians. Current Singaporean influences in 
the UK, as evidenced by the government funded National Centre for Excellence in 
Teaching Mathematics (NCETM) include the bar model approach (reminiscent of 
Cuisenaire rods) and the use of Singapore textbooks advocating a Brunerian 
concrete- pictorial- abstract (CPA) approach (e.g. Fong, 2014). This has come to 
be interpreted as teachers presenting examples in different modes, in a linear 
sequence, which neither reflects original intentions for an active curriculum nor 
Bruner’s pedagogy, according to Hoong, Kin and Pien (2015).  
 
In addition, the UK government advocates the Shanghai approach, which does 
not include manipulatives. These confusing recommendations conflict with 
teachers’ practice based on previous initiatives and compete with commercially 
marketed models, such as Numicon (Wing, 2001), which is accompanied by 
professional development and resources. This complex context underlines the 
need for research and guidance for teachers with regard to the use of a range of 
manipulatives.  
 
The review begins by setting out our theoretical position, and is followed by a 
historical overview, followed by a review of current research regarding maths 
pedagogy. 
 

Our theoretical position 
Our approach to the role and significance of manipulatives in the teaching of 
arithmetic is based on a synthesis of cognitive and socio-cultural analyses of 
teaching and learning, in line with current thinking (e.g. Dunphy, Dooley and 
Shiel, 2014). We contend that a range of perspectives offers valuable insights 
into the processes of learning, of what goes on during lessons between the 
participants and also in terms of individuals’ developing understandings of 
mathematical concepts. Here we give some examples regarding particular 
manipulatives, teachers and theorists who have contributed to our position. 
   
Fingers: the first manipulatives 
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The advantages of drawing on a range of research are exemplified by considering 
what must be the most basic manipulative that is available to all children, their 
fingers. These important but sometimes overlooked manipulatives have been 
studied using various theoretical perspectives. From a cognitive view, Hughes 
(1986) found that three year olds used fingers as symbols to bridge between 
concrete and abstract. Others, such as Gray and Tall (1994), analysed the role of 
fingers as structured manipulatives; Marton and Neuman (1990) presented the 
process of abstraction from a phenomenological rather than a constructivist 
view of learning. According to Bills (2000:50) a 'phenomenographic' approach 
investigates ‘people's understanding of phenomena, seeking to categorise and 
explain the qualitatively different ways in which people think about the 
phenomena’.  
 

Marton and Neuman’s study (1990) focused on children’s responses and 
strategies, with detailed analysis of the challenges involved for low attainers, but 
also of the successful finger strategies of higher attainers. They cited Werner’s 
description of abstraction as ‘an organic transition from the level of concrete 
optical number groups to that of purely abstract number’ (Marton and Neuman, 
1990:69). They also emphasised the role of subitising (recognising the number 
in a group without counting) and of seeing numbers as wholes and parts 
simultaneously (for instance, recognising six fingers whilst also seeing five and 
one, or double three).  
 
Marton and Neuman studied finger representations with 59 Swedish children 
aged 7 to 12, 31 of whom had mathematics difficulties. This group all counted on 
or back with their fingers, rather than subitising fingers. For 9 subtract 6, they 
would count backwards from 9, raising 6 fingers, involving the difficult task of 
double counting six, (that is, counting backwards, 8, 7, 6, 5, 4, 3 while keeping 
track of how many they had counted back). This left them with an unhelpful 
image of 6 raised fingers, rather than the answer, 3. More successful children 
represented the problem with ‘finger numbers’, by holding up 9, then folding 
down six, leaving 3 raised fingers. They also quickly discovered that they could 
solve a missing addend problem by taking away: eg 2 + ? = 9 could be solved by 
raising 9, then folding down 2 fingers. ‘Used as part-part-whole patterns in finger 
numbers .. the parts as well as the whole were immediately grasped’. Children 
using ‘finger numbers’ realised that numbers like 7 could be grouped into a 
subitisable ‘5 plus something ‘ pattern (1990:66). Marton and Neuman referred 
to ‘the unbreakable hand’, as a unit of 5.  
 
Children also readily used doubles: ‘the whole number is analysed in order to see 
if it can be divided up into two similar parts: that is, in order to see if ‘doubles’ 
can be used’ (1990:67). They used near doubles for 3 + ? =7 by thinking of 3 and 
3 making 6, or solved 4 + ? = 10, by moving a thumb over from 5 and 5 fingers. 
For the children with mathematics difficulties who used counting strategies, ‘the 
parts could not be subitised within the whole, because only the added or 
subtracted part was created by the fingers’ (1990:71). Marton and Neuman 
concluded that double counting is ‘a barrier to the development of abstract 
thinking of number’ (1990:73), whereas ‘finger numbers’ helped children learn 
number relations within 10.  The children with mathematics difficulties also 
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attempted to solve multiplication problems with repeated counting of fingers, 
but lost track. This research therefore suggested that children should be taught 
to visualize finger numbers, which could help them to develop abstract, part-
whole concepts of numbers and more efficient calculation strategies, and also 
that this might prevent mathematics difficulties.  
 
Marton and Neuman described the development of abstract thinking in Piagetian 
terms as a natural progression, from activity via visualization to abstraction. This 
also echoed Bruner’s modes of representation: finger numbers which are ‘first 
used in a concrete and later in a concrete operational way, together with the 
strategies in which they are used, eventually become ‘known number relations’ 
or ‘concepts of number’’ (1990:69). They cited Werner: ‘”the concrete number 
groups become stripped of their picture-like properties ..”’ They argued that 
these ‘are not counting skills, but rather “seeing” skills’ or ‘analytic skills’ and 
that children ‘analysed known numbers’ (1990:69). From a phenomenological 
perspective, the fingers structured thinking, rather than knowledge being 
derived from concrete or mental actions alone. The qualities inherent in hands, 
such as  ‘the undivided hand ‘ and the way thumbs can be moved, allow children 
to see numbers in a concrete way and then in a visualized and ‘body-anchored’ 
way and finally just in a known or felt way (1990:72).  
 
However, what is not explained by Marton and Neuman is why some children 
develop ‘finger number’ representations to begin with, while others do not, so 
remaining dependent on counting in ones, and whether this is simply a matter of 
not having been taught to do so. 
 
Neuroscientific studies suggest other accounts for these processes in terms of 
representations and memory. Wood and Fischer (2008:355) propose ‘embodied 
cognition’ as an important theoretical approach ‘according to which all cognition 
is grounded in perception and action’. According to Goswami and Bryant (2007), 
conceptual understanding consists of networks of associations between different 
representational modes, including tactile, visual and verbal modes. ‘Finger 
numbers’ have the advantage of being represented as personal body parts, in 
addition to being encoded in muscle memory as actions. Research has also 
suggested, for instance by Butterworth (1999), that small numbers are 
intuitively represented in the brain in an area adjacent to that which represents 
fingers.  
 
More recent evidence endorses a close association between brain areas 
representing fingers and number magnitudes, which Wood and Fischer (2008) 
refer to as the ‘manumerical cognition’ hypothesis. This implies that fingers may 
provide some deeply intuitive and sensory embodiment of numbers in a way 
that other manipulatives do not. Neuroscientific evidence, according to Wood 
and Fischer (2008) also suggests that children use mental finger representations 
for numbers more than adults do, implying the importance of early finger use for 
developing numerical understanding.  Gracia-Bafulluy and Noel (2008) report a 
predictive link between finger awareness, as shown by distinguishing individual 
fingers (for instance by identifying which have been touched) and numerical 
performance. They found that training young children in finger awareness 
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improved their subitising, counting, comparing and recognition of numbers of 
fingers. Individual differences in intuitive finger awareness might therefore 
explain the different tendencies related by Marton and Neuman, which could be 
prevented by teaching.  
 
Other theories might also explain some children’s lack of use of finger numbers. 
For instance, Hannula and Lehtinen (2005) identified a general tendency of 
‘spontaneous focusing on numerosity’ (SFON) which varies significantly between 
individual children and is linked to mathematical achievement. This might also 
explain some children’s lack of intuitive association of fingers with numbers. 
Similarly, ‘awareness of mathematical pattern and structure’ (AMPS) has been 
identified by Mulligan and Mitchelmore (2009) as a spatial competence in young 
children which is linked to mathematical performance, suggesting that some 
children may more readily analyse the numerical composition of finger patterns. 
Mulligan & Mitchelmore also found that AMPS may be improved by teaching. 
Sinclair and Pimm (2015:108) report that using an electronic tablet application, 
‘Touchcounts’, quickly resulted in very young children moving from counting on 
their fingers to  ‘all-at-once’ subitised gestures for numbers to 10. All of this 
research suggests that young children might be taught more explicitly to use 
fingers to represent numbers. 
 
Socio-cultural perspectives also help to explain differences in finger use. 
In the USA Jordan (2003) noted that children from low-income families tended 
not to use fingers to solve problems, suggesting that finger representations are 
learned at home and are culturally influenced. In England, Baker, Street and 
Tomlin (2003) reported the skills of Aysha, taught by her father to count three to 
a finger (counting each joint) according to their cultural tradition and who could 
therefore count all her classmates on two hands. However, she did not use this 
efficient strategy in school, apparently dissuaded by the Anglo-centric classroom 
culture. Recently, Bender and Beller (2012) reviewed the huge cultural diversity 
of ‘finger numbers’, with increasing evidence that these affected the way people 
thought about numbers, arguing for ‘embodied cognition’. People from some 
cultures count fingers in fives, while others consider a hand as four fingers, with 
the thumb used for counting the segments of each finger. Bender and Beller 
noted that some systems might be more efficient than others or have different 
advantages: for instance four fingers with three segments allow calculation in 
base 12.  
 
Fuson and Kwon (1992) linked Korean children’s superior calculation skills with 
their early use of fingers to represent numbers to 20 by raising then folding them 
down, thus emphasizing ‘bridging through ten’ when adding or subtracting. 
Fuson and Kwon also pointed out that this strategy, which structures addition 
and subtraction through ten, was supported by the language structure, with 
numbers over ten named as ‘ten-one’, ‘ten-two’, in contrast to the more opaque 
English terms of ‘eleven’ and ‘twelve’. Bender and Beller (2012) noted that finger 
systems may be supported or in conflict with verbal and symbolic number 
representations in a culture, with consequent possibilities for confusion. It also 
seems likely that elaborate finger use from an early age, as with the Korean 
example, may contribute to number understanding.  
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In terms of implications for teaching, it might also be helpful to teach efficient 
ways of using fingers, building on examples from different cultures. Systems that 
represent larger numbers may help to develop mental calculation strategies. 
Novack, Congdon, Hemani- Lopez and Goldin-Meadow (2014) found that 
children who represented meanings by gestures independently of action with 
objects, more successfully generalised their understanding. This underlines the 
potential significance of embodied cognition.  
 
Neuroscientific and anthropological evidence about the way finger 
representation and vocabulary affect the development of number concepts 
suggests the need to consider manipulative use in conjunction with gesture and 
language from a social constructivist viewpoint. This combination of cognitive 
and socio-cultural analyses seems particularly fruitful in providing insights into 
the complexities of the use of manipulatives to develop children’s arithmetic. 
 
Teaching with structured equipment  
Accounts of teachers who have successfully (and unsuccessfully) used 
manipulatives provide another important source of insights into factors affecting 
the use of manipulatives. The work of Madeleine Goutard (1964), teaching with 
Cuisenaire rods, exemplifies and provides insights into the pedagogical 
complexity involved. Following Gattegno and Cuisenaire’s (1954) guidance, she 
developed her own pedagogy, firstly encouraging free play, then setting 
challenges, initially without referring to numbers. She analysed children’s 
responses, then developed her approach accordingly, with high level outcomes in 
terms of children’s abstract understanding, as shown for instance, by seven year 
olds’ writing equivalent equations with fractions, brackets and indices. This 
demonstrated not only her knowledge of the mathematical learning potential of 
the rods, but of how children learn cognitively and affectively, in terms of 
ensuring motivation. Explicit in her approach are mathematical pedagogical 
principles, such as valuing insights into algebraic structures, encouraging 
processes such as generalisation and explanation, and developing children’s 
positive self-belief as mathematical learners.  
 
