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available research literature on how children learn
mathematics. The resulting review is presented in a
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3 Key understandings in mathematics learning

Headlines

• Algebra is the way we express generalisations
about numbers, quantities, relations and functions.
For this reason, good understanding of connections
between numbers, quantities and relations is
related to success in using algebra. In particular,
students need to understand that addition and
subtraction are inverses, and so are multiplication
and division.

• To understand algebraic symbolisation, students
have to (a) understand the underlying operations
and (b) become fluent with the notational rules.
These two kinds of learning, the meaning and the
symbol, seem to be most successful when students
know what is being expressed and have time to
become fluent at using the notation.

• Students have to learn to recognise the different
nature and roles of letters as: unknowns, variables,
constants and parameters, and also the meanings 
of equality and equivalence. These meanings are 
not always distinct in algebra and do not relate
unambiguously to arithmetical understandings,
Mapping symbols to meanings is not learnt in 
one-off experiences.

• Students often get confused, misapply, or
misremember rules for transforming expressions
and solving equations. They often try to apply
arithmetical meanings to algebraic expressions
inappropriately. This is associated with over-
emphasis on notational manipulation, or on
‘generalised arithmetic’, in which they may try 
to get concise answers.

Understanding symbolisation

The conventional symbol system is not merely an
expression of generalised arithmetic; to understand 
it students have to understand the meanings of
arithmetical operations, rather than just be able to
carry them out. Students have to understand ‘inverse’
and know that addition and subtraction are inverses,
and that division is the inverse of multiplication.
Algebraic representations of relations between
quantities, such as difference and ratio, encapsulate 
this idea of inverse. Using familiarity with symbolic
expressions of these connections, rather than thinking
in terms of generalising four arithmetical operations,
gives students tools with which to understand
commutativity and distributivity, methods of solving
equations, and manipulations such as simplifying and
expanding expressions. 

The precise use of notation has to be learnt as well,
of course, and many aspects of algebraic notation
are inherently confusing (e.g. 2r and r 2). Over-
reliance on substitution as a method of doing this
can lead students to get stuck with arithmetical
meanings and rules, rather than being able to
recognise algebraic structures. For example, students
who have been taught to see expressions such as:

97 – 49 + 49

as structures based on relationships between
numbers, avoiding calculation, identifying variation, and
having a sense of limits of variability, are able to reason
with relationships more securely and at a younger age
than those who have focused only on calculation. An
expression such as 3x + 4 is both the answer to a
question, an object in itself, and also an algorithm or
process for calculating a particular value. This has
parallels in arithmetic: the answer to 3 ÷ 5 is 3/5. 

Summary of paper 6: 
Algebraic reasoning
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Time spent relating algebraic expressions to
arithmetical structures, as opposed to calculations,
can make a difference to students’ understanding.
This is especially important when understanding that
apparently different expressions can be equivalent,
and that the processes of manipulation (often the
main focus of algebra lessons) are actually
transformations between equivalent forms.

Meanings of letters 
and signs
Large studies of students’ interpretation and use of
letters have shown a well-defined set of possible
actions. Learners may, according to the task and
context:
• try to evaluate them using irrelevant information
• ignore them
• used as shorthand for objects, e.g. a = apple
• treat them as objects
• use a letter as a specific unknown
• use a letter as a generalised number
• use a letter as a variable.

Teachers have to understand that students may use
any one of these approaches and students need to
learn when these are appropriate or inappropriate.
There are conventions and uses of letters
throughout mathematics that have to be understood
in context, and the statement ‘letters stand for
numbers’ is too simplistic and can lead to confusion.
For example:
• it is not always true that different letters have

different values 
• a letter can have different values in the same

problem if it stands for a variable 
• the same letter does not have to have the same

value in different problems.

A critical shift is from seeing a letter as representing
an unknown, or ‘hidden’, number defined within a
number sentence such as:

3 + x = 8

to seeing it as a variable, as in y = 3 + x, or 3 = y – x.
Understanding x as some kind of generalized
number which can take a range of values is seen by
some researchers to provide a bridge from the idea
of unknown to that of variables. The use of boxes 
to indicate unknown numbers in simple ‘missing
number’ statements is sometimes helpful, but can
also lead to confusion when used for variables, or 
for more than one hidden number in a statement.

Expressions linked by the ‘equals’ sign might be 
not just numerically equal, but also equivalent, yet
students need to retain the ‘unknown’ concept when
setting up and solving equations which have finite
solutions. For example, 10x – 5 = 5(2x – 1) is a
statement about equivalence, and x is a variable, but
10x – 5 = 2x + 1 defines a value of the variable for
which this equality is true. Thus x in the second case
can be seen as an unknown to be found, but in the
first case is a variable. Use of graphical software can
show the difference visually and powerfully because
the first situation is represented by one line, and the
second by two intersecting lines, i.e. one point.

Misuse of rules
Students who rely only on remembered rules often
misapply them, or misremember them, or do not
think about the meaning of the situations in which
they might be successfully applied. Many students
will use guess-and-check as a first resort when
solving equations, particularly when numbers are
small enough to reason about ‘hidden numbers’
instead of ‘undoing’ within the algebraic structure.
Although this is sometimes a successful strategy,
particularly when used in conjunction with graphs,
or reasoning about spatial structures, or practical
situations, over-reliance can obstruct the
development of algebraic understanding and 
more universally applicable techniques.

