Many things are made in the shape of a cuboid, such as drink cartons and cereal boxes. This activity is about finding the volumes of cuboids.

Information sheet

The volume of an object is the amount of space it fills.

Large volumes are measured in cubic metres $\left(\mathrm{m}^{3}\right)$.
Smaller volumes are measured in cubic centimetres $\left(\mathrm{cm}^{3}\right)$ or cubic millimetres $\left(\mathrm{mm}^{3}\right)$.

In this cuboid there are 3 layers of cubes. There are 2 rows of 4 cubes in each layer.

The total number of cubes $=4 \times 2 \times 3$
The volume of the cuboid $=4 \times 2 \times 3=\mathbf{2 4} \mathbf{c m}^{\mathbf{3}}$

For any cuboid:
Volume $=$ length \times width \times height
or Volume $=$ area of cross-section \times length

The volume of liquids is usually measured in litres or millilitres.

$$
\begin{aligned}
& 1 \text { litre }=1000 \mathrm{ml} \text { and } 1 \mathrm{ml}=1 \mathrm{~cm}^{3} \\
& 1 \text { litre }=1000 \mathrm{~cm}^{3} \text { and } 1 \mathrm{~m}^{3}=1000 \text { litres }
\end{aligned}
$$

Fish tank example

Volume of fish tank $=120 \times 50 \times 60$
$=120 \times 3000$
$=360000 \mathrm{~cm}^{3}$
Volume of fish tank = $\mathbf{3 6 0}$ litres.
(Check the calculation on your calculator.)

Note the volume of a container for liquids is often called its capacity.
It is important that all the dimensions of the cuboid are in the same units.

Concrete block example

Find the volume of a concrete block that is 2.5 metres long, 12 centimetres wide and 10 centimetres high.

Two of the dimensions, the width and height, are in centimetres.
Converting the length to centimetres: $2.5 \mathrm{~m}=2.5 \times 100=250 \mathrm{~cm}$

Volume of concrete block $=250 \times 12 \times 10$

$$
=2500 \times 12
$$

Volume of concrete block $=\mathbf{3 0 0 0 0} \mathrm{cm}^{3}$
(Check the calculation on your calculator.)

Sand pit example

A sand pit is 2 metres long and 1.5 metres wide.
How much sand will it take to fill the sandpit to a depth of 20 centimetres?
In this case, two of the dimensions, the length and width, are in metres.
Converting the height to metres: $20 \mathrm{~cm}=20 \div 100=0.2 \mathrm{~m}$

Volume of sand needed
$=2 \times 1.5 \times 0.2$
$=3 \times 0.2$
Volume of sand needed $=0.6 \mathrm{~m}^{3}$
(Check the calculation on your calculator.)

Try these

Work out your answer for each question in the box.

1 A heating engineer needs to work out the volume of this room.
What is its volume?

2 All the edges of this dice are 10 mm long.
What is its volume?

3 A brick is 20 cm long, 12 cm wide and 10 cm high.
What is its volume?

4 A storage box is 1.5 m long, 1.2 m wide and 1 m high.
Find its volume.

5 The picture shows a block of cheese.
What is its volume?

6 The picture shows the dimensions of a fish tank. Find its volume (capacity) in cubic metres.

7 The diagram shows the dimensions of a waste disposal container. What is its volume?

8 A stock cube is 20 mm long, 20 mm wide and 20 mm high. Calculate its volume.

9 A carton of orange juice measures 9 cm by 6 cm by 19.5 cm . Show that its volume is just over 1 litre.

10 A rectangular swimming pool is 25 m long and 10 m wide.
How many litres of water do you need to fill it to a depth of 2 m ?

11 Ice-cream mixture is poured into a container to make a block of ice-cream 20 cm long, 8 cm wide and 5 cm high.
a Find the volume of the block.

b How many blocks can you make with 4 litres of ice-cream mixture?
\square

12 A builder plans a tarmac drive for a new house.
The drive is in the shape of a rectangle 12 metres long and 3 metres wide.
The tarmac needs to be 20 cm thick.
What volume of tarmac does the builder need?
\square

13 A rectangular paddling pool is 2.5 m long and 2 m wide.
How many litres of water do you need to fill it to a depth of 40 cm ?
\square
14 What volume of concrete is needed for a path which is 80 metres long, 1.5 metres wide and 150 mm deep?
\square

At the end of the activity

- A manufacturer needs to know the volume of a box (cuboid). Explain how to find this.
- What units can volume be measured in?
- Suggest dimensions you could use to make a carton with a volume of 1 litre ($1000 \mathrm{~cm}^{3}$).