Central to her approach were the activities that she devised, based on children’s 
responses and their ways of working, which were open-ended yet structured 
challenges. Another feature was her strong commitment to high expectations for 
all children, believing nothing was too difficult or abstract for six and seven year 
olds to learn. Her accounts of classroom discussions, valuing all children’s 
contributions and encouraging reasoning, also exemplify the characteristics of a 
math-talk learning community (Hufferd-Ackles, Fuson and Sherin, 2004).  The 
nature of activities and their aims, teachers’ expectations of children’s ability to 
learn mathematics, their interactions with pupils, and their ‘central role in 
establishing the mathematical quality of the classroom environment’ (Yackel and 
Cobb, 1996: 475) are all significant aspects of pedagogy, which are not usually 
identified in quantitative studies evaluating the success of manipulatives.  
 
Cognitive representation theory: Bruner  
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In order to gain insights into factors affecting the pedagogical use of 
manipulatives, this review considers a range of studies from different 
perspectives. Theories of the role of representation have been central to any 
study of manipulatives, and Bruner (1964) remains an influential theorist in this 
field. Bruner’s work resonates with Goutard (1964) in suggesting that even 
young children could learn sophisticated concepts, if they were presented in an 
accessible way. Bruner proposed an instructional sequence of representational 
modes with increasing abstraction, echoing Dienes’ (1960) teaching cycle.  
 
Bruner saw concepts as:  

‘representations resulting from the mental organization of experience: 
the end product of such a system of coding and processing is what we 
may speak of as representation’  
(Bruner, 1964: 2).  
 

He proposed a sequence of enactive, iconic and symbolic modes of 
representation. 

 Enactive representation is a ‘mode of representing past events through 
appropriate motor response’ (1964:2), or ‘ a set of actions’ (1966; 44). 
The implication is that the action rather than the visual arrangement is 
remembered, and encoded in muscle memory. This might include action 
schemas, for instance ‘sharing’ by rhythmically dealing out objects one- 
to- one, as well as jumping along a number track. The enactive mode is 
therefore essentially about learner activity, rather than representation 
with concrete materials. 

 Iconic representation entails selectively organized and ‘summary images 
or graphics’ (1966:44) which are created by the individual from their 
experience. This emphasis on schematic diagrams may be different to 
some current interpretations of ‘iconic’ as pictorial representation. It also 
implies sense- making activity by the learner, rather than just presenting 
children with pictures and images.  

 Symbolic representation, the most abstract representation mode, involves  
‘a set of symbolic or logical propositions, drawn from a symbolic system 
which is governed by rules or laws for forming or transforming 
propositions’ (1966: 45).  This includes verbal generalisations to express 
relationships as well as written symbols, equations and formulae. 
 

Bruner’s theory is similar to Piaget’s in emphasizing understanding as rooted in 
reflection on actions, but he refuted the idea of children going through 
developmental changes in thinking with maturation, instead suggesting that 
children could learn any concept by employing the sequence of modes, which 
provide increasingly economical and powerful representations of ideas. Hoong et 
al. (2015) pointed out that a common myth in mathematics education suggests 
that Bruner’s modes are distinct and should be presented sequentially. This is 
common in some interpretations of the supposedly Brunerian concrete- 
pictorial-abstract (CPA) progression where different representations are 
presented to children, beginning with everyday contexts and culminating in 
symbolic equations. Hoong et al. (2015) point out that Bruner refers to 
introducing symbols ‘along the way’  (1966: 64) and in his pedagogy, ‘elements 
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of the symbolic mode, such as algebraic notations are developed alongside the 
primarily enactive and iconic stages of instruction, leading towards a proficiency 
of operation with the symbolic system’ (2015: 6). Bruner’s theory therefore 
suggests a more complex relationship between concrete and abstract 
representations with a more active role for the learner than some current 
interpretations may imply.  
 
Mason and Johnston-Wilder (2006) present an alternative interpretation of 
Bruner from that of teacher-presented CPA images. They argue that Bruner’s 
modes are essentially different worlds of experience, or different phases of 
activity in an internalizing process of coming to understand a mathematical 
concept or structure: 

 Manipulating  
 Getting a sense of  
 Articulating  

 The first phase involves manipulating objects, which may not necessarily be 
physical, and dealing with specific examples of the relation being considered. 
The second phase involves getting a sense of, or a feel for ‘some underlying 
structure, pattern or relationship’ (2006:33) and this includes visualizing and 
drawing schematic diagrams to capture relationships. In the third phase learners 
articulate generalisations, can use formal and symbolic expressions and use 
words and symbols to represent concepts, which become reified so they can be 
acted on as mental objects, and manipulated in their turn. These phases 
therefore present a constructivist view of learning and teaching, involving 
creative activity on the part of the learner. Moving backwards and forwards 
through these three worlds of experience, between manipulable objects, mental 
imagery and drawing and abstract symbols helps children and adults to develop 
mathematical thinking and reasoning. The talk accompanying these worlds 
offers another layer in the complex process that allows the teacher to hear what 
the children are thinking. 
 
Bruner’s theory is therefore highly significant in proposing physical activity as 
the root of conceptual representation and learning, and also in suggesting a way 
of progressing away from the use of physical objects towards abstract 
expression.  In suggesting a solution to the problem of how concrete 
understanding becomes abstract, it continues to be very influential. As 
interpreted by Mason, it becomes significant in presenting an active process for 
learners, via pattern spotting, visualization and articulation which includes their 
own drawing, writing and explanations. 
 
Current early mathematics pedagogy 
Dunphy et al. (2014), in reviewing the literature on mathematics education for 
three to eight year olds in preparation for a new Irish curriculum, provide a 
useful summary of recent theoretical developments, emphasizing learning as a 
social rather than purely cognitive process, following Lerman (2000). They point 
to the key role of language according to the different theories: from a cognitive 
view of learning, language is seen as representing ideas, whereas ‘in 
sociocultural terms, children are enculturated into mathematics through social 
and discursive activity (2014:62). They cite Sfard (2007) as making a useful 
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distinction between language as a tool and language as discourse, an activity in 
which the tool (one of several) is used or mediates. They identify the role of talk 
for discussing, challenging, reasoning and justifying, and also cite research 
linking the amount of math-related adult talk with pre-school children’s learning 
(eg. Klibanoff, Levine, Huttenlocher, Hedges & Vasilyeva, 2006). They also 
emphasise situationist theories (eg. Lave & Wenger, 1991), which view learning 
as participation, with children developing identities as mathematicians, within 
‘math-talk’ communities of learners, as proposed by Hufferd-Ackles et al. (2004), 
where learning is collaborative.  
 
Dunphy et al. (2014) agree with the USA’s National Research Council (NRC) that 
the main aim of early mathematics education should be the ‘development of 
mathematical proficiency, defined as including conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning and productive 
disposition’ (Kilpatrick, Swafford, & Findell, 2001:10). This aim therefore sees 
both content and processes as important aspects of mathematics education, with 
the addition of positive attitudes.  
 
The pedagogical approach recommended by the Irish review for early 
mathematics is mathematization, echoing the RME approach discussed 
previously. The suggestion is therefore that mathematical activity for young 
children should involve contextualized problem-solving, rather than, for 
instance, mathematical enquiry using patterns of colour rods. Ginsburg is cited 
as arguing that making meaning from everyday contexts and real world 
problems involves children in the key processes which develop mathematics 
proficiency.  
 
Boaler (2009) discusses the creation of positive identities, suggesting it is not 
compatible with placing children in ‘ability groups’, but requires a pedagogical 
approach aimed at creating equity. This involves teachers having expectations 
that all children are capable of mathematical learning, and consciously using 
strategies such as ‘assigning competence’, or publicly highlighting contributions 
of children who might otherwise have low status, as part of the ‘complex 
instruction’ approach (Boaler, 2010). Creating positive mathematics identities 
also requires broader mathematics tasks, including problem solving, which focus 
discussion on children’s solution methods and allow for more forms of success 
than finding the right answer. This approach is also endorsed by Sarama and 
Clements (2009), who conclude that discussing children’s inventions of 
strategies to solve problems is the most effective starting point, even for teaching 
standard methods. Manipulatives may provide support in helping children to 
explain why strategies work. 
 
From a socio-cultural view, manipulatives may be the focus or vehicle for 
learning through interaction: 

The core concern of sociocultural theories is the mediated nature of all 
human activity through interactions with others around tasks and 
activities and with material and symbolic tools.  
(Dunphy et al., 2014:48)  
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Manipulatives therefore may become the subject of dialogue and reasoning, 
rather than images to be internalized. Dunphy et al. also refer to 
constructionism, as proposed by Papert, the inventor of LOGO, and discussed 
with reference to IT programmes involving interactive geometry. They cite 
Papert and Harel, who suggest the value of constructing understanding through 
constructing ‘a public entity, whether it is a sand castle on a beach or a theory of 
the universe’ (2014:49). The collaborative element of learning through 
discussion about the constructions is emphasised within ‘learning environments 
that encourage thoughtful reflection’, suggesting that ‘a key role of teachers is to 
foster the development of a reflective culture in their classrooms’ (2014:51). 
This suggests that construction with manipulatives, such as children creating 
patterns with Cuisenaire, might also be considered as a constructionist way of 
learning, and points to the potential value of a more contemplative creative 
approach to mathematics activities. 
 
Dunphy et al.’s (2014) synthesized theory sees children’s learning as the 
development of: 

 meaning making 
 conceptual understanding 
 skilled participation in mathematics-related activities 
 a mathematics identity 
 use of key tools such as language, symbols, materials and images 
 participation in communities of learners engaged in mathematisation 

in small group and whole class conversations. 
Within this synthesized theoretical stance, manipulatives have a role in the co-
construction of meaning through modeling and argumentation. They are a focus 
for interaction, which mediates learning cognitively and socially.   
 
This view is supported by current theories of representation and research into 
the effectiveness of manipulative use. 
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C. Historical overview 
The use of objects to represent numerical relations goes back a long way- to the 
third millennium BC when early counting devices consisted of pebbles arranged 
in grooves in the sand or on tablets. In the history of children’s education in 
Europe, following Froebel (1826/1885), Maria Montessori (1912) was amongst 
the earliest to devise specific materials for arithmetic, and was followed by 
others such as Stern in the 1930s, Cuisenaire, whose work was developed and 
disseminated by Gattegno in the 1950s, and Dienes in the 1960s. These 
developments aligned with Piagetian theory (1941/1952), that young children’s 
number learning was based on manipulating objects. The popularity of these 
various structured materials spread internationally, waxing and waning 
throughout the 20th century, alongside other developments such as ‘new 
mathematics’ in the 1960s. Realistic Mathematics Education (RME) developed in 
the Netherlands in the 1970s, placing more emphasis on contextualised 
problems and diagrammatic models (Streefland, 1991).  
 
With technological developments, new resources have become popular, such as 
interlocking plastic cubes, which could be used instead of colour rods and as an 
alternative to Dienes’ base ten apparatus and have become ubiquitous in 
primary classrooms. Originally these linked on two faces only, while later 
versions linked on all six faces (Unifix and Multilink, respectively).  
 
Some older resources have been rediscovered, such as Stern’s number plates 
now available in range of guises including Numicon. These shapes are based on a 
‘tens frame’ image, which is much more common outside the UK, providing easily 
recognised images for numbers up to 10 and emphasising odd and even 
properties. More recently, virtual manipulatives have become widely available, 
with advantages over their physical equivalents for access and classroom 
management (Mildenhall, Swan, Northcote & Marshall, 2008) but with the major 
disadvantages that children do not have the chance to handle the materials and 
cannot work on their own or in pairs with the interactive version.  
 
