
$P=I^{\mathbf{2}} R$

$$
R=\frac{P}{I^{2}}
$$

$$
I=\sqrt{\frac{P}{R}}
$$

$$
P=I^{2} R
$$

$\sqrt{\frac{P}{R}}=I$ \square
$\frac{P}{R}=I^{2}$
$S=2 \pi r(r+h)$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
\frac{S}{2 \pi r}=r+h
$$

$$
3 V=\pi r^{2} h
$$

$$
\frac{S}{2 \pi r}-r=h
$$

$$
h=\frac{S}{2 \pi r}-r
$$

$$
3 V=4 \pi r^{3}
$$

$$
\sqrt[3]{\frac{3 V}{4 \pi}}=r
$$

$$
r=\sqrt[3]{\frac{3 V}{4 \pi}}
$$

$$
S=\pi r \sqrt{r^{2}+h^{2}}
$$

$$
V=\pi r^{2} h
$$

$$
A=\pi\left(R^{\mathbf{2}-r^{2}}\right)
$$

$$
\frac{S}{\pi r}=\sqrt{r^{2}+h^{2}}
$$

$$
\frac{V}{\pi h}=r^{2}
$$

$$
\frac{A}{\pi}=R^{2}-r^{2}
$$

$$
\left(\frac{S}{\pi r}\right)^{2}=r^{2}+h^{2}
$$

$$
\frac{A}{\pi}+r^{2}=R^{2}
$$

$$
\left(\frac{S}{\pi r}\right)^{2}-r^{2}=h^{2}
$$

$$
r^{2}=R^{2}-\frac{A}{\pi}
$$

$$
\sqrt{\left(\frac{S}{\pi r}\right)^{2}-r^{2}}=h
$$

$$
h=\sqrt{\left(\frac{S}{\pi r}\right)^{2}-r^{2}}
$$

$$
r=\sqrt{R^{2}-\frac{A}{\pi}}
$$

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

$$
\frac{T}{2 \pi}=\sqrt{\frac{l}{g}}
$$

$$
\left(\frac{T}{2 \pi}\right)^{2}=\frac{l}{g}
$$

$$
\left(\frac{T}{2 \pi}\right)^{2} g=l
$$

$$
l=\left(\frac{T}{2 \pi}\right)^{2} g
$$

$$
s=\frac{t(u+v)}{2}
$$

$$
9 C=5(F-32)
$$

$$
2 s=t(u+v)
$$

$$
\frac{9}{5} C=F-32
$$

$$
\frac{9}{5} C+32=F
$$

$$
t=\frac{2 s}{u+v}
$$

$$
F=\frac{9}{5} C+32
$$

$A=P\left(1+\frac{r}{100}\right)^{n}$	$v^{\mathbf{2}}=u^{\mathbf{2}}+2 a s$	$v^{2}=u^{2}+2 a s$
$\frac{A}{P}=\left(1+\frac{r}{100}\right)^{n}$	$v^{2}-u^{2}=2 a s$	$v^{2}-2 a s=u^{2}$
$\sqrt[n]{\frac{A}{P}}=1+\frac{r}{100}$	$\frac{v^{2}-u^{2}}{2 a}=s$	$\sqrt{v^{2}-2 a s}=u$
$\sqrt[n]{\frac{A}{P}}-1=\frac{r}{100}$	$s=\frac{v^{2}-u^{2}}{2 a}$	$u=\sqrt{v^{2}-2 a s}$
$100\left(\sqrt[n]{\frac{A}{P}}-1\right)=r$	$r=100\left(\sqrt[n]{\frac{A}{P}}-1\right)$	

$s=\frac{t(u+v)}{2}$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
2 s=t(u+v)
$$

$$
s-u t=\frac{1}{2} a t^{2}
$$

$$
s-\frac{1}{2} a t^{2}=u t
$$

$2(s-u t)=a t^{2}$

$$
\frac{s}{t}-\frac{1}{2} a t=u
$$

$$
\frac{2(s-u t)}{t^{2}}=a
$$

$$
u=\frac{s}{t}-\frac{1}{2} a t
$$

$$
v=\frac{2 s}{t}-u
$$

$$
a=\frac{2(s-u t)}{t^{2}}
$$

$$
E=\frac{1}{2} m v^{2}+m g h
$$

$$
h=\frac{v^{2}}{2 g}
$$

$$
E=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m} v^{2}+m g h
$$

$$
E-m g h=\frac{1}{2} m v^{2}
$$

$$
2 g h=v^{2}
$$

$$
2 E=m v^{2}+2 m g h
$$

$$
2(E-m g h)=m v^{2}
$$

$$
\sqrt{2 g h}=v
$$

$$
2 E=m\left(v^{2}+2 g h\right)
$$

$$
\frac{2(E-m g h)}{m}=v^{2}
$$

$$
v=\sqrt{2 g h}
$$

$$
\frac{2 E}{v^{2}+2 g h}=m
$$

$$
v=\sqrt{\frac{2(E-m g h)}{m}}
$$

$$
m=\frac{2 E}{v^{2}+2 g h}
$$

$$
R=100\left[\left(1+\frac{m}{100}\right)^{12}-1\right]
$$

$100 A=100 P+P R T$

$$
\frac{R}{100}=\left(1+\frac{m}{100}\right)^{12}-1
$$

$100 A=P(100+R T)$

$$
\frac{R}{100}+1=\left(1+\frac{m}{100}\right)^{12}
$$

$\frac{100 A}{100+R T}=P$

$$
P=\frac{100 A}{100+R T}
$$

$$
12 \sqrt{\frac{R}{100}+1}=1+\frac{m}{100}
$$

$$
12 \sqrt{\frac{R}{100}+1}-1=\frac{m}{100}
$$