Large-scale studies of U.K. school children show
that, despite being taught the BIDMAS rule and its
equivalents, most do not know how to decide on
the order of operations represented in an algebraic
expression. Some researchers believe this to be due
to not fully understanding the underlying operations,
others that it may be due to misinterpretation of
expressions. There is evidence from Australia and
the United Kingdom that students who are taught
to use flow diagrams, and inverse flow diagrams, to
construct and reorganise expressions are better
able to decide on the order implied by expressions
involving combinations of operations. However, it is
not known whether students taught this way can
successfully apply their knowledge of order in
situations in which flow diagrams are inappropriate,
such as with polynomial equations, those involving
the unknown on ‘both sides’, and those with more
than one variable. To use algebra effectively,
decisions about order have to be fluent 
and accurate.
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Misapplying arithmetical
meanings to algebraic
expressions
Analysis of children’s algebra in clinical studies with
12- to 13-year-olds found that the main problems in
moving from arithmetic to algebra arose because: 
• the focus of algebra is on relations rather than

calculations; the relation a + b = c represents three
unknown quantities in an additive relationship 

• students have to understand inverses as well as
operations, so that a hidden value can be found
even if the answer is not obvious from knowing
number bonds or multiplication facts; 7 + b = 4 can
be solved using knowledge of addition, but c + 63
= 197 is more easily solved if subtraction is used as
the inverse of addition

• some situations have to be expressed algebraically
first in order to solve them. ‘My brother is two
years older than me, my sister is five years younger
than me; she is 12, how old will my brother be in
three years’ time?’ requires an analysis and
representation of the relationships before solution.
‘Algebra’ in this situation means constructing a
method for keeping track of the unknown as
various operations act upon it.

• letters and numbers are used together, so that
numbers may have to be treated as symbols in a
structure, and not evaluated. For example, the
structure 2(3+b) is different from the structure of 6
+ 2b although they are equivalent in computational
terms. Learners have to understand that sometimes
it is best to leave number as an element in an
algebraic structure rather than ‘work it out’.

• the equals sign has an expanded meaning; in
arithmetic it is often taken to mean ‘calculate’ but in
algebra it usually means ‘is equal to’ or ‘is equivalent
to’. It takes many experiences to recognise that an
algebraic equation or equivalence is a statement
about relations between quantities, or between
combinations of operations on quantities. Students
tend to want ‘closure’ by compressing algebraic
expressions into one term instead of understanding
what is being expressed. 

Expressing generalisations
In several studies it has been found that students
understand how to use algebra if they have 
focused on generalizing with numerical and spatial
representations in which counting is not an option.
Attempts to introduce symbols to very young
students as tools to be used when they have a need

to express known general relationships, have been
successful both for aiding their understanding of
symbol use, and understanding the underlying
quantitative relations being expressed. For example,
some year 1 children first compare and discuss
quantities of liquid in different vessels, and soon
become able to use letters to stand for unknown
amounts in relationships, such as a > b; d = e; and so
on. In another example, older primary children could
generalise the well-known questions of how many
people can sit round a line of tables, given that there
can be two on each side of each table and one at
each of the extreme ends. The ways in which
students count differ, so the forms of the general
statement also differ and can be compared, such as:
‘multiply the number of tables by 4 and add 2 or ‘it 
is two times one more than the number of tables’. 

The use of algebra to express known arithmetical
generalities is successful with students who have
developed advanced mental strategies for dealing
with additive, multiplicative and proportional
operations (e.g. compensation as in 82 – 17 = 87 –
17 – 5). When students are allowed to use their
own methods of calculation they often find algebraic
structures for themselves. For example, expressing
13 x 7 as 10 x 7 + 3 x 7, or as 2 x 72 –7, are
enactments of distributivity and learners can
represent these symbolically once they know that
letters can stand for numbers, though this is not
trivial and needs several experiences. Explaining a
general result, or structure, in words is often a
helpful precursor to algebraic representation.

Fortunately, generalising from experience is a natural
human propensity, but the everyday inductive
reasoning we do in other contexts is not always
appropriate for mathematics. Deconstruction of
diagrams and physical situations, and identification of
relationships between variables, have been found to
be more successful methods of developing a formula
than pattern-generalisation from number sequences
alone. The use of verbal descriptions has been shown
to enable students to bridge between observing
relations and writing them algebraically.

Further aspects of algebra arise in the companion
summaries, and also in the main body of Paper 6:
Algebraic reasoning. 
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Recommendations

Research about mathematical
learning

The bases for using algebraic symbolisation
successfully are (a) understanding the
underlying operations and relations and
(b) being able to use symbolism correctly.

Children interpret ‘letter stands for
number’ in a variety of ways, according to
the task. Mathematically, letters have
several meanings according to context:
unknown, variable, parameter, constant.

Children interpret ‘=’ to mean ‘calculate’;
but mathematically ‘=’ means either ‘equal
to’ or ‘equivalent to’.

Students often forget, misremember,
misinterpret situations and misapply rules.

Everyone uses ‘guess-&-check’ if answers
are immediately obvious, once algebraic
notation is understood. 

Even very young students can use letters
to represent unknowns and variables in
situations where they have reasoned a
general relationship by relating properties.
Research on inductive generalisation from
pattern sequences to develop algebra
shows that moving from expressing simple
additive patterns to relating properties has
to be explicitly supported.

Recommendations for teaching 

Emphasis should be given to reading numerical and algebraic
expressions relationally, rather than computationally. For
algebraic thinking, it is more important to understand how
operations combine and relate to each other than how they
are performed. Teachers should avoid emphasising symbolism
without understanding the relations it represents.