In England from the late 1990s, government initiatives including the National 
Numeracy Strategy focused on a variety of images including more abstract 
models such as number lines and number squares (DCSF, 2003). More recently, 
interest in Singapore’s mathematics teaching has refocused English attention on 
Bruner’s (1966) theory of an enactive mode of learning (eg. Fong, 2014) but also 
on the use of the diagrammatic ‘bar model’ for solving number problems with 
young children (National Centre for Excellence in Teaching Mathematics 
(NCETM), 2015). Teachers of young children have therefore continually been 
exposed to arguments about the relative merits of practical resources and 
abstract models and images for arithmetic. Throughout these developments, 
there has been ongoing debate about how exactly children are supposed to learn 
abstract mathematical ideas from manipulating objects (Dufour-Janvier, Bednarz 
& Belanger, 1987; Goldin, 1998). Therefore, it is perhaps not surprising if 
teachers are inconsistent in their use of manipulatives and vague about the 
learning processes involved (Moyer, 2001; Swann and Marshall, 2010; Ofsted 
2012). 
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Froebel (1826/1885), in Germany, saw children as ‘endowed with inner 
spiritual powers that unfolded in an educational environment’ (Gutek 2004:11). 
He devised teaching materials, including a set of 500 wooden building blocks 
representing numbers to 12:    

The material for building in the beginning should consist of a number of 
wooden blocks whose base is always one inch square and whose length 
varies from one to twelve inches. If, then, we take twelve pieces of each 
length, two sets e.g., the pieces one and eleven, the pieces two and ten 
inches long, etc.- will always make up a layer an inch thick and covering 
one foot of square surface; so that all the pieces, together with a few 
larger pieces, occupy a space of somewhat more than half a cubic foot. It is 
best to keep these in a box that has exactly these dimensions; such a box 
may be used in many ways in instruction, as will appear in the progress of 
a child's development. (Froebel, 1826/1885:283)  

These blocks were the precursors of rods such as Cuisenaire’s.  
 
Montessori (1912/1965), from Italy, also devised specific resources to help 
children learn arithmetic, with an approach based on discovery, facilitated by 
teachers who observed children’s development. She advocated that ‘things’ were 
‘the best teachers’ (Mayer, 1965). According to Mayer, she followed previous 
‘child-centred’ educationalists such as Rousseau, Pestalozzi and Froebel, but 
rejected Rousseau’s total freedom, found Pestalozzi too mechanical and all of 
them too philosophical. Her methods were developed by working intensively 
with children then described as ‘mentally defective’, and helped them to pass 
public examinations. Montessori saw the teacher as the ‘directress’ who was to 
‘guide the children as they taught themselves to learn’ (Gutek, 2004:17). 
Children used self-correcting, self-selected materials, so teachers were no longer 
in controlling roles. However her approach was more structured than that of 
contemporary US progressives such as Dewey and consequently her approach 
was less favoured in the USA. 
 
The Montessori number materials, which are still used with children from the 
age of three in Montessori schools, emphasise numeral values, including place 
value, and relations between numbers. They include segmented number rods 
and ‘golden’ beads strung in tens which can be arranged to form a ‘cube’ of 1000. 
Activities include matching objects to large numerals, and pairing rods to 
investigate ways of adding and subtracting to produce numbers within 20. Some 
Montessori activities pre-empt materials developed later: for instance number 
cards where single digit cards were superimposed over cards with multiples of 
10, to form 2 digit numbers. ‘Arrow cards’ or place value cards fulfill a similar 
function.  
 
Stern (1949/1953) developed her materials in the late 1920s in Germany in her 
training nursery. She was concerned that children’s understanding of arithmetic 
should not be based on counting, according to Sawyer(1953), who describes 
‘counting on’ as a ‘disastrous habit’. Stern had become dissatisfied with 
Montessori apparatus, where two 5 strings of beads were longer than a 10 string, 
which forced children to count to check. She produced coloured graduated rods 
‘so that children could see before them a concrete picture of the number series’ 
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(Stern 1953:21). (These were made by Bakelund, who invented Bakelite, which 
was the forerunner of plastic.) The rods were scored to show their value in 
individual cubes, but they were introduced through various matching and 
pairing activities, encouraging children to memorize bonds to 10 by colour and 
size, before naming numbers. Stern devised self-checking inset boards, including 
some showing the pattern of odd and even numbers arranged in two columns. 
She also produced base 10 materials, including a square representing a hundred 
and a cube for a thousand. An insert number track allowed children to check, for 
instance, the value of an array by making a ‘train’ of cubes. Through this range of 
apparatus, Stern was encouraging children to link different images of the 
number system.  
 
In 1938 she went to the USA, where she worked with Wertheimer, the founder of 
Gestalt Psychology. Wertheimer's ‘productive thinking’ (1945) emphasized the 
importance of oscillating between the part and the whole sense of an object or 
situation, especially when trying to understand or solve problems.  This is in 
contrast to considering thinking and learning as reproductive and associated 
with repetition, conditioning, habits or familiar intellectual territory. This 
approach links with seeing arithmetical understanding in terms of part-whole 
relationships. Stern described her approach as one in which  

‘counting is taught but not used in computation… Structural Arithmetic 
provides materials to be used in experiments that reveal the structural 
characteristics of number and number relationships” (Stern 1953:15).  

 
Stern proposed that a given sequence of experiments with the materials led to 
the discovery of number facts and relations. These were remembered, not 
through repetition, but because of the strength of visual images that the pupil 
can reconstruct mentally.  Children would memorise number facts in groups, for 
instance as doubles or ‘neighbours of the doubles’. Her workbooks have 
illustrations which duplicate the mental pictures gained while working with the 
materials (Stern 1953:18). The actual work with the manipulative devices leads 
directly to the algorithms of arithmetic (1953:19) and children recording their 
findings by writing equations. Problem solving follows investigative number 
activities and develops mathematical reasoning: children learn how to analyse 
problems and ‘how to decide to which group a problem belongs...the reasoning 
used at this level is that used in algebra’ (1953:21).  
 
Stern criticized ‘progressive education’ and ridiculed the theory that young 
children would gradually abstract numerical relations from manipulating 
everyday objects. She also rejected a problem-based approach, whereby children 
would engage with arithmetic in order to solve interesting problems, regarding 
this as inefficient. Instead, she proposed that children should learn pure 
mathematics first, then apply it:  

They discover with delight how their mastery of arithmetic helps them 
explore their surroundings.. In teaching Structural Arithmetic we do not 
study life situations filled with numbers. We fill numbers with life!  
(Stern, 1953:16) 
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In Europe after the Second World War, manipulatives were promoted by several 
mathematics educationalists including Gattegno and Dienes. Less famous others 
include Castelnuevo in Italy, whose focus, mainly on geometry, was described as 
using concrete materials to foster exploration, conjecturing and the creation of 
examples and counter examples (Furenghetti and Menghini, 2014). Like 
Montessori and Stern, these educationalists saw structured materials as 
embodying mathematical relations and stimulating learning in a process of 
guided discovery.  

1952 saw the foundation of the Association for Teaching Aids in Mathematics 
(ATAM) by a group of enthusiasts led by Caleb Gattegno and Roland Collins 
(https://www.atm.org.uk/History). This organisation later became the 
Association of Teachers of Mathematics (ATM). Gattegno was then a lecturer at 
the London University Institute of Education. Members of ATAM experimented 
with ideas put forward by Cuisenaire and Goutard and promulgated teaching 
materials including films, coloured rods and geoboards.   

‘New mathematics’, of which Dienes was one of the advocates, challenged 
mathematics education in the 1960s. Walters (1963) argued that primary 
teachers needed to have more of an understanding of new topics in mathematics 
such as set theory and matrices. There was a move away from an emphasis on 
speed and accuracy in computation as goals for mathematics teaching, towards a 
belief that  

‘children should be vitally interested in their mathematics work and 
should be led to appreciate both the power of mathematics in application 
and the beauty and fascination of its own internal patterns. Throughout 
their work children should have a more creative part to play’  
(Walters, 1963: 51).  
 

Discussion about mathematics was considered important as was the need for 
children to express their mathematical ideas in written form. Advocates of 
structured materials were therefore in line with the ethos of mathematics 
educationalists at the time, in emphasizing children discovering and being 
creative with mathematical patterns and relationships, as well as in expressing 
themselves mathematically through discussion and writing. 
 
Such approaches link with Piaget’s (1952) account of children learning through 
reflection on actions with objects and materials, involving ‘successive 
restructurings of facts and relations’ (Resnick & Ford, 1984:111). Piaget implied 
that children’s understanding of number was dependent on their ability to 
visualize transformations: for instance understanding the invariance of number 
requires the mental reversal of actions such as spreading out beads. 
Understanding also depends on children’s ability to reason logically, for instance, 
thinking, ‘if I did this, then..’ (Piaget, 1952:37). Piaget suggested that children 
could do this at a ‘concrete operations stage’ from about 7 years old. He also 
drew attention to young children’s difficulty in processing complex information: 
for instance understanding the concept of inclusion, as with seeing 4 and 2 
within 6, requires a child to see the whole number and its parts simultaneously, 
or understand part-whole relationships. Similarly, he found younger children 
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unable to consider two adjustments at the same time, for instance, after changing 
4 and 4 into 1 and 7, they said there were more altogether, because they only 
focused on one alteration. In order to understand the number system, children 
had to integrate number relations such as inclusion and order, ultimately 
performing ‘an operational synthesis of classification and seriation’ (Piaget, 
1952: viii).  
 
Piagetian theory therefore suggested a need for young children to manipulate 
objects, in order to develop visualization, reasoning and understanding. Because 
he saw children as constructing their own systems of ideas, the active discovery 
approaches of Montessori and Stern resonate with Piaget’s ideas. Piaget also 
pointed out that number understanding requires young children to focus on the 
quantity rather than the properties of objects. His emphasis on young children’s 
difficulties with complex information perhaps also endorsed structured 
manipulatives which present number relations simply, facilitating 
comprehension of part-whole relationships. 
 
Gattegno recognized the potential of Cuisenaire rods which had been devised in 
the 1920s by Georges Cuisenaire at about the same time as Stern was developing 
her manipulative devices. Cuisenaire’s intention was to make mathematics 
visible, and as readily comprehensible to children as music, which he also taught. 
The 10 coloured rods were very similar to Stern’s, except they were smaller 
(based on one centimetre units) and they had no marks to indicate numbers, so 
were more likely to deter children from calculating by counting. Similar colours 
indicate related factors eg 3 and 6 are both green. There were no accompanying 
numerals or other materials. The rods were used mainly in the Belgian village 
school where Cuisenaire taught, until his success, particularly with ‘weaker’ 
students, prompted Gattegno to visit in 1953. He subsequently promoted the 
rods and wrote workbooks for them (Gattegno & Cuisenaire (1954). He believed 
that the rods both embodied the core relationships and structures of 
mathematics and stimulated ‘intuition and enquiry’ (Resnick and Ford, 
1981:120).  
 
Gattegno’s (1954) approach with Cuisenaire rods taught children to visualise 
transformations: therefore his workbooks contained no illustrations.  He 
addressed teachers through these, thereby also encouraging teachers to visualize 
and generalize, so bypassing the need for a teacher’s manual which might be 
overlooked. His pedagogical approach began with free play, followed by closed 
questions and open challenges to stimulate investigation and reflection.  
 
Language was used to express the same relation in different ways, eg 1 is what of 
2? What is half of 2? This emphasized principles such as equivalence and inverse. 
Children were instructed to answer questions or test statements by visualizing. 
They were taught to use standard signs for equations, first through matching, 
then visualizing and recording their own arrangements. Like Stern, Gattegno 
directed children to first describe relations between the rods by colour, before 
introducing numbers. This pre-numerical stage includes finding common 
differences and equivalent fractions, then recording equations in terms of 
colours. Gattegno therefore intended that children would generalize algebraic 
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relationships, such as commutativity or inverse operations, before engaging with 
numbers or symbols. Children then investigated the numbers to five in terms of 
addition, subtraction, multiplication and fractions, so they became thoroughly 
familiar with the composition of each number through different operations and 
relationships.  
 
Like Stern rods, Cuisenaire rods encourage discoveries about equivalence, since 
the same length or area can be made in many different ways. Because children 
are also encouraged to express number facts in different ways, as bonds, 
differences, factors and fractions, they can investigate connections between 
arithmetical relations through familiarity with a few numbers, using 
mathematical reasoning processes, such as generalizing and testing. The rods 
can also be used to stand for different numbers, so that orange might be 5 or 10, 
or 1 or 100 or any other number, which also helps children to derive number 
facts and generalise relationships. 
 
One criticism of Gattegno’s Cuisenaire approach is that it involves learning two 
codes, first recording relationships with colours, then with numbers. On the 
other hand, because the Cuisenaire approach requires children to think with only 
one image of the number system, there were doubts as to whether it would 
enable them to abstract arithmetical understanding and generalize to other 
situations. However Goutard’s implementation of Gattegno’s approach 
demonstrates that abstraction and understanding can result from this approach. 
 
Goutard (1964) developed Gattegno’s Cuisenaire approach in Canada to teach 6 
and 7 year olds, with impressive results. Goutard’s approach pre-empted later 
concerns, not only about generalizability, symbolic abstraction and problem 
solving, but also about the role of teacher and the social environment of the 
classroom.  
 
