Large and small

Sometimes it is necessary to work with very large numbers and very small numbers. Here are two examples.

Jupiter's surface area

Jupiter's surface area is equal to $4\pi r^2$ where Jupiter's radius r = 71492000 metres.

Think about...

• how to work out Jupiter's surface area.

Atomic particles

This is 1836 times as heavy as an electron.

Think about...

- how to work out the mass of an electron
- how to work out the number of protons needed to make a mass of 1 kg.

This activity shows how to use standard form to work out the answers to questions like these.

Information sheet

A Powers of 10

10 ³	10 ²	10 ¹	10 ⁰	10 ¹	10 ⁻²	10 ⁻³
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

Other examples are $10^6 = 1\ 000\ 000$ and $10^{-9} = \frac{1}{1\ 000\ 000\ 000}$

Think of a negative in the power as 'one over'.

Think about...

Any number to the power zero has a value of 1, so $1\ 000\ 000^0 = 1$ and $4^0 = 1$ Can you explain why this is so?

Image of Jupiter produced by STScI for NASA from http://hubblesite.org/

Image of an oxygen atom produced by the NASA/Goddard Space Flight Center Scientific Visualization Studio from <u>http://www.nasa.gov</u>

B Calculating with standard form

Numbers written in standard form have two parts 10^{n} where n is between 1 and 10 and n is a positive or possitive

 $a \times 10^{n}$, where a is between 1 and 10 and n is a positive or negative integer

Examples: $7.3 \times 10^5 = 730\ 000$ or $3.681 \times 10^{-7} = 0.000\ 000\ 3681$

Calculators have a variety of ways of entering numbers in standard form:

Using EXP key:	For 4.5×10^3 enter 4.5 EXP 3 and for 7.1×10^{-5} enter 7.1 EXP (-) 5
Using EE key:	For 4.5×10^3 enter $4.5 EE 3$ and for 7.1×10^{-5} enter $7.1 EE (-) 5$
Using 10 ^x key:	For 4.5×10^3 enter $4.5 10^x 3$ and for 7.1×10^{-5} enter $7.1 10^x (-) 5$

Note: Not all calculators have a separate (-) key. If your calculator does not have this, enter (-5) using brackets.

Use your calculator to work out the following examples, and check that you get the same answers:

- 1 $(4 \times 10^{-3}) + (8 \times 10^{-5}) = 4.08 \times 10^{-3} \text{ or } 0.00408$
- **2** $(7 \times 10^5) (9 \times 10^4) = 6.1 \times 10^5$ or 610 000
- **3** $(4 \times 10^3) \times (2 \times 10^6) = 8 \times 10^9$ or 8 000 000 000
- 4 $(8 \times 10^9) \div (2 \times 10^6) = 4 \times 10^3 \text{ or } 4000$

C Using standard form in real situations

Jupiter's surface area

Jupiter's radius r = 71492000 metres. In standard form this is 7.1492×10^7 . The surface area is $4\pi r^2 = 4\pi \times (7.1492 \times 10^7)^2$ Work this out on your calculator. You should get $6.4228 \times 10^{16} \text{ m}^2$ Think about... What is this as an ordinary number?

Atomic particles

The mass of a proton is 0.000 000 000 000 000 000 000 001 673 g. In standard form this is 1.673×10^{-24}

This is 1836 times as heavy as an electron.

Think about...

how to work out the mass of an electron

If you find this difficult, think of an easier problem:

A father weighs 84 kg. This is 3 times as heavy as his daughter. How would you work out how much his daughter weighed?

The mass of an electron = $(1.673 \times 10^{-24}) \div 1836$

Work this out on your calculator. You should get $9.112\times10^{-28}\,g$ What is this as an ordinary number?

Think about...

• how to work out the number of protons needed to make 1 kg

If you find this difficult, think of an easier problem.

Satsumas weigh on average 40 g each. How do you work out how many would weigh 1 kg?

The number of protons that weigh 1 kg = $1000 \div (1.673 \times 10^{-24})$

Work this out on your calculator. You should get $5.977 \times 10^{\,26}$ What is this as an ordinary number?