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of children’s possible
interpretations of letters, and also that when correctly used,
letters can have a range of meanings. Teachers should avoid
using materials that oversimplify this variety. Hands-on ICT can
provide powerful new ways to understand these differences in
several representations.

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of the difficulties about
the ‘=’ sign and use multiple contexts and explicit language.
Hands-on ICT can provide powerful new ways to understand
these differences in several representations.

Developers of the curriculum, advisory schemes of work and
teaching methods need to take into account that algebraic
understanding takes time, multiple experiences, and clarity of
purpose. Teachers should emphasise situations in which
generalisations can be identified and described to provide
meaningful contexts for the use of algebraic expressions. Use
of software which carries out algebraic manipulations should
be explored. 

Algebra is meaningful in situations for which specific arithmetic
cannot be easily used, as an expression of relationships. Focusing
on algebra as ‘generalised arithmetic’, e.g. with substitution
exercises, does not give students reasons for using it.

Algebraic expressions of relations should be a commonplace
in mathematics lessons, particularly to express relations and
equivalences. Students need to have multiple experiences of
algebraic expressions of general relations based in properties,
such as arithmetical rules, logical relations, and so on as well as
the well-known inductive reasoning from sequences.



Recommendations for research

• The main body of Paper 6: Algebraic reasoning
includes a number of areas for which further
research would be valuable, including the following.

• How does explicit work on understanding relations
between quantities enable students to move
successfully from arithmetical to algebraic thinking? 

• What kinds of explicit work on expressing
generality enable students to use algebra?

• What are the longer-term comparative effects of
different teaching approaches to early algebra on
students’ later use of algebraic notation and
thinking?

• How do learners’ synthesise their knowledge of
elementary algebra to understand polynomial
functions, their factorisation and roots, simultaneous
equations, inequalities and other algebraic objects
beyond elementary expressions and equations?

• What useful kinds of algebraic expertise could be
developed through the use of computer algebra
systems in school?

7 Key understandings in mathematics learning
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In this review of how students learn algebra we try
to balance an approach which focuses on what
learners can do and how their generalising and use
of symbols develop (a ‘bottom up’ developmental
approach), and a view which states what is required
in order to do higher mathematics (a ‘top down’
hierarchical approach). The ‘top down’ view often
frames school algebra as a list of techniques which
need to be fluent. This is manifested in research
which focuses on errors made by learners in the
curriculum and small-scale studies designed to
ameliorate these. This research tells us about
development of understanding by identifying the
obstacles which have to be overcome, and also
reveals how learners think. It therefore makes sense
to start by outlining the different aspects of algebra.
However, this is not suggesting that all mathematics
teaching and learning should be directed towards
preparation for higher mathematics.

By contrast a ‘bottom up’ view usually focuses on
algebraic thinking, taken to mean the expression 
and use of general statements about relationships
between variables. Lins (1990) sought a definition of
algebraic thinking which encompassed the different
kinds of engagement with algebra that run through
mathematics. He concluded that algebraic thinking
was an intentional shift from context (which could
be ‘real’, or a particular mathematical case) to
structure. Thus ‘algebraic thinking arises when people
are detecting and expressing structure, whether in
the context of problem solving concerning numbers
or some modelled situation, whether in the context
of resolving a class of problems, or whether in the
context of studying structure more generally’ (Lins,
1990). Thus a complementary ‘bottom up’ view
includes consideration of the development of

students’ natural ability to discern patterns and
generalise them, and their growing competence in
understanding and using symbols; however this
would not take us very far in considering all the
aspects of school algebra. The content of school
algebra as the development of algebraic reasoning is
expressed by Thomas and Tall (2001) as the shifts
between procedure, process/concept, generalised
arithmetic, expressions as evaluation processes,
manipulation, towards axiomatic algebra. In this
perspective it helps to see manipulation as the
generation and transformation of equivalent
expressions, and the identification of specific 
values for variables within them.

At school level, algebra can be described as:
• manipulation and transformation of symbolic

statements
• generalisations of laws about numbers and patterns
• the study of structures and systems abstracted

from computations and relations
• rules for transforming and solving equations 
• learning about variables, functions and expressing

change and relationships
• modelling the mathematical structures of situations

within and outside mathematics.

Bell (1996) and Kaput (1998; 1999) emphasise the
process of symbolisation, and the need to operate
with symbolic statements and the use them within
and outside algebra, but algebra is much more than
the acquisition of a sign system with which to
express known concepts. Vergnaud (1998) identifies
new concepts that students will meet in algebra as:
equations, formulae, functions, variables and
parameters. What makes them new is that symbols
are higher order objects than numbers and become

8 Paper 6: Algebraic reasoning
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mathematical objects in their own right; arithmetic
has to work in algebraic systems, but symbol systems
are not merely expressions of general arithmetic.
Furthermore, ‘the words and symbols we use to
communicate do not refer directly to reality but to
represented entities: objects, properties, relationships,
processes, actions, and constructs, about which there
is no automatic agreement’ (p.167).

In this paper I draw on the research evidence about
the first five of the aspects above. In the next paper I
shall tackle modelling and associated issues, and their
relation to mathematical reasoning and application
more generally at school level.

It would be naïve to write about algebraic reasoning
without reporting the considerable difficulties that
students have with adopting the conventions of
algebra, so the first part of this review addresses the
relationship between arithmetic and algebra, and the
obstacles that have to be overcome to understand
the meaning of letters and expressions and to use
them. The second part looks at difficulties which are
evident in three approaches used to develop
algebraic reasoning: expressing generalities; solving
equations; and working with functions. The third 
part summarises the findings and makes
recommendations for practice and research.