Like Gattegno, Goutard encouraged free play followed by directed exploration, 
discussing colours before introducing numbers. The children identified families 
of equivalent additions, fractions, differences and ratios. She advocated three 
phases for teaching each operation: 

 empirical,  
 systematization  
 mastery of structures. 

 
The first of these is essentially exploratory, for instance finding lots of examples 
of pairs of rods with the same difference. The second involves ordering specific 
examples systematically and looking for patterns: Goutard emphasises that this 
should only be encouraged by the teacher when children have started to 
organise their pairs and started this phase for themselves: then they will be 
asked to put the rods away and visualise pairs and patterns. In the third phase 
children can generalise, for instance saying that if the same number is added to 
each of a pair of rods, the difference will stay the same, and they produce ‘free 
writing’ with equivalent equations involving much bigger numbers than they 
have used physically. Goutard therefore similarly emphasises this process as the 
child actively constructing representations and understanding.   
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Her approach might be summarized as ‘do, talk and record’ (Open University, 
1982) and comprised:  

 manipulative games 
 conscious analysis 
 writing of mathematics facts obtained. 

The children were taught how to record using mathematical symbols.  At the end 
of each lesson, the rods were put away and children were encouraged to write 
freely, starting from what they had found out, creating new equations. This 
creative mathematical writing was a distinctive aspect of Goutard’s approach. 
The free writing sessions seemed to encourage children to generalize and create 
patterns, with some original results.  
 
Children not only were engaged in investigating and testing generalisations, but 
became very familiar with facts for individual numbers, including complements 
and factors. Goutard argued that free composition developed children’s fluency 
in reading and writing mathematics: children were not intimidated by complex 
expressions because they were confident in producing them.  
 
Her approach was also significant in fostering children’s enjoyment of pure 
mathematics. She described children playing with and being ‘charmed by’ 
mathematical expressions and so writing ‘arithmetical puns’ (1964:52): 
 
  b = b + (p-p) = b – (d-d) = b + (t-t)  

(9-9)+(9-9) = 0  (20-20) + (10-10) = 0 
 
1x1 =1 
1x1x2 =2 
1x1x1x3 =3 
1x1x1x1x4=4 

 
In the examples above, children seem to be enjoying the paradoxes created by 
zero and 1, by the way inverse operations can produce 0, or how repeatedly 
multiplying by 1 has no effect. There seems to be a playfully humourous element 
in creating impressively elaborate and sophisticated equations which reduce to 
simple statements like 10 x 1 =10. These are also reminiscent of younger 
children’s number jokes, as noted by Gifford (2004). Like Stern, Goutard was also 
convinced that children could enjoy mathematical investigations in pure 
mathematics.  
 
The teacher’s role in Goutard’s approach was of paramount importance: she 
observed and analysed children’s responses, then planned accordingly. Activities 
were usually challenges to find equivalences, alternatives and families, so tasks 
were open-ended, undifferentiated, inclusive and creative. Goutard also 
described classroom discussions where children investigated and justified each 
other’s findings. While the structuring of Cuisenaire rods makes discovering 
numerical relationships possible, Goutard’s carefully judged challenges and 
responses made this happen. She emphasized the importance of valuing all 
responses and not transmitting any negative messages. She was insistent about 



 20 

giving children freedom to explore, to own their investigations and to create 
examples for as long as they wanted. In this Goutard’s work links with later 
research findings that effective mathematics teachers expect that all children can 
learn (Askew, 2002). However it also seems clear that she was creating 
communities of mathematical enquiry in her classes (Boaler 2009). 
 
In summary, Goutard’s approach to using Cuisenaire rods, like Gattegno’s,  
focuses on algebraic relationships using ‘do, talk and record’, within an enquiry -
based learning community and with the distinctive strategy of removing 
apparatus before writing freely, which stimulates generalizing and creative 
investigation. It seems to counter concerns about the limitations of one image, as 
children move on successfully to thinking with abstract symbols.  However, it 
does seem to require commitment to using the rods consistently for extended 
periods of time, as well as requiring a highly skilled and mathematically expert 
teacher. 
 
Dienes (1960) was another major proponent of structured materials in the 
1950s and 1960s. From the end of the nineteenth century, teachers in many 
classrooms across Europe had commonly used home-made materials, such as 
bundles of ten spills tied with raffia, to help children understand place value and 
to carry out arithmetical procedures. Dienes took this further, developing 
arithmetic blocks reminiscent of Stern’s base 10 blocks but covering other 
number bases as well, and hence called multibase arithmetic blocks (MAB). 
‘Because patterns and relationships are not obvious in children’s everyday 
environments’, he proposed creating embodiments ‘to bring them within the 
realm of concrete experience’ (Resnick and Ford, 1981: 116), echoing Piagetian 
terminology of ‘concrete operations’.  He argued that specially designed 
mathematics materials were free of distractors and enabled early learning about 
algebraic principles without numbers or symbols. He also believed ‘children are 
by nature fundamentally constructivist rather than analytic’, learning through 
‘active exploration’. Nevertheless, his materials were aimed at analyzing 
common features of mathematical relationships, between embodiments in 
several number bases. ‘Multiple embodiments’, provided ‘a rich store of mental 
images’ (Resnick and Ford, 1981:122) with ‘perceptual variability’ ie looking as 
different from each other as possible and ‘mathematical variability’ eg of context 
or number involved, including geometric, physical, social, arithmetical and 
algebraic forms. Dienes proposed a learning cycle, summarized by Resnick and 
Ford (1981): free play was followed by structured games directing children’s 
attention to key properties of the ‘multiple embodiments’ of a concept.  This 
process was accompanied by talk, drawing ‘pictures, graphs or maps’, then 
attaching symbols, which might be of children’s own choosing or creation. These 
symbols were associated with images and became the ‘tools for mental 
manipulation’. Learning became systematized by playing with symbols and rules. 
Throughout the whole process, materials and images were revisited in order to 
reconnect symbols with concrete experience. 
 
Dienes’ pedagogical approach is similar to that of Gattegno and others in 
advocating free play followed by guided discovery, visualisation and deferred 
symbolization. The symbols then become objects to play with (as exemplified by 
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Goutard’s children), in a cyclical or spiralling process of increasing abstraction. 
Dienes differed from Gattegno in emphasizing generalization from varied 
examples of materials, of number systems with different bases. Goutard also 
used Cuisenaire to represent different number bases, insisting that an 
understanding of place value should be based on understanding powers. What is 
distinctive in Dienes’ cycle is his clear theory of how children develop abstract 
understandings of symbols, by linking them to diagrammatic images of the 
abstracted concepts, aided by talk, and his suggestion that children should 
record through drawing and choosing their own symbols.  
 
However, Dienes’ multibase approach was not widely adopted in primary 
schools. Later use of Dienes’ apparatus commonly focused just on modelling 
addition and subtraction algorithms (Askew, 2012), rather than building 
children’s understanding of how the number system works. 
 
Realistic Mathematics Education (RME), which developed in the Netherlands 
in the 1970s, followed the ideas of Freudenthal (1975) and opposed the 
‘structuralist’ approach (Treffers, 1991). The RME approach is based on 
providing story problems which lead children to ‘mathematize’, or develop 
mathematical ideas, models and strategies from these situations, rather than 
learning directly from models of mathematical structures. Van den Brink (1991) 
noted that ‘realistic’ referred to children ‘realising’ their own ideas and 
imaginings, because RME values children’s understandings and the role of 
visualization. The RME approach emphasises making mathematical operations 
more meaningful and memorable, encouraging talk, and providing models which 
link the context and the arithmetical relations, also leading to abstract notation. 
For instance, the story of a shepherd trying to keep track of his sheep leads 
children to ‘invent’ ideas of place value, through the model of exchanging 10 
pebbles for a coloured stone. Gravemeijer (1991) suggests that Freudenthal 
drew on ideas of reinvention from the history of mathematics.  
 
Models are often pictorial or diagrammatic, rather than involving manipulatives: 
they included number lines and arrays, as well as signs like arrows (for instance 
used to record people getting on or off a bus): thereby ‘models of ‘ a situation 
become ‘models for’ abstract mathematics. The contexts are carefully chosen to 
realistically present mathematical models of place value, division or fractions, 
with later teaching of the abstract symbols. In more recent examples from the 
USA, Fosnot and Dolk (2001, 2002) use models and images which are integral to 
their story problems: for instance grouping in tens was used to count classroom 
resources, a ‘soda’ machine provided an array image of stacked cans and 
rectangular sandwiches could be drawn as fraction bars. Contexts thereby 
provided both meaning and images: according to Gravemeijer (1991: 75-76) 
‘understanding and insight are supported by the context, which can serve as a 
situation model. ‘Strong’, ‘fitting models’ helped children  ‘bridge the gap 
between informal, context bound work and the formal, standardized manner of 
operation, through the constructive contribution of the children themselves’ 
(Treffers, 1991: 33).  
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In the later RME approach, children’s contributions became more central and 
models were based on observations of children’s intuitive strategies. Originally, 
according to Gravemeijer (1991), discussion was elicited to follow a previously 
mapped out route of ‘discovery’.  Subsequently, possible learning routes were 
planned, based on children’s own solution methods or ‘shortcut’ strategies. 
These included the use of structured apparatus. For instance, close observation 
of children using the abacus for addition revealed that it prompted them to 
count, instead of using number facts. Researchers also noticed that some 
children used doubles, fives and tens as points of reference. An abacus was then 
devised with beads grouped in fives by colour, to encourage ‘reading off ‘ the 
numbers of beads by subitising, thereby prompting more children to use these 
shortcuts. The arithmetic rack (rekenrek) was subsequently designed (two rows 
of ten beads grouped in 5s) so that 6 +6 could be recognized as double 5 +2 or 
double 6.  

 
 
These developments also reflected the RME focus on mental arithmetic, whereas 
mechanistic and stucturalist approaches were seen as prioritizing written 
algorithms (Gravemeijer, 1991).  
 
The RME group wanted structural apparatus to be used to develop 
understanding of mathematical relationships rather than as a calculating device: 
the abacus should be used as a thinking tool, not just a working tool. This is 
similar to the concern expressed by Goutard (1964:25): the role of material aids 
in mathematics teaching is not as a calculating machine.  
  
The RME group was significant in using structured materials together with close 
observation, creating manipulatives that reflected children’s effective ways of 
seeing numbers. ‘The material is used to elicit (mental) arithmetic actions which 
other children have previously developed themselves’ (Gravemeijer, 1991:76). 
This was a significant departure from previous apparatus based on adults’ 
analysis of mathematical structures. Following the influence of Vygotsky (1978), 
constructivist theories of learning were diversifying, with more emphasis on 
social learning. For the RME group, constructivism meant giving the initiative to 
the child to build their own understanding. Children would create idiosyncratic 
constructions, which were attuned through consultation and negotiation in 
social interaction.  There was also considerable problematisation of the different 
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meanings of representation, either as materials embodying number 
relationships and or as mental pictures of activity.  
 
One concern was the discrepancy between the manipulative action and the 
intended mental activity, as with subtracting using the abacus. There remained 
the problem of how children learned to think abstractly: 

The danger exists that working with manipulative materials does not 
prepare for working without manipulatives … The problem of the 
transition from thinking about material to thinking in terms of 
mathematical relationships and concepts. (Gravemeijer, 1991:75) 
 

 Gravemeijer (1991, citing Van Parreren) suggested that the process of 
internalizing was not about imagining using the blocks, so physical actions did 
not have to mirror mental ones: learning was about creating shortcuts, including 
imagining actions, automatizing actions or restructuring tasks. The process of 
learning was seen as the gradual creation of schemas or mental organized 
knowledge structures, through abbreviation and generalization, supported by 
the use of realistic contexts. According to van den Brink (1991:83), Freudenthal 
regarded children’s mathematisation as activities in which they move back and 
forth between the real world and the world of symbols: as with Dienes, 
abstraction was not seen as a linear process.  
 
RME’s overall contribution to the development of mathematics manipulatives 
was to observe how children used apparatus and, through seeing learning as a 
process of organizing, abbreviating and creating shortcuts, then to create 
structured material that would encourage the use of children’s shortcuts or 
points of reference. Since the 1990s, the focus on children’s mental strategies has 
developed, alongside the use of manipulatives such as the rekenrek and 
beadstrings, as well as the empty number line (van den Heuvel-Panhuizen, 
2008). RME also posed a challenge to the use of structured apparatus, offering 
criticisms which will be considered in more depth in the next section.  
 