Try these

- **1** Write these in standard form:
- a three million b £12.6 million c eighty thousand
- d five billion e £3.25 billion f ten and a half billion
- g seven million, five hundred and twenty thousand
- h four hundred and fifty million and sixty-eight thousand
- 2 Write these as ordinary numbers.

a 2.4×10^6	b 2.4×10^{-6}	c 3×10^9
d 3×10^{-9}	e 7.14×10^5	$f~7.14\times10^{-5}$

3 Write these numbers in standard form.

а	36 000 000	b 482 000	c 900 000 000
d	0.000 25	e 0.000 007	f 0.003 456

Think about...

In the following problems, if you are not sure what calculation you need, make up a situation with easy numbers to help you to see what to do.

4 At the end of 2009 there were 6.4×10^8 mobile broadband subscriptions and 4.9×10^8 fixed broadband subscriptions in the world. What was the total number of broadband subscriptions?

5 The Earth is 1.5×10^{11} metres from the Sun. Light travels at about 3×10^8 metres per second.

Use the formula: $time = \frac{distance}{speed}$ to estimate the time taken for sunlight to reach the Earth.

6 The wavelength of red light is 7×10^{-7} metres and that of violet light is 4×10^{-7} metres. What is the difference between these wavelengths?

7 A bacterium measures 1×10^{-6} metres and a virus measures 2×10^{-7} metres. How many times bigger is the bacterium than the virus?

8 A flea is 9.5×10^{-4} metres long and a dust mite is 2.3×10^{-3} metres long. Which of these is longer and by how much?

9 The surface area of the Earth is approximately 5.1×10^8 square kilometres.

The area of Europe is about 9.9×10^6 square kilometres. Approximately what % of the Earth's area is Europe?

10 Each locust in a swarm eats about 2.3×10^{-3} kilograms of food in a day and there are about 3×10^4 locusts in the swarm.

Roughly how much does the whole swarm eat in a day?

11 You may know that Saturn has rings. It also has moons. The table gives information about six of Saturn's moons.

Moon	Distance from Saturn (m)	Volume (m ³)	Mass (kg)
Dione	3.77×10^{8}	7.36×10^{17}	1.05×10^{21}
Enceladus	2.38×10^{8}	6.54×10^{16}	8.40×10^{19}
lapetus	3.56×10^9	1.63×10^{18}	1.88×10^{21}
Rhea	5.27×10^{8}	1.88×10^{18}	2.49×10^{21}
Tethys	2.95×10^{8}	6.24×10^{17}	7.55×10^{20}
Titan	1.22×10^{9}	7.15×10^{19}	1.35×10^{23}


```
Image from <a href="http://www.nasa.gov">http://www.nasa.gov</a>
```

a List the moons in the order of their distance from Saturn. Start with the nearest.

- **b** List the moons in the order of their volumes. Start with the largest moon.
- c List these moons in the order of their masses. Start with the heaviest.
- **d** Use the formula: $density = \frac{mass}{volume}$ to find the density of each moon.

12 The table gives the atomic masses of carbon, hydrogen, oxygen and nitrogen.

a List the elements in the order of their masses. Start with the lightest.

b Molecules of other substances are made from combinations of atoms. Find the mass of each of the following molecules:

Element
Atomic Mass (kg)

Carbon
 1.99×10^{-26}

Hydrogen
 1.67×10^{-27}

Oxygen
 2.66×10^{-26}

Nitrogen
 2.33×10^{-26}

i carbon monoxide (CO) made from one atom of carbon plus one of oxygen

ii carbon dioxide (CO₂) made from one atom of carbon plus two of oxygen

iii water (H_2O) made from two atoms of hydrogen plus one of oxygen

- c i Which is heavier, a molecule of acetic acid $(C_2H_4O_2)$ or nitric acid (HNO_3) ?
- ii What is the difference in their masses?

13 It has been said that "Unravel your DNA and it would stretch from here to the Moon". (<u>http://hypertextbook.com/facts/1998/StevenChen.shtml</u>). Check whether this is true.

You can assume that:

- there are about 10^{13} cells in the body; each cell contains about 3 billion base pairs, where each base pair is 3.4×10^{-10} metres long.
- the distance between the Earth and the Moon is 3.8×10^8 metres.

At the end of the activity

Can you explain why:

a $2.42 \times 10^4 = 24\ 200$ b $2.42 \times 10^{-4} = 0.000242.$ c $0.000\ 056 = 5.6 \times 10^{-5}$ d $1\ 250\ 000\ 000 = 1.25 \times 10^9$

How do you enter a number like 5.6×10^{-5} into your calculator? What are the advantages of working in standard form? Are there any disadvantages?