Part 1: arithmetic, algebra,
letters, operations, expressions

Relationships between arithmetic
and algebra
In the United States, there is a strong commitment
to arithmetic, particularly fluency with fractions, to be
seen as an essential precursor for algebra: ‘Proficiency
with whole numbers, fractions, and particular aspects
of geometry and measurement are the Critical
Foundation of Algebra. …The teaching of fractions
must be acknowledged as critically important and
improved before an increase in student achievement
in Algebra can be expected.’ (NMAP, 2008). While
number sense precedes formal algebra in age-related
developmental terms, this one-way relationship is far
from obvious in mathematical terms. In the United
Kingdom where secondary algebra is not taught
separately from other mathematics, integration
across mathematics makes a two-way relationship
possible, seeing arithmetic as particular instances of
algebraic structures which have the added feature
that they can be calculated. For example, rather than
knowing the procedures of fractions so that they can
be generalised with letters and hence make algebraic
fractions, it is possible for fraction calculations to be
seen as enactments of relationships between rational
structures, those generalised enactments being
expressed as algorithms.

For this review we see number sense as preceding
formal algebra in students’ learning, but to imagine
that algebraic understanding is merely a
generalisation of arithmetic, or grows directly from it,
is a misleading over-simplification.

Kieran’s extensive work (e.g. 1981, 1989, 1992)
involving clinical studies with ten 12- to 13-year-olds
leads her to identify five inherent difficulties in making
a direct shifts between arithmetic and algebra.

• The focus of algebra is on relations rather than
calculations; the relation a + b = c represents two
unknown numbers in an additive relation, and while
3 + 5 = 8 is such a relation it is more usually seen
as a representation of 8, so that 3 + 5 can be
calculated whereas a + b cannot.

• Students have to understand inverses as well as
operations, so that finding a hidden number can 
be done even if the answer is not obvious from
knowing number bonds or multiplication facts; 7 +
b = 4 can be done using knowledge of addition,

9 Key understandings in mathematics learning
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but c + 63 = 197 is more easily done if
subtraction is used as the inverse of addition1.
Some writers claim that understanding this
structure is algebraic, while others say that doing
arithmetic to find an unknown is arithmetical
reasoning, not algebraic reasoning.

• Some situations have to be expressed algebraically
in order to solve them, rather than starting a
solution straight away. ‘I am 14 and my brother is 4
years older than me’ can be solved by addition, but
‘My brother is two years older than me, my sister is
five years younger than me; she is 12, how old will
my brother be in three years’ time?’ requires an
analysis and representation of the relationships
before solution. This could be with letters, so that
the answer is obtained by finding k where k – 5 =
12 and substituting this value into (k + 2) + 3.
Alternatively it could be done by mapping systems
of points onto a numberline, or using other
symbols for the unknowns. ‘Algebra’ in this situation
means constructing a method for keeping track of
the unknown as various operations act upon it.

• Letters and numbers are used together, so that
numbers may have to be treated as symbols in 
a structure, and not evaluated. For example, the
structure 2(a + b) is different from the structure
of 2a + 2b although they are equivalent in
computational terms.

• The equals sign has an expanded meaning; in
arithmetic it often means ‘calculate’ but in algebra
it more often means ‘is equal to’ or even ‘is
equivalent to’.

If algebra is seen solely as generalised arithmetic 
(we take this to mean the expression of general
arithmetical rules using letters), many problems arise
for learning and teaching. Some writers describe
these difficulties as manifestations of a ‘cognitive gap’
between arithmetic and algebra (Filloy and Rojano,
1989; Herscovics and Linchevski, 1994). For example,
Filloy and Rojano saw students dealing arithmetically
with equations of the form ax + b = c, where a, b
and c are numbers, using inverse operations on the
numbers to complete the arithmetical statement.
They saw this as ‘arithmetical’ because it depended
only on using operations to find a ‘hidden’ number.
The same students acted algebraically with equations
such as ax + b = cx + d, treating each side as an
expression of relationships and using direct
operations not to ‘undo’ but to maintain the equation
by manipulating the expressions and equality. If such a

gap exists, we need to know if it is developmental or
epistemological, i.e. do we have to wait till learners
are ready, or could teaching make a difference? A
bottom-up view would be that algebraic thinking is
often counter-intuitive, requires good understanding
of the symbol system, and abstract meanings which
do not arise through normal engagement with
phenomena. Nevertheless the shifts required to
understand it are shifts the mind is able to make
given sufficient experiences with new kinds of object
and their representations. A top-down view would be
that students’ prior knowledge, conceptualisations and
tendencies create errors in algebra. Carraher and
colleagues (Carraher, Brizuela & Earnest, 2001;
Carraher, Schliemann & Brizuela, 2001) show that the
processes involved in shifting from an arithmetical
view to an algebraic view, that is from quantifying
expressions to expressing relations between variables,
are repeated for new mathematical structures at
higher levels of mathematics, and hence are
characteristics of what it means to learn mathematics
at every level rather than developmental stages of
learners. This same point is made again and again by
mathematics educators and philosophers who point
out that such shifts are fundamental in mathematics,
and that reification of new ideas, so that they can be
treated as the elements for new levels of thought, 
is how mathematics develops both historically and
cognitively. There is considerable agreement that
these shifts require the action of teachers and
teaching, since they all involve new ways of thinking
that are unlikely to arise naturally in situations (Filloy
and Sutherland, 1996).