Postscript 
The development of new materials leads to new possibilities. For example, 
advances in the manufacture of plastics led to the invention of interlocking cubes 
allowed for the flexible construction of number rods, but with the possibly 
distracting opportunity to count individual cubes.  
 
In summary, ideological approaches, technological advances and government 
policies, as well as psychological analyses of children’s learning, have resulted in 
the changing use and cycles of rediscovery of structured manipulatives to teach 
arithmetic. For example, the endorsement of Dienes’ apparatus in an Ofsted 
report has led to a resurgence in interest in base ten equipment (2012: 27). 
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D. Critiques of the use of manipulatives 
 

Empirical studies of the effective use of manipulatives 
 
This section considers empirical research into the general use of manipulatives. 
Uttall, Scudder and Deloache (1997) noted that reviews of research into the 
effectiveness of manipulatives have generally been inconclusive. We particularly 
found that empirical studies using control groups produced unclear results since 
such studies are unable to identify and control for the many variables involved. 
Qualitative studies reveal insights into the complexity of the processes involved 
in teaching, including teachers’ views. 
 
Quantitative studies 
Carbonneau, Marley & Selig (2013) conducted a recent meta–study of research 
which used control groups and compared manipulatives or images of 
manipulatives with just abstract symbols (eg approaches using only text books). 
They identified four aspects of measuring efficient learning: retention, problem 
solving, transfer and justification. It was not clear how long after the intervention 
retention was assessed. They defined ‘problem solving’ as not being told a 
method, ‘transfer’ as applying to a new situation eg from addition to 
multiplication, and ‘justification’ as explaining a chosen method. Arguably the 
latter might seem most indicative of understanding. They considered a range of 
mathematics topics. 
Their findings may be summarised as follows: 

 Instruction: overall there was a small to medium effect of instruction 
using manipulatives, with a larger effect on retention than problem 
solving, transfer and justification. Higher levels of instructional guidance 
improved retention and problem solving, while lower levels improved 
transfer. It was not clear why this might be, indicating that more research 
was needed about the topics involved. 

 Age of children: manipulatives were more effective with 7 to 11 year olds 
than 3 to 6 year olds (or over 11s). They suggested that younger children 
did not understand ‘that an object can stand for the item while 
simultaneously representing a larger mathematical concept’. 

 Perceptual richness: realistic manipulatives suppressed learning in terms 
of retention and problem solving but seemed to improve transfer, which 
contradicted the findings of previous studies, indicating the need for 
further investigation. 

 Length of time: medium length studies (under 45 days) were generally 
more effective, with shorter studies (under 15 days) more effective for 
retention and medium length worse for problem solving. These findings 
seemed insecure (especially considering that Utall et al. (2013) reported 
that longer use was more effective). 

 Topics: manipulatives were more effective with fractions and algebra 
than arithmetic (including the four operations). 
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There were several limitations of the meta-review: 
 There was a lack of distinction in studies between manipulatives and 

images of manipulatives. 
 Timing was unclear: presumably the post–test was administered 

immediately after the study, in order to assess retention. 
 These are studies with an empiricist experimental methodology, and so 

do not evaluate the effects of long term uses of manipulatives, such as 
Goutard’s (1964) or Ainsworth’s (2013) several years of teaching using 
Cuisenaire. 

The oddity of some results, such as the effectiveness of less instructional 
guidance and more perceptually rich manipulatives improving transfer rather 
than retention, cast doubt on the validity and reliability of the review’s findings. 
It seems likely that the studies which used tests of transfer to measure 
effectiveness, had other features which affected findings, since no reasonable 
explanation for these results was offered. Similarly, the finding that shorter 
interventions were more effective seemed insecure, with no explanation relating 
to manipulative use (for instance, it may have been due to a short-term 
Hawthorne effect and the difficulties in sustaining momentum in longer studies). 
The need for further investigation and analysis is clear. 
 
Regarding topics, it is interesting that fractions and algebra were more 
successful than arithmetic, as this might be deduced from the focus of the main 
proponents of structured apparatus, Cuisenaire and Dienes, as discussed above. 
The main findings, that perceptually rich manipulatives are less effective, that 
more instruction is more effective and that very young children may have 
difficulties with recognising the symbolization of the manipulatives, are 
supported by the literature. The latter point is interesting because it challenges 
Piagetian assumptions that concrete materials are more appropriate with 
younger children and likely to be less effective with older children. 
 
What is lacking from these studies is consideration of the kind of activities that 
the children were engaged in and the social context- whether they were about 
performing calculations or pattern seeking, solitary or collaborative. It also 
seems likely, as Goutard argues, that the success of manipulative use may be 
affected by the skill of the teacher in assessing children and challenging them 
appropriately.  
 
In summary, it may not be possible for empirical research to assess the 
effectiveness of the use of manipulatives, if it focuses on short term use and does 
not control for other key factors, such as kinds of activities, pedagogy, teacher 
expertise and social context.  
 
Qualitative studies of effective use 
Qualitative studies of teachers using manipulatives reveal more about the 
complex variables involved in using manipulatives, as Goutard’s account of her 
own practice shows. Frequently they reveal the inappropriate use of 
manipulatives, so that they may even hinder learning. Qualitative studies have 
analysed the use of manipulatives from both the children’s and teachers’ 
perspectives. 
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Some researchers, such as Lesh, Behr and Post (1987), found that children had 
more difficulty with concrete than abstract problems. Boulton- Lewis (1998) 
used information processing theory to explain children’s difficulties using base 
ten materials to support column addition and subtraction algorithms. She had 
found that, given the choice, children used ‘verbal and mental methods’ or 
fingers, rather than apparatus or written methods to solve two or three digit 
addition and subtraction problems (although they sometimes used apparatus to 
please the interviewer). She argued that difficulties arose because of the 
complexities involved in children mapping between the symbolic problem and 
the materials, which were used as analogies for the numerical relationships: 

When the complexity of the mappings for three-digit subtraction is 
analyzed … It seems that perhaps the most difficult way to perform two or 
three digit addition, in terms of the load on processing capacity, is to use 
analogs to support limited knowledge of place value, while trying to learn 
to use an algorithm. (Boulton- Lewis,1998: 221) 

One issue here seems to be that Dienes’ materials were being used to teach 
understanding of the written algorithm to children who also lacked 
understanding of the place value system. Gravemeijer (1991) cited Resnick and 
Cobb, who both described children, who did not yet understand the relations 
between the tens and ones blocks, attempting to use base 10 blocks to solve 
addition and subtraction problems. , Taylor, A., O’Donnell, B. & Fick, 
 
Moyer (2001), studying sixth to eighth grade teachers, found that manipulatives 
were used as ‘little more than a diversion in classrooms where teachers were not 
able to represent mathematics concepts themselves’, thereby pointing to the lack 
of pedagogical subject knowledge of the teachers (2001:175). With grade 9 
teachers, Golafshani (2013) also identified that teachers saw manipulatives 
mainly as affecting students’ engagement and that they had concerns about their 
competency in using them. The teachers identified several factors affecting the 
use of manipulatives, including classroom control and noise level, management 
of tidying up, availability of resources and time factors.  
 
Puchner, Taylor, O’Donnell and Fick (2008) described teachers mis-using 
manipulatives in lesson study: they cited Schram and Ball asserting that teachers 
assume children will automatically internalize understanding from 
manipulatives. They concluded that teachers designing lessons were not clear 
how the manipulatives would help learning and were using them because they 
assumed they were ‘a good thing’, ‘as an end in themselves’. The teachers failed 
to assess that the children already understood what they intended to teach. In 
one lesson the manipulatives hindered learning, because cubes were used for 
counting, rather than helping the students to think algebraically as intended. 
Generally the teachers had ‘…a practice of using the manipulatives without 
carefully thinking how the content will actually be learned using the 
manipulative in question’ (2008:322). Teachers had not identified what 
students’ possible responses might be and so were frustrated when they were 
not as expected. Instead they needed the exercise of analyzing the intersection 
between the content goal, the specific type of manipulative, the way the 
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manipulative would be used and the way students make sense of the 
representation. They suggested analyzing scenarios in terms of linkages between 
pedagogy, mathematical content and learning, including some with 
inappropriate manipulatives and some without any. Teachers needed to know 
their advantages and disadvantages and the theory behind their use. They 
suggested that a better focus would be children’s ‘drawings and self- invented 
strategies’, because that would problematise children’s thinking for teachers, 
rather than their assuming that understanding would be automatic. Puchner et 
al. (2008) concluded that because ‘hands-on’ learning was appealing to 
elementary teachers, a general recommendation to use apparatus was not 
helpful. 
 
Similar comments about ‘hands on’ learning have been made by other 
researchers, linked with doubts about how well Piagetian theory has been 
understood by educationalists and whether the ‘concrete operations stage’ was 
later seen as requiring activity with objects, rather than visualization of 
transformations and reasoning about these (Clements, 1999). Swan and Marshall 
(2010) found that some Australian teachers justified using manipulatives as 
‘concrete visualisation’ and ‘hands on learning’, terms which echo Piagetian 
theory. Swan and Marshall concluded that ‘teachers could not identify exactly 
what it is about manipulatives that assists in the learning of mathematics’ 
(2010:14). They found that teachers also associated manipulatives with concept 
formation, perhaps considering them unnecessary for more complex 
mathematics with older children. This view may also derive from Piagetian stage 
theory, that older children at the formal operations stage are able to reason 
abstractly, without reference to objects.  
 
Moscardini (2009) identified teachers either using manipulatives as ‘tools’ to 
help children make sense of problems or as ‘crutches’ to enable them to 
complete a procedure (often poorly understood). This implies that the use of 
manipulatives as a ‘crutch’ is associated with aims of successful calculation, 
rather than relational understanding. Manipulatives as ‘crutches’ may also be 
seen as serving aims of inclusion, by allowing some children to achieve success at 
class tasks they would otherwise find too difficult, by low level counting 
strategies. This points to the issues of the kinds of activities and mathematical 
aims for which manipulatives are used, as well as teachers’ analysis of learning. 
 
This research therefore underlines the importance of teachers considering the 
processes of learning involved with manipulatives, the links between them and 
the mathematics, as well as assessment of children’s understanding before and 
during teaching. These studies raise the following questions about manipulative 
use: 
 

• How does the manipulative represent the mathematics?  
• How do children make sense of the manipulatives?  Are some 

representations too opaque or complex for some children? 
• How do children move from understanding mathematical relationships in 

concrete to abstract form? 



 28 

 
How does the manipulative represent the mathematics?  

The use of manipulatives to help children learn maths requires them to see 
physical materials as symbols for mathematical relationships: however these 
symbols necessarily represent some aspects at the expense of others. Whereas 
for Stern (1953:15) the rods provided children with an unproblematic ‘picture of 
the number series’ for them to reconstruct mentally, it is one of many possible 
pictures. Where Stern rods emphasize numbers increasing by one, base 10 
blocks illustrate numbers increasing by powers of 10. The number 12, 
represented using an array of toys, may emphasise 12 as double six and six pairs, 
demonstrating commutativity; on the rekenrek 12 may be seen as the double of 
5 plus one (illustrating the distributive law) and as 10 and 2, whereas ten-frames 
may be used to show 12 as 6 plus 4 plus 2, or the result of ‘bridging through ten’.  
 

 

All of these present a very different image of the number system to the number 
line, which uses a continuous rather than discrete model of number. An approach 
using this model was advocated by Russians such as Davydov (Schmittau & 
Morris, 2004). 
 
Kaput (1987:23) identifies five elements in representation:  

 the represented world,  
 the representing world,  
 what aspects of the represented world are being represented,  
 what aspects of the representing world are doing the representing and  
 the correspondence between them.  

For instance, with Cuisenaire, numbers are represented as wooden rods, 
emphasizing increasing in ones, shown by 1cm lengths and colours. The 
increasing lengths correspond quite closely to the numerical values, but the 
colours are arbitrarily linked to factor families. The lack of marked divisions on 
the rods, in contrast to Stern’s rods, helps to focus attention on the proportional 
relationships between the rods. However, children may not focus on the 
numerical relations intended by representations: for instance, they may 
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associate numbers with colours and not register the relations between the 
lengths or shapes. Or they may see numbers as collections of ones, not as whole 
entities, raising the issue of whether children need to have already formed 
abstract number concepts, in order to see rods as symbols for them.  
 
How do children make sense of the manipulatives?  
 
We do not know how children make sense of manipulatives and Boulton–Lewis’ 
(1998) analysis of mapping representations highlights a dominant theme of 
cognitive theories which problematised manipulatives. It seems that by the 
1980s structured manipulatives were being used in a directed way to teach 
calculations, or as self explanatory, rather than with the original approach of 
guided discovery of mathematical relations. The pedagogy of structured 
materials was apparently not disseminated in the latter years of the 20th century 
and Gattegno’s (1954) and Dienes’ (1960) focus on algebraic relations was no 
longer a priority. Ma (2015) suggests that US elementary school mathematics 
focuses on learning to calculate, in contrast to Chinese mathematics education 
which encourages exploration of relationships between operations.  
 
Some theorists identified several levels of mapping or translation that needed to 
take place in order for structured materials to help children understand 
symbolic arithmetic. Hiebert and Carpenter (1992) identified the difference 
between internal and external representation. Thinking requires internal 
representations, including images and language: ‘To think about mathematical 
ideas, we need to represent them internally, in a way that allows the mind to 
operate on them’ (1992:66). Communication requires external representations, 
including spoken language, symbols, pictures and objects.  
 
The demand of understanding manipulatives used to represent dynamic 
operations is another issue. Dufour-Janvier et al. (1987: 119) pointed out that 
when children manipulate rods, we cannot be sure how they remember these 
actions and whether, as Piaget proposed, they subsequently imagine 
hypothetical transformations or reversals. It has been noted that criticisms of 
manipulatives often focus on Dienes apparatus being used to model two or three 
digit subtraction involving decomposition, which requires several fleeting 
transformations. It is also notable that subtraction using Cuisenaire is introduced 
as a static ‘difference’ relationship, rather than dynamic ’taking away’, with the 
advantage that the numbers in the problem remain visible for comparison 
(Gattegno, 1954). Similarly, other activities suggested by Gattegno and Goutard 
(1964) involve grouping equivalent fractions or making number patterns which 
can be analysed at leisure, rather than disappearing in a transformation. 
Criticisms of manipulatives do not seem to include these more contemplative 
algebraic activities. Goutard’s (1964) practice implies that fluency in calculation 
followed activities focusing on equivalence, and would be done mentally or 
symbolically. It may be that manipulatives are easier to understand when used to 
represent static patterns, enabling them to be discussed in a more contemplative 
way. 
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Another issue with symbolic representations is that they have operating 
conventions or ‘syntax’ (Vergnaud, 1987).  Usually children have to learn the 
teacher’s ways of manipulating and describing equipment. According to Dufour-
Janvier et al  (1987:118), the child is forced to ‘learn’ the representation that is 
submitted to him: the rules of usage, the conventions, the symbols and the 
language linked to the representation. Similarly, teachers, schools and advisors 
may also develop their own cultures of procedures for using manipulatives, with 
associated language and recording. All of this points to the complexities of an 
additional learning load which manipulatives can present for children. Teachers 
therefore need to be aware of the problematic relationship between 
manipulatives and mathematical ideas, and the conventions involved in using 
them.  
 
Are some representations too opaque or complex for some children?  
 
There may be developmental constraints with some particular models in terms 
of their complexity. There is neuroscientific evidence that working memory, 
which processes complex information, expands from the age of six (Siegel and 
Ryan, 1989). Boulton-Lewis (1998) pointed out that children could only deal 
with system mapping (ie relations between 3 elements) from the age of five. 
Resnick (1983) proposed that children first constructed a number line image of 
number and that a part-whole model was a later development. This view may be 
supported by the argument of some neuroscientists that a number line is an 
intuitive image (e.g. Dehaene, 2001).  
 
Fuson (2009) argues that the continuous number model of the number line is too 
difficult for young children who want to count discrete items.  If children do not 
have concepts of numbers as whole entities, then holding in mind the whole and 
parts of a number simultaneously would seem impossible for young children, 
preventing learning number combinations in this way.  
 
Barmby, Bolden, Raine, and Thompson (2011) found that less than half of the 
eight and nine–year olds in their study could interpret representations of 
multiplication, including equal groups, the array and the number line. This may 
be because multiplicative thinking involves more complex part-whole 
relationships, such as envisaging numbers of numbers. Barmby et al. (2011) also 
found that some older primary children could not access the array, despite 
considerable exposure: this might be due to the cognitive demands of the array 
as simultaneously presenting numbers as groups in two directions. It therefore 
seems that some models may be too complex for some, not necessarily younger, 
children to process and understand. 
 
Some children may lack the necessary concepts to understand a model, 
according to Cobb (1995). Despite a social constructivist view of learning, he 
argued that learning in a socially supportive situation, with one child explaining 
to another, may not work if a child has not constructed concepts to give meaning 
to the words used, despite being supported by demonstrations. He gives the 
example of John who could not add ‘a ten’ on a hundred square using the interval 
between numbers in a vertical column, because ‘a ten’ as an abstract composite 
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unit simply ‘did not exist for him’ (1995:377). However, in some examples (eg 
Boulton Lewis, 1998) where children are described as having difficulty, it seems 
not just that they lack prerequisite understanding for the activity, but that they 
lack much more basic number concepts. So for instance, Cobb’s John was being 
asked to add using place value: not only did he not understand place value, as he 
did not see ‘ten’ as a unit he seemed unlikely to understand addition as a part- 
whole relationship. This points to the need not only to analyse the complexity of 
models, but also the relationships and operations they are modeling, in order to 
identify prerequisite concepts and assess whether children understand these.  
 
How do children move from understanding mathematical relationships in 
concrete to abstract form? 
 
Another major issue about mathematical representations is even more 
problematic: according to Harries and Barmby (2006), we still ‘do not know how 
children construct mental representations’ (2006:27). It may be added, ‘or 
whether they do at all’: Bills (2000) found that children seldom used any mental 
visual images when calculating. Holmes and Adams (2006) found that younger 
children relied on visuo-spatial memory for mathematics tasks, with a shift to 
verbal recall between the ages of 7 and 9, suggesting the importance of 
manipulatives and images for younger children. While two year olds can 
symbolise with language, images and pretend play (Goswami and Bryant, 2007), 
understanding the symbolic function of manipulatives can be problematic for 
younger children. Uttal et al. (1997) found that very young children had difficulty 
interpreting models as representing something else, for instance in relating a 
scale model to a room. They needed to identify which features were being 
represented by which objects, which was difficult if these were complex. They 
therefore suggested that:  

‘simpler, less inherently interesting objects would be more useful as 
symbols than more complex, interesting objects’.(Uttal et al., 1997:52) 
 

Symbolic understanding also depends on the child’s interpretation of the 
situation: ‘young children want to find the characteristics in a representation 
that they perceive as essential to the situation studied …’ according to Dufour-
Janvier et al. (1987:118). The complexity of both mathematical relationships and 
representations may make the identification of similarities more difficult. Uttal et 
al. (1997) concluded that manipulatives needed to be carefully selected, with 
strong similarity to the mathematics concepts being taught. They recommended 
that teachers explain the symbolic meanings and ways of using materials, rather 
than assume they were obvious to children: 

‘Children’s use of manipulatives should be improved by explicit instructions 
and reminders of the representational nature of those objects.’  
(Uttall et al., 1997:16) 

They also speculated that manipulatives which were only used for mathematics 
had the advantage of creating an expectation that they were being used to 
introduce a mathematics concept or symbol. 
 
If children see mathematical relationships in materials, they may represent these 
in several different modes, in more complex ways than suggested by Bruner’s 
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(1964) enactive, ikonic and symbolic sequence.  Goldin (2002:211) identified 
different internal systems of representation, including: 

 language or verbal-syntactic  
 imagistic, including visual-spatial, tactile-kinaesthetic and auditory–

rhythmic  
 written symbols or formal notational 
 affective, including stable beliefs and attitudes and changing states during 

learning and problem solving. 
It seems that children may use none, one or all of these when thinking: for 
instance, Bills (2000) found that children commonly either imagined nothing or 
rehearsed verbal phrases mentally when calculating. Children may use several 
modes simultaneously: for instance with sharing problems, they might mentally 
rehearse dealing one-to-one as a rhythmic action, which they may associate with 
as pleasurable action, but not necessarily connect with division language or 
signs. Affective representations could include warm memories of successfully 
using certain materials, thus creating positive expectations. Goldin suggests that 
familiar contexts may produce comfortable affect: hence using RME stories or 
familiar manipulatives might mitigate the challenging emotions of problem 
solving. However, Goldin (2002) pointed out that while familiar contexts may be 
more memorable because they are multiply encoded, this may also create 
confusion for organization and retrieval from memory. It seems likely that 
cognitive analyses of mathematical challenges may not have sufficiently 
considered the complexities of different modes of representation, including the 
role of the affective.  
 
How individual children create mental representations is difficult to ascertain, 
particularly if they are not able to articulate them. Asking children to draw or 
record in their own way, as Dienes (1960) suggested, is an alternative way of 
accessing children’s mental representations. Dufour-Janvier et al. (1987: 119), 
proposed that children should construct their own representations, instead of 
using those ‘imposed from the outside’, arguing from a constructivist viewpoint.  
Hiebert and Carpenter (1992) suggested that children’s own representations 
were important for assessing understanding: ‘the way in which a student deals 
with or generates an external representation reveals something of how the 
student has represented that information internally’ (Hiebert & Carpenter, 
1992:66).  
 
However, representing transformative operations is particularly difficult, as 
Dufour-Janvier et al. (1987) also pointed out. They found that young children 
tended to use written language instead of drawing or diagrams for operations, 
even though they found writing difficult, because they lacked knowledge of the 
‘graphic codes and symbols’ needed to ’capture actions, transformations, and 
relations’ (1987:121). It is sometimes assumed that an iconic mode of 
representation involves drawing apparatus: however, a static drawing is usually 
inadequate to capture the actions and changes involved, for instance, in ‘taking 
away’. Young children’s representations of operations sometimes reveal 
creativity in their use of devices such as hands and arrows to indicate movement 
(Hughes, 1986; Womack, 2000; Worthington and Carruthers, 2003; Davenall, 
2015): it seems some children reject conventional plus and minus signs as not 
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dynamic enough. This suggests that children’s representations on paper will 
depend on their graphical repertoire and only provide partial information about 
their thinking. One advantage of manipulatives is that they can be moved to 
represent active operations, and children can use them to support the 
articulation of their reasoning, for instance about inverse operations and 
reversals.  
 
Analysing children’s representations can give insights into individuals’ 
recognition of mathematical relationships. Thomas, Mulligan and Goldin (2002) 
found that children varied in the degree of structure inherent in mental images 
they reported as representing100. These were classified into 3 stages, according 
to the degree of structure and understanding revealed. 

1. inventive/semiotic stage, characterised by meaning making, often 
pictorial and idiosyncratic, eg a dinosaur with 100 (ie a big number) on its 
back, a truck that can ‘do a 100’ 

2. extended stage of structural development, connected to a known system, 
such as  counting words, eg pictures of groups of 10s, numbers arranged 
in different ways, in lines or as spirals, not necessarily regularly, but 
attempting some pattern or structure 

3. autonomous stage, where the new system of representation can function 
flexibly in new contexts, independently, such as inventive ways of 
grouping numerals, or showing the ten tens structure. 

 
Some children’s images seemed very inventive eg involving flashing lights or 
spirals. Thomas et al. (2002) proposed that children should acquire a repertoire 
of images for flexible use: 

 ‘A child will benefit from having available a variety of images for use in 
mathematical representation, so that salient features of particular 
imagistic representations can be drawn on in a variety of situations, and 
flexibility of thought developed.’  (2002:130) 

They also argued that teachers should encourage children’s own 
representations: when the child’s imagery is valued, positive affect also develops 
in connection with mathematics. 
 