Some of the differences reported in research rest on
what is, and what is not, described as algebraic. For
example, the equivalence class of fractions that
represent the rational number 3/5 is all fractions of
the form 3k/5k (k Є N)2. It is a curriculum decision,
rather than a mathematical one, whether equivalent
fractions are called ‘arithmetic’ or ‘algebra’ but
whatever is decided, learners have to shift from seeing
3/5 as ‘three cakes shared between five people’ to a
quantitative label for a general class of objects
structured in a particular quantitative relationship. This
is an example of the kind of shift learners have to
make from calculating number expressions to seeing
such expressions as meaningful structures.

Attempts to introduce symbols to very young
students as tools to be used when they have a need
to express general relationships, can be successful
both for them understanding symbol use, and
understanding the underlying quantitative relations
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being expressed (Dougherty, 1996; 2001). In
Dougherty’s work, students starting school
mathematics first compare and discuss quantities of
liquid in different vessels, and soon become able to
use letters to stand for unknown amounts. Arcavi
(1994) found that, with a range of students from
middle school upwards over several years, symbols
could be used as tools early on to express
relationships in a situation. The example he uses is the
well-known one of expressing how many people can
sit round a line of tables, given that there can be two
on each side and one at each of the extreme ends.
The ways in which students count differ, so the forms
of the general statement also differ, such as: ‘multiply
the number of tables by 4 and add two’ or ‘it is two
times one more than the number of tables’. In Brown
and Coles’ work (e.g. 1999, 2001), several years of
analysis of Coles’ whole-class teaching showed that
generalising by expressing structures was a powerful
basis for students to need symbolic notation, which
they could then use with meaning. For example, to
express a number such that ‘twice the number plus
three’ is ‘three less’ than ‘add three and double the
number’ a student who has been in a class of 12-
year-olds where expression of general relationships is
a normal and frequent activity introduced N for
himself without prompting when it is appropriate. 

When students are allowed to use their own
methods of calculation they often find algebraic
structures for themselves. For example, expressing
13 x 7 as 10 x 7 + 3 x 7, or as 2 x 72 - 7, are
enactments of distributivity (and, implicitly,
commutativity and associativity) and can be
represented symbolically, though this shift is not
trivial (Anghileri, Beishuizen and van Putten,2002;
Lampert, 1986). On the other hand, allowing
students to develop a mindset in which any method
that gives a right answer is as good as any other can
lock learners into additive procedures where
multiplicative ones would be more generalisable,
multiplicative methods where exponential methods
would be more powerful, and so on. But some
number-specific arithmetical methods do exemplify
algebraic structures, such as the transformation of 
13 x 7 described above. This can be seen either as
‘deriving new number facts from known number
facts’ or as an instance of algebraic reasoning. 

The importance of a link between the kinds of
transformations necessary for mental arithmetic and
algebraic thinking is demonstrated in a three-year
longitudinal teaching and testing programme of 116
students aged 12 to 14 (Britt and Irwin, 2007).

Students who had developed advanced mental
strategies, (e.g. compensation as in 82 – 17 = 87 –
17 – 5) for dealing with additive, multiplicative and
proportional operations, could use letters in
conventional algebra once they knew that they
‘stood for’ numbers. Those who did best at algebra
were those in schools where teachers had focused
on generalizing with numerical and spatial
representations in situations where counting was 
not a sensible option.

There are differences in the meaning of notation as
one shifts between arithmetic and algebra. Wong
(1997) tested and interviewed four classes of
secondary students to see whether they could
distinguish between similar notations used for
arithmetic and algebra. For example, in arithmetic the
expression 3(4 + 5) is both a structure of operations
and an invitation to calculate, but in algebra a(b + c)
is only a structure of operations. Thus students get
confused when given mixtures such as 3(b + 5)
because they can assume this is an invitation to
calculate. This tendency to confuse what is possible
with numbers and letters is subtle and depends on
the expression. For example, Wong found that
expressions such as (2am)n are harder to simplify and
substitute than (hk)n, possibly because the second
expression seems very clearly in the realm of algebra
and rules about letters. Where Booth and Kieran
claim that it is not the symbolic conventions alone
that create difficulties but more often a lack of
understanding of the underlying operations, Wong’s
work helpfully foregrounds some of the inevitable
confusions possible in symbolic conventions. The
student has to understand when to calculate, when
to leave an expression as a statement about
operations, what particular kind of number
(unknown, general or variable) is being denoted, and
what the structure looks like with numbers and
letters in combination. As an example of the last
difficulty, 2X is found to be harder to deal with than x2

although they are visually similar in form.

The question for this review is therefore not whether
learners can make such shifts, or when they make
them, but what are the shifts they have to make, and
in what circumstances do they make them. 

Summary
• Algebra is not just generalised arithmetic; there are

significant differences between arithmetical and
algebraic approaches.
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• The shifts from arithmetic to algebra are the 
kinds of shifts of perception made throughout
mathematics, e.g. from quantifying to relationships
between quantities; from operations to structures
of operations.

• Mental strategies can provide a basis for
understanding algebraic structures.

• Students will accept letters and symbols standing
for numbers when they have quantitative
relationships to express; they seem to be able to
use letters to stand for ‘hidden’ numbers and also
for ‘any’ number.

• Students are confused by expressions that combine
numbers and letters, and by expressions in which
their previous experience of combinations are
reversed. They have to learn to ‘read’ expressions
structurally even when numbers are involved.

Meaning of letters

Students’ understanding of the meaning of letters 
in algebra, and how they use letters to express
mathematical relationships, are at the root of
algebraic development. Kuchemann (1981) identified
several different ways adolescent students used
letters in the Chelsea diagnostic test instrument
(Hart, 1981). His research is based on test papers of
2900 students between 12 and 16 (see Appendix 1). 