Mulligan and Mitchelmore (2009) subsequently proposed that children vary in 
their Awareness of Mathematical Pattern and Structure (AMPS), a general 
cognitive skill of recognizing key relationships in mathematical patterns. 
Assessment tasks required children of 5 to 6 years to visualize and draw 
patterns or structured images, for instance asking children to draw a triangular 
arrangement of six dots from memory, complete an incomplete 3 x 4 grid or 
draw 8 o’clock on an empty clock face. Children’s levels of awareness were 
consistent across different tasks and correlated with their ‘maths ability’, 
according to their teachers and the test used. Mulligan and Mitchelmore (2009) 
found that low achievers produced poorly organized, pictorial, idiosyncratic 
drawings of images, focusing on non-mathematical surface features. Following 
Thomas et al. (2002), they devised a range of tests and categorized children’s 
responses into four AMPS stages: 

(i) Pre-structural     
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(ii) Emergent (inventive-semiotic)  
(iii) Partial-structural    
(iv) Structural. 

     
These stages cover pictorial, ikonic and symbolic characteristics of children’s 
representations, applicable to a range of concepts, thus emphasizing the 
connections between spatial and symbolic pattern recognition. In the following 
year, the Structural group made faster progress (to a fifth Advanced Structural 
stage) whereas many of the Pre-structural group continued to focus on 
irrelevant features. They suggest that this is because recognising structures then 
make mathematical properties easier to learn, especially with equal groups and 
unitising. They found that AMPS could be taught, even pre-school, thereby 
increasing achievement and supporting progress. Papic, Mulligan and 
Mitchelmore (2011) found that under fives also showed consistent AMPs levels 
which increased as the result of intervention. According to Mulligan & Woolcott, 
(2015), characteristics of AMPs include awareness of different structural 
groupings, namely sequences, structured counting, shape and alignment, equal 
spacing and partitioning and their recently developed teaching assessments and 
programmes focus on these. This approach supports a more spatial approach to 
number, which seems appropriate for young children, building on their visual 
memory skills. It involves manipulatives arranged in different spatial patterns, 
fostering key arithmetical skills such as subitising and unitizing. It also links to 
pre-algebraic thinking and to experiences of early measuring, suggesting a more 
connected approach to early mathematics. While younger children are 
encouraged to recreate patterns with manipulatives, the focus on children’s 
drawings supports visualization and abstraction processes, as recommended by 
the literature.  
 
This research therefore suggests that we still have much to learn from children 
about how they make sense of manipulatives, that we need to observe and listen 
to their discussions, as well as giving them opportunities to record in their own 
way from an extensive graphical repertoire. This stage can illuminate the process 
of how children come to understand written symbols and work with 
mathematics expressed symbolically.  
 
This raises the issue of how children interpret written symbols and develop the 
abstract concepts they represent, or how children can progress from image-
supported to image-independent representations (Goldin, 1998:301). 
Gravemeijer (1991) describes this as the problem of the transition from thinking 
about material to thinking in terms of mathematical relationships and concepts. 
However, according to Hiebert and Carpenter (1992), this is a process of 
connecting up images, rather than replacing them: ‘It is useful to think of 
students’ knowledge of mathematics as internal networks of representations’ 
(Hiebert and Carpenter,1992:69). This view is supported by Goswami and 
Bryant (2007) in their summary of neuroscientific research: conceptual 
understanding in the brain consists of the networking of multiple 
representations from different sources, verbal, visual, auditory and kinaesthetic. 
They refute Piagetian theory (1952) that thinking develops in stages of 
increasing rationality and that ‘sensory-motor’ representations are replaced by 



 35 

symbolic ones. While agreeing that ‘physical interaction with the world is a 
critical part of knowledge construction, ‘enactive’ representations are 
augmented by knowledge gained through action, language, pretend play and 
teaching’ (Goswami and Bryant, 2007:7).  
 
According to Hiebert and Carpenter (1992: 69) ‘understanding grows as 
networks become larger and more organized’. In this view, understanding is 
defined as a representational network and rather than talking about a child 
acquiring an abstract concept, we should consider whether a symbol ‘calls up’ a 
meaningful network of associations. For instance, we may expect the symbol ‘9’ 
to be quickly associated with the ‘nineness of nine’, but also to trigger a network 
of meanings, such as one less than 10, a square number or a factor of 360, all of 
which can be accessed flexibly according to the context. 
 
The main issue is how the various inputs are integrated and organized, or ‘the 
way an individual’s internal representations are structured’ according to Hiebert 
and Carpenter (1992:66). Vergnaud (1987) emphasised symbolic representation 
as involving generalizing concepts through several cognitive processes. Drawing 
on the semiotic terminology of ‘referent’, ‘signified’ and ‘signifier’, he proposed 
different mental interactions between real world experience (the referent) and 
the generalized concept (the signified). The latter was constructed by a process 
whereby ‘invariants are recognized, inferences drawn, actions generated and 
predictions made’ (Vergnaud, 1987:229). However, he emphasized that 
generalizing concepts in this way is a continuous process of refinement, of 
‘theorems-in-action’: for instance initial concepts of addition and subtraction are 
different from later concepts which include directed numbers. Networks are 
therefore dynamic not static, with more sophisticated and complex 
conceptualisations resulting from a greater diversity of linked examples.  
 
However, some theorists have questioned whether all children learn by 
intuitively abstracting similarities from different examples. For instance, Dufour-
Janvier et al. (1987) were dubious about children identifying commonalities 
from multiple representations. They found that some children happily accepted 
different answers for the same calculation using written methods and an abacus, 
even though they knew it was the same problem. Similarly Nunes, Carraher and 
Schliemann (1993) found that children solving real life problems did not relate 
these to the same problems presented as written algorithms. This is the issue of 
situated cognition, that people do not readily relate understanding in one 
situation to another, and may construct more sophisticated concepts in one 
context. For instance, Cobb (1995) found that John understood the abstract 
concept of  ‘a ten’ as money, but did not relate this to ‘a ten’ on a hundred square.  
Similarly with calculating strategies, ‘young children solve addition and 
subtraction word problems using counting strategies that mirror the semantic 
structure of the problems’ (Hiebert and Carpenter, 1992:68). This limited 
understanding may prevent children from generalizing strategies: for instance, if 
they have difficulty seeing models of difference and take away as both being 
subtraction, they may not relate ‘counting up’ to a ‘take away’ problem.  
 



 36 

Dufour-Janvier et al. (1987) also found that children representing a problem did 
not select the most appropriate diagram (set or number line), but the most 
familiar, suggesting that the process of analysing a problem and identifying the 
key relationships, then selecting an appropriate representation, is very 
sophisticated and requires complex organisation and networking of 
representations. Threlfall (2000) questioned whether any such process of 
conscious selection is involved with mental calculation strategies, suggesting 
that a ‘clicking’ happens as connections are made subconsciously: the awareness 
of flexible possibilities from a bank of number facts results in connections being 
made. The implication is that it may take children considerable time to develop 
and explicitly use processes of analysis: developing a bank of representations 
and a flexible approach to equivalences may be more productive.  
 
Utall et al. (1997), like proponents of Cuisenaire, suggested that using one kind of 
manipulative might be more effective than multiple embodiments, citing meta-
reviews endorsing consistency of use, including Japanese practice. They argued 
that surface features were likely to be less distracting, with the children’s focus 
clearly on mathematical relationships. Goutard’s practice suggests that using one 
kind of manipulative may indeed assist abstract thinking, because children 
generalise relationships from many numerical examples made with the rods, 
through talking about these. Then putting the rods away and writing freely 
encourages them to generalise both to using larger or more complex number 
forms and also to using abstract written symbols. This suggests that an explicit 
move to abstraction without manipulatives may help this process, especially if 
children are free to make their own connections. 
 
Instead of abstracting concepts from multiple embodiments, Vergnaud argued 
for the importance of translating between different symbol systems:  

‘It is because symbolic representation is transparent in different ways 
(also opaque for some properties.. that are not represented) that it is 
fruitful to use different symbol systems.’ (Vergnaud, 1987:232) 

Hiebert & Carpenter agreed that understanding is helped by making links 
between different representations, including spoken language, symbols, pictures 
and objects:  ‘Connections between internal representations can be stimulated 
by building connections between corresponding external representations’ 
(Hiebert & Carpenter, 1992: 66). They argue that because ‘each representation of 
a quantity or relationship captures some of its features, but not others’, teachers 
need to focus attention on key aspects through discussion (Hiebert & Carpenter, 
1992:71).  
 
The consideration of communication, public symbol systems and discussion 
raises the issue of social aspects of learning. Cognitive theoretical perspectives 
tended to see representation and understanding as individual internal processes 
of knowledge construction, whereas socio-cultural perspectives, following 
Vygotsky (1978) saw learning as a social process. As Cobb (1990:212) pointed 
out, ‘..opportunities for individual children to construct mathematical knowledge 
arise in the course of their classroom social interactions’. The implication is that 
the nature of these opportunities and interactions may be determined by the 
relationships in the classroom created by the teacher.  ‘The social context in 
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which materials are used may account in part for their effectiveness (or 
ineffectiveness) in helping students understand’ (Hiebert & Carpenter (1992:72). 
From a socio-cultural perspective, Yackel and Cobb (1996) argued that learning 
might not be just about internal individual cognitive development, but about 
participation in social practices with ‘taken for granted’ conventions and about 
being accepted within the social group. 
 
From a social-constructivist viewpoint, for instance, children construct their own 
non-standard algorithms, constrained by activities, manipulatives available, 
teachers’ interventions, requirements to explain and attempts to understand 
interpretations and solutions of others. According to Cobb (1995) social 
situations, such as the example of John with another child who explained a 
representation, only facilitates learning within limits: the child still has to 
construct meaningful concepts for themselves. He found that some children 
would learn by copying another’s actions, or like, John, despite understanding ‘a 
ten ‘ as a coin, would later revert to counting by ones. John’s learning to add 10 is 
seen as a process of cognitive construction which may be partly socially 
mediated by peer interaction and linked to the familiar representation of coins, 
but would be more helpfully supported by the image of a composite unit of 10 
fingers or by a Dienes’ ten rod, than the 100 square. This points to the role of the 
teacher in selecting images and manipulatives to suit children’s levels of 
understanding as well as in organizing peer discussion.  
 
From a social constructivist perspective, Hiebert and Carpenter (1992) also 
proposed a role for concrete materials in providing a shared focus for discussion:  

‘By interacting with the materials, and with others about those materials, 
students are more likely to construct the relationships that the teachers 
intend... This is non-trivial because students’ varied backgrounds and 
goals often make it difficult to share a discussion about a common event 
or idea...’(Hiebert and Carpenter, 1992: 72).  
 

Vergnaud (1998) expressed this difficulty in terms of the interaction between 
private meanings (the signified) and public symbol systems with their own 
syntax (the signifier). Vergnaud emphasized the gaps between thought and 
language:  

‘This partial mapping or even mismapping makes communication a kind 
of miracle, at least when individuals produce new ideas.’ (Vergnaud,1998: 
176) 

Boulton-Lewis (1998) recommended that children make mental procedures 
explicit and ‘that children and teachers discuss what they are doing and what 
they understand by it’. She suggested that ‘concrete analogs’ help understanding 
because they ‘provide a means of verifying the truth’, implying that children 
might use them to test ideas. For instance, as Goutard (1964) demonstrated, 
children can argue that different relationships are equivalent by rearranging or 
exchanging rods or blocks. In this way manipulatives can support mathematical 
reasoning within social groupings in the classroom, and help children develop 
organized networks of connected representations which constitute the 
understanding of abstract concepts. 
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Mason and Johnston-Wilder’s (2006) characterization of the process of 
abstraction as MGA, (manipulating, getting a sense of and articulating) offers a 
pedagogy which identifies how learners may progress from manipulating objects 
to articulating generalisations, using formal and symbolic expressions. However, 
this assumes that the aim of learning is to understand relationships and to 
generalise, not just to perform calculations, and the role of the teacher in 
supporting this progression is key. 
 
It therefore seems that the literature suggests that a process of carefully 
matching materials and activities to concepts, assessment of children’s 
prerequisite understanding, with explicit reasoned discussion of mathematics 
ideas and representations should be effective in assisting learning through the 
multiple encodings that manipulatives have to offer. 

E. Implications for teaching:  a pedagogy  
 
This literature review suggests that multiple embodiments using manipulatives 
can help learning, but also points to a key role for the teacher in assessing 
children’s understanding, selecting manipulatives, mitigating difficulties with the 
conventions of their use and supporting translation between different 
representations, including verbal and written symbols.  
 