Letters were:
• evaluated in some way, e.g. a = 1
• ignored, e.g. 3a taken to be 3
• used as shorthand for objects, e.g. a = apple
• treated as objects
• used as a specific unknown
• used as a generalised number
• used as a variable.

Within his categorisation there were correct and
incorrect uses, such as students who ascribed a value
to a letter based on idiosyncratic decisions or past
experience, e.g. x = 4 because it was 4 in the
previous question. These interpretations appear to
be task dependent, so learners had developed a
sense of what sorts of question were treated in
what kinds of ways, i.e. generalising (sometimes
idiosyncratically) about question-types through
familiarity and prior experience.

Booth (1984) interviewed 50 students aged 13 to
15 years, following up with 17 further case study
students. She took a subset of Kuchemann’s
meanings, ‘letters stand for numbers’, and further
unpicked it to reveal problems based on students’
test answers and follow-up interviews. She identified
the following issues which, for us, identify more
about what students have to learn.

• It is not always true that different letters have
different values; for example one solution to 3x +
5y = 8 is that x = y = 1.

• A letter can have different values in the same
problem, but not at the same time, if it stands for a
variable (such as an equation having multiple roots,
or questions such as ‘find the value of y = x2 + x +
2 when x = 1, 2, 3…’)

• The same letter does not have to have the same
value in different problems.

• Values are not related to the alphabet (a = 1, b = 2
…; or y > p because of relative alphabetic position). 

• Letters do not stand for objects (a for apples)
except where the objects are units (such as m for
metres).

• Letters do not have to be presented in alphabetical
order in algebraic expressions, although there are
times when this is useful3.

• Different symbolic rules apply in algebra and
arithmetic, e.g.: ‘2 lots of x’ is written ‘2x’ but two
lots of 7 are not written ‘27’. 

As well as in Booth’s study, paper and pencil tests
that were administered to 2000 students in aged 11
to 15 in 24 Australian secondary schools in 1992
demonstrated all the above confusions (MacGregor
and Stacey, 1997). 

These problems are not resolved easily, because letters
are used in mathematics in varying ways. There is no
single correct way to use them. They are used 
as labels for objects that have no numerical value, such
as vertices of shapes, or for objects that do have
numerical value but are treated as general, such as
lengths of sides of shapes. They denote fixed constants
such as g, e or π, also non-numerical constants such as i,
and also they represent unknowns which have to be
found, and variables. Distinguishing between these
meanings is usually not taught explicitly, and this lack 
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of instruction might cause students some difficulty. On
the other hand it is very hard to explain how to know
the difference between a parameter, a constant and a
variable (e.g. when asked to ‘vary the constant’ to
explore a structure), and successful students may 
learn this only when it is necessary to make such
distinctions in particular usage. It is particularly hard to
explain that the O and E in O + E = O (to indicate
odd and even numbers) are not algebraic, even though
they do refer to numbers. Interpretation is therefore
related to whether students understand the algebraic
context, expression, equation, equivalence, function or
other relation. It is not surprising that Furinghetti and
Paola (1994) found that only 20 out of 199 students
aged 12 to 17 could explain the difference between
parameters and variables and unknowns (see also
Bloedy-Vinner, 1994). Bills’ (2007) longitudinal study of
algebra learning in upper secondary students noticed
that the letters x and y have a special status, so that
these letters trigger certain kinds of behaviour (e.g.
these are the variables; or (x.y) denotes the general
point). Although any letter can stand for any kind of
number, in practice there are conventions, such as x
being an unknown; x, y, z being variables; a, b, c being
parameters/coefficient or generalised lengths, and so on.

A critical shift is from seeing a letter as representing
an unknown, or ‘hidden’, number defined within a
number sentence such as:

3 + x = 8

to seeing it as a variable, as in y = 3 + x, or 3 = y – x.
While there is research to show how quasi-variables
such as boxes can help students understand the use
of letters in relational statements (see Carpenter and
Levi, 2000) the shift from unknown to variable when
similar letters are used to have different functions is
not well-researched. Understanding x as some kind of
generalised number which can take a range of values
is seen by some researchers to provide a bridge from
the idea of unknown to that of variables (Bednarz,
Kieran and Lee, 1996).

The algebra of unknowns is about using solution
methods to find mystery numbers; the algebra of
variables is about expressing and transforming relations
between numbers. These different lines of thought
develop throughout school algebra. The ‘variable’ view
depends on the idea that the expressions linked by the
‘equals’ sign might be not just numerically equal, but
also equivalent, yet students need to retain the
‘unknown’ concept when setting up and solving
equations which have finite solutions. For example, 10x

– 5 = 5(2x – 1) is a statement about equivalence, and
x is a variable, but 10x – 5 = 2x + 1 defines a value of
the variable for which this equality is true. Thus x in the
second case can be seen as an unknown to be found.

It is possible to address some of the problems by giving
particular tasks which force students to sort out the
difference between parameters and variables (Drijvers,
2001). A parameter is a value that defines the structure
of a relation. For example, in y = mx + c the variables
are x and y, while m and c define the relationship and
have to be fixed before we can consider the
covariation of x and y. In the United Kingdom this is
dealt with implicitly, and finding the gradient and
intercept in the case just described is seen as a special
kind of task. At A-level, however, students have to find
coefficients for partial fractions, or the coefficients of
polynomials which have given roots, and after many
years of ‘finding x’ they can find it hard to use particular
values for x to identify parameters instead. By that time
only those who have chosen to do mathematics need
to deal with it, and those who earlier could only find
the m and c in y=mx + c by using formulae without
comprehension may have given up maths. Fortunately,
the dynamic possibilities of ICT offer tools to fully
explore the variability of x and y within the constant
behaviour of m and c and it is possible that more
extensive use of ICT and modelling approaches might
develop the notion of variable further.