According to recent neurological evidence (Goswami and Bryant, 2007), 
generalizing is strengthened by repeated experience, and probably also by direct 
teaching (echoing Uttal et al., 1997): 

‘ ..cumulative learning is crucial. There will be stronger representation of 
what is common across experience (‘prototypical’) and weaker 
representation of what differs. It may be that direct teaching of what is 
intended to be prototypical (for example reminding of the general 
principles being taught via specific examples) will strengthen learning’. 
(2007: 4) 
 

According to Hiebert and Carpenter (1992) important ways of connecting 
representations include identifying similarities and differences, ‘Only by thinking 
and talking about the similarities and differences...can students construct 
relationships’ (Hiebert and Carpenter, 1992:68). Another important kind of 
connection is ‘inclusion and subsumption’ (where situations are recognized as 
belonging to a group). It therefore seems that explicitly identifying these kinds of 
connections is likely to help children to interpret and organize representations.  
 
Harries, Barmby and Suggate (2008: 172), drawing on Hiebert and Carpenter  
(1992), propose a ‘pedagogy of understanding through representation’. They 
suggest that connecting different representations also defines mathematical 
reasoning:  

‘To reason is to make connections between different representations 
(internal or external) of a mathematical concept, through formal 
processes (eg logic, proof) or informal process (eg examples).’ (2008:164) 

In turn this promotes understanding:  
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…by encouraging children to explore and reason between 
representations, what we are doing is providing the opportunity for 
understanding to develop.  

They therefore suggest that interrogating representations plays an important 
role in helping children develop understanding of mathematical concepts.  
 
All of this has important implications for the role of the teacher. Boulton Lewis’ 
(1998) suggestion, that children need to be able to use manipulatives with some 
automacity before using them to learn new procedures or concepts, implied that 
teachers need to monitor children’s fluency with different manipulatives. 
Vergnaud (1998) argued that a major role of the teacher is as mediator to help 
students develop their repertory of schemes and representations. However 
Baumert et al. (2010) reported that: 

‘One of the major findings of qualitative studies on mathematics 
instruction is that the repertoire of teaching strategies and the pool of 
alternative mathematical representations and explanations available to 
teachers in the classroom are largely dependent on the breadth and depth 
of their conceptual understanding of the subject.’ (2010:138).  

This means that teachers may need professional development regarding subject 
knowledge in order to use manipulatives and other representations effectively.  
 
However, Vergnaud (1998) further argued that the selection of activities is the 
most important factor in teaching: 

‘One must never forget that the most important mediation act of the 
teacher is to provide students with fruitful situations.’(1998:180) 

This implies that teachers’ repertoire of problems, statements and questions for 
children to investigate may be more important than the role of the manipulatives 
in supporting these enquiries. However, translating between alternative 
representations may provide such ‘fruitful situations’. 
 
It is interesting to consider Goutard’s account of her classroom in the light of the 
issues raised by the literature: her teaching seems to exemplify many of the key 
elements identified. Children developed familiarity and automacity in using the 
rods before using them to represent numbers or more advanced concepts. In 
requiring children to articulate their findings and then record them symbolically, 
they translated between the different symbol systems of rods, language and 
mathematical notation. In requiring them to put away the rods before writing 
freely, she encouraged them to think abstractly and to generalize relationships, 
via language and symbols, to the number system beyond that shown by the rods, 
thereby overcoming the key problem of symbolic abstraction identified by other 
theorists. However, as with RME, children were also encouraged to move 
between the concrete and abstract, since they dealt with both in each lesson. 
From a socio-cultural perspective, Goutard also prioritized supporting children 
by communicating high expectations and creating identities for the children 
where they had positive self–images as mathematics learners, as well as in 
creating low-risk class discussions where all children’s contributions were 
welcomed, taken seriously and explored.  However, her choice of challenges, 
which required children to find equivalences and to use the rods to justify these, 
provided open-ended and inclusive investigations which nevertheless led to the 
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identification and generalisation of key mathematical principles and 
relationships. These produced an impressive degree of flexibility and fluency in 
arithmetic with children as young as seven years old, thereby exemplifying 
Vergnaud’s point about the importance of the choice of ‘fruitful situations’. 
 
The idea of equivalence as a focus for investigation and open-ended challenges 
therefore seems important (suggesting a re-consideration of classic resources, 
such as Quadling, who advocated this approach in 1969). Similarly, the current 
focus on variation theory offers an approach where activities provide examples 
for considered analysis, rather than quick computation or practising a modeled 
method (Marton & Tsui, 2004). Similar approaches are exemplified by Foster’s 
(2014) mathematical etudes at secondary level and in Ainsworth’s (2013) 
primary practice. 
 
Ainsworth (2013) is a rare proponent of Goutard’s approach in England. She has 
employed the same focus on equivalence, the phases of exploration, ‘do, talk and 
record’ and free writing, achieving outstanding success (although perhaps not to 
the same startling level with seven year olds, and in a school with a stable and 
not-deprived intake). It may be that with this approach, the teacher, rather than 
the materials, makes the key difference in children’s attainment, since Ainsworth 
is also highly knowledgeable mathematically and immersed in teaching this 
approach. Furthermore, the children have been consistently taught using this 
approach throughout primary school, which presents challenges with children 
joining the school. Nevertheless, using Cuisenaire rods with this approach seems 
to offer potential strengths besides arithmetic, such as creative mathematical 
reasoning, abstract thinking and notation, combined with positive attitudes, 
including humour and delight. The children’s creativity and willingness to take 
an idea to the limits, or test it out, is also similar to that of the children in the CAN 
project in the 1980s (Shuard, Walsh, Goodwin and Worcester, 1991). They would 
also try out ideas with large and negative numbers, enjoying patterns, and were 
encouraged to record in their own ways, which they did creatively. It may be that 
the pedagogy of enquiry, for instance by using ‘how many ways?’ activities, is the 
crucial element: calculators may be similar to colour rods as an engaging 
resource for generating impressive patterns. What this current practice does 
demonstrate is the possibility, that, as with Goutard’s pupils, children can 
‘develop ...the expectation that numbers can amuse, delight, illuminate, inform, 
and excite’.  (Te Whariki, New Zealand Ministry of Education, 2009) 
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F. Summary 
Resnick and Ford (1981:126) identified the key issue with structure-oriented 
materials as depending on our ability to ‘define psychologically the mathematical 
structures’. It seems that this is still problematic: we do not know how 
mathematical relationships are best represented mentally. Structured materials 
inevitably partially represent partial views of mathematical structures. 
Manipulatives also seem historically arbitrary and dependent on cultural 
practices, even for fingers. This raises the intriguing question of whether there 
are other manipulatives which could represent and help children understand key 
mathematics ideas, which have not yet been invented or identified as lacking. 
The use of manipulatives and images has been subject to fashion and marketing 
as well as national policies: some have been forgotten and rediscovered like ten-
frames, while others which seem potentially useful are not common, such as 
number staircases or double number lines for ratio and multiplication.  
We also still do not know: 

 how children mentally represent their experiences with the materials  
 how (and whether) all children develop abstract representations of the 

relationships, and come to understand written symbols. 
We do know, however, that there are networks of linked representations in the 
brain in different modes, including muscle memory, words, rhythms, images and 
emotions: understanding may be defined in terms of the strength of these 
networks. There are still questions about: 

 what influences the construction of images in different modes e.g.. how 
arranging blocks is remembered kinaesthetically, visually, verbally  and 
emotionally  

 how processes vary for individual children and at different ages  
 whether and how some images are too complex or links too obscure for 

some children. 
 
There are interesting questions about the role of children’s own strategies and 
representations:  

 Are there other manipulatives which would build on children’s intuitive 
strategies and ways of children’s thinking, if we studied this more closely?  

 What do children’s own representations tell us, and how can these be 
supported and developed? 

Analysing what children focus on, in their own recording and discussions, might 
therefore provide clues to the sense they are making of activities with 
manipulatives. 
 
These uncertainties provide useful avenues for investigation and discussion. In 
particular, interrogating the partiality of manipulatives seems a potentially 
powerful pedagogical strategy. For instance, comparing representations of a 
number using Dienes blocks or a beadstring, focuses attention on the tens 
structure of the number. Using rods or cubes to demonstrate reasoning about 
equivalences, by showing how 2:3 is equivalent to 4:6, or how adding the same 
number to each of a pair of numbers preserves the difference between them, 
provides a shared focus for discussion and explanation. Whereas it is not clear if 
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multiple embodiments help or hinder abstraction, it seems that comparing what 
is the same or different about them is an important way of organizing thinking.  
 
Harries et al’s (2008) suggestion that connecting representations defines 
reasoning and understanding is persuasive. This idea is also supported by 
variation theory, which proposes that presenting a range of images and contexts, 
as well as varied mathematical aspects of a concept, increases depth of 
understanding (Marton and Tsui, 2004). It seems therefore that the English 
national curriculum‘s requirement for children to ‘move fluently between 
representations ‘(DfE, 2013) is an important aim for developing flexible 
understanding. 
 
However, teachers need to be aware that the symbolic meaning of manipulatives 
and their use may not be obvious to young children, unless they have the 
appropriate prerequisite understanding as well as explicit explanations. 
Particularly with younger children, there may be issues with complexity of the 
objects themselves and the expected focus, with potential overload of developing 
working memory space. Children will find it easier to learn new ideas if they are 
already familiar with structured manipulatives and can use them to represent 
numbers with automaticity. It also seems that teachers need deep understanding 
of concepts in order to work with a repertoire of alternative representations. 
Teachers also need to identify prerequisite understandings and skills before 
introducing an activity: for instance children will not understand two digit 
subtraction by using blocks if they do not first understand place value and single 
digit subtraction. The other main issue for teachers is to create the kind of 
community of learners where fruitful discussion can take place, with positive 
expectations for all – and where Vergnaud’s (1998) communication of individual 
ideas as ‘a kind of miracle’ can take place. 
 
To summarise: theories of representation indicate that manipulatives can 
support mathematics learning: 

 Understanding can be defined in terms of mentally linking 
representations in different modes, including kinaesthetically, visually, 
verbally and emotionally, and of different levels of abstraction 

 Linking external representations can stimulate articulated reasoning 
which links internal representations  

 Manipulatives can be used by children to test ideas and focus 
explanations and justifications, leading to generalising  

 
There are key benefits to using manipulatives:  

 being multimodal, they help build stronger memory networks, including 
for instance, rhythmic action and positive affect 

 they can show transformations, operations and actions, including 
reversibility, unlike static images  

 they are impermanent, so support risk-taking, but can be photographed, 
videoed or drawn.  

Concrete manipulatives therefore offer children a vehicle with which they can 
make sense of a complex, abstract and symbolic mathematical world. 
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The teaching implications are significant: the effective use of manipulatives 
depends on many aspects of pedagogy. Because invented representations are 
partial, and we know so little about what goes on mentally, the implications for 
teaching are that we need to allow time for observing and learning, including 
discussion and explanation by teachers and children. Pedagogically we need to: 

 assess children’s understanding and developmental constraints 
 be aware of the advantages, limitations and conventions associated with 

manipulatives, and select appropriately 
 allow time to develop familiarity through play and instruction 
 explain features, purposes and conventions of manipulatives 
 allow time to develop automaticity of use through activities 
 encourage discussion, reasoning and explanation 
 encourage visualization 
 encourage generalisation 
 encourage symbolization with and without materials 
 encourage children’s own representations. 

 
Fruitful situations are needed: we need tasks which foster these conditions for 
learning. It seems that activities which invite children to provide alternatives, to 
explain equivalences and to compare and contrast can stimulate discussion and 
linking of representations. These might arise from modeling contextualized 
problems or involve challenges with materials, such as: 

 Can you find others in this family? - providing examples which fit criteria 
or show a relationship (such as fingers showing 6, or pairs of rods where 
one is double another)  

 How many ways can you do this?- examining alternative methods for 
calculating (such as adding 6 and 7 as double 5 and 2 and 1 or double 6 
plus 1, shown on the rekenrek)  

 Show me- different representations (such as adding 10 with Dienes, a 
beadstring and a calculator) 

 
Class communities are needed which foster exploratory behaviour and talk, 
within an environment of trust and respect as advocated by Varol and Farran 
(2006). As they concluded, because research shows that children do not readily 
understand the connections between manipulatives and the mathematics they 
represent, discussion is needed to clarify this, which presupposes a classroom 
environment with safe risk-taking and questions ‘that have no incorrect 
answers’. This may be the greatest pedagogical challenge. 
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