Summary
• Letters standing for numbers can have many

meanings.

• The ways in which operations and relationships are
written in arithmetic and algebra differ.

• Learners tend to fall into well-known habits and
assumptions about the use of letters.

• A particular difficulty is the difference between
unknowns, variables, parameters and constants,
unless these have meaning.

• Difficulties in algebra are not merely about using
letters, but about understanding the underlying
operations and structures.

• Students need to learn that there are different uses
for different letters in mathematical conventions; for
example, a, b and c are often used as parameters,
or generalised lengths in geometry, and x, y and z
are often used as variables. 
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Recognising operations

In several intervention studies and textbooks
students are expected to use algebraic methods for
problems for which an answer is required, and for
which ad hoc methods work perfectly well. This
arises when solving equations with one unknown on
one side where the answer is a positive integer (such
as 3x + 2 = 14); in word problems which can be
enacted or represented diagrammatically (such as ‘I
have 15 fence posts and 42 metres of wire; how far
apart must the fence posts be to use all the wire
and all the posts to make a straight fence?’); and in
these and other situations in which trial-and-
adjustment work easily. Students’ choice to use 
non-algebraic methods in these contexts cannot 
be taken as evidence of problems with algebra.

In a teaching experiment with 135 students age 12 
to 13, Bednarz and Janvier (1996) found that a
mathematical analysis of the operations required for
solution accurately predicted what students would find
difficult, and they concluded that problems where one
could start from what is known and work towards
what is not known, as one does in arithmetical
calculations, were significantly easier than problems in
which there was no obvious bridge between knowns
and the unknown, and the relationship had to be
worked out and expressed before any calculations
could be made. Many students tried to work
arithmetically with these latter kinds of problem,
starting with a fictional number and working forwards,
generating a structure by trial and error rather than
identifying what would be appropriate. This study is
one of many which indicate that understanding the
meaning of arithmetical operations, rather than merely
being able to carry them out, is an essential precursor
not only to deciding what operation is the right one to
do, but also to expressing and understanding structures
of relations among operations (e.g. Booth, 1984). The
impact of weak arithmetical understanding is also
observed at a higher level, when students can confuse
the kinds of proportionality expressed in y = k/x and y
= kx, thinking the former must be linear because it
involves a ratio (Baker, Hemenway and Trigueros,2001).
The ratio of k to x in the first case is specific for each
value of x, but the ratio of y to x in the second case is
invariant and this indicates a proportional relationship.

Booth (1984) selected 50 students from four schools
to identify their most common errors and to
interview those who made certain kinds of error. This
led her to identify more closely how their weakness
with arithmetic limited their progress with algebra. The

methods they used to solve word problems were
bound by context, and depended on counting, adding,
and reasoning with whole and half numbers. They
were unable to express how to solve problems in
terms of arithmetical operations, so that algebraic
expressions of such operations were of little use,
being unrelated to their own methods. Similarly, their
methods of recording were not conducive to
algebraic expression, because the roles of different
numbers and signs were not clear in the layout. For
example, if students calculate as they go along, rather
than maintaining the arithmetical structure of a
question, much information is lost. For example, 42 –22

becomes 16 – 4 and the ‘difference between two
squares’ is lost; similarly, turning rational or irrational
numbers into decimal fractions can lose both accuracy
and structure. 

In Booth’s work it was not the use of letters 
that is difficult, but the underlying arithmetical
understanding. This again supports the view that it 
is not until ad hoc, number fact and guess-and-test
methods fail that students are likely to see a need
for algebraic methods, and in a curriculum based on
expressions and equations this is likely occur when
solving equations with non-integer answers, where a
full understanding of division expressed as fractions
would be needed, and when working with the
unknown on both sides of an equation. Alternatively,
if students are trying to express general relationships,
use of letters is essential once they realise that
particular examples, while illustrating relationships, do
not fully represent them. Nevertheless students’
invented methods give insight into what they might
know already that is formalisable, as in the 13 x 7
example given above.

Others have also observed the persistence of
arithmetic (Kieran, 1992; Vergnaud, 1998). Vergnaud
compares two student protocols in solving a
distance/time problem and comments that the
additive approach chosen by one is not conceptually
similar to the multiplicative chosen by the other, even
though the answers are the same, and that this linear
approach is more natural for students than the
multiplicative. Kieran (1983) conducted clinical
interviews with six 13-year-old students to find out
why they had difficulty with equations. The students
tended to see tasks as about ‘getting answers’ and
could not accept an expression as meaningful in
itself. This was also observed by Collis (1971) and
more recently by Ryan and Williams in their large
scale study of students’ mathematical understanding,
drawing on a sample of about 15 000 U.K. students
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(2007). Stacey and Macgregor (2000, p. 159) talk of
the ‘compulsion to calculate’ and comment that at
every stage students’ thinking in algebraic problems
was dominated by arithmetical methods, which
deflected them from using algebra. Furthermore,
Bednarz and Janvier (1996) showed that even those
who identified structure during interviews were likely
to revert to arithmetical methods minutes later. It
seemed as if testing particular numbers was an
approach that not only overwhelmed any attempts
to be more analytical, but also prevented
development of a structural method.

This suggests that too much focus on substitution in
early algebra, rather than developing understanding
of how structure is expressed, might allow a
‘calculation’ approach to persist when working with
algebraic expressions. If calculation does persist, then
it is only where calculation breaks down that
algebraic understanding becomes crucial, or, as in
Bednarz and Janvier (1996), where word problems
do not yield to straightforward application of
operations. For a long time in Soviet education word
problems formed the core of algebra instruction.
Davydov (1990) was concerned that arithmetic does
not necessarily lead to awareness of generality,
because the approach degenerates into ‘letter
arithmetic’ rather than the expression of generality.
He developed the approach used by Dougherty
(2001) in which young students have to express
relationships before using algebra to generalize
arithmetic. For example, students in the first year 
of school compare quantities of liquid (‘do you have
more milk than me?’) and express the relationship 
as, say, G < R. They understand that adding the same
amount to each does not make them equal, but that
they have to add some to G to make them equal.
They do not use numbers until relationships
between quantities are established.

Substituting values can, however, help students to
understand and verify relationships: it matters if this
is for an unknown: 5 = 2x – 7 where only one value
will do; or for an equation where variables will be
related: y = 2x – 7; or to demonstrate equivalence:
e.g. does 5(x + y) – 3 = 5x + 5y – 3 or 5x + y – 3?
But using substitution to understand what
expressions mean is not helpful. Furthermore the
choice of values offered in many textbooks can
exacerbate misunderstandings about the values
letters can have. They can reinforce the view that a
letter can only take one value in one situation, and
that different letters have to have different values,
and even that a = 1, b = 2 etc.

Summary
• Learners use number facts and guess-and-check

rather than algebraic methods if possible.

• Doing calculations, such as in substitution and
guess-and-check methods, distracts from the
development of algebraic understanding.

• Substitution can be useful in exploring equivalence
of expressions.

• Word problems do not, on their own, scaffold a
shift to algebraic reasoning.

• Learners have to understand operations and their
inverses.

• Methods of recording arithmetic can scaffold a shift
to understanding operations.

What shifts have to be made
between arithmetic and algebra?

Changing focus slightly, we now turn to what the
learner has to see differently in order to overcome
the inherent problems discussed above. A key shift
which has to be made is from focusing on answers
obtained in any possible way, to focusing on
structure. Kieran (1989, 1992), reflecting on her long-
term work with middle school students, classifies
‘structure’ in algebra as (1) surface structure of
expression: arrangement of symbols and signs; (2)
systemic: operations within an expression and their
actions, order, use of brackets etc.; (3) structure of an
equation: equality of expressions and equivalence.

Boero (2001) identifies transformation and
anticipation as key processes in algebraic problem
solving, drawing on long-term research in authentic
classrooms, reconstructing learners’ meanings from
what they do and say. He observed two kinds of
transformation, firstly the contextual arithmetical,
physical and geometric transformations students do
to make the problem meaningful within their current
knowledge (see also Filloy, Rojano and Robio,2001);
secondly, the new kinds of transformation made
available by the use of algebra. If students’
anticipation is locked into arithmetical activity: finding
answers, calculating, proceeding step-by-step from
known to unknown (see also Dettori, Garutti, and
Lemut, 2001), and if their main experience of algebra
is to simplify expressions, then the shift to using the
new kinds of transformation afforded by algebra is

15 Key understandings in mathematics learning



16 SUMMARY – PAPER 2: Understanding whole numbers

hindered. Thus typical secondary school algebraic
behaviour includes reaching for a formula and
substituting numbers into it (Arzarello, Bazzini 
and Chiappini,1994), as is often demonstrated in
students’ meaningless approaches to finding areas
and perimeters (Dickson, 1989 a). Typically students
will multiply every available edge length to get 
area, and add everything to get perimeter. These
approaches might also be manifestations of learners’
difficulties in understanding area (see Paper 5,
Understanding space and its representation in
mathematics) which cause them to rely on methods
rather than meaning. 

The above evidence confirms that the relationship
between arithmetic and algebra is not a direct
conceptual hierarchy or necessarily helpful. Claims 
that arithmetical understanding has to precede the
teaching of algebra only make sense if the focus is 
on the meaning of operations and on arithmetical
structures, such as inverses and fractional equivalence,
rather than in correct calculation. A focus on answers
and ad hoc methods can be a distraction unless the
underlying structures of the ad hoc methods are
generalisable and expressed structurally. Booth (1984)
found that inappropriate methods were sometimes
transferred from arithmetic; students often did not
understanding the purpose of conventions and
notations, for example not seeing a need for brackets
when there are multiple operations. The possibilities of
new forms of expression and transformation have to
be appreciated, and the visual format of algebraic
symbolism is not always obviously connected to its
meanings (Wertheimer, 1960; Kirschner, 1989). For
example, the meaning of index notation has to be
learnt, and while y3 can be related to its meaning in
some way, y1/2 is rather harder to interpret without
understanding abstract structure.

In the U.K. context of an integrated curriculum, a non-
linear view of the shift between arithmetic and algebra
can be considered. Many researchers have shown 
that middle-school students can develop algebraic
reasoning through a focus on relationships, rather 
than calculations4. Coles, Dougherty and Arcavi have
already been mentioned in this respect, and Blanton
and Kaput (2005) showed in an intervention-and-
observation study of cohort of 20 primary teachers,
in particular one self-defined as ‘not a maths person’ in
her second year of teaching, could integrate algebraic
reasoning into their teaching successfully, particularly
using ICT as a medium for providing bridges between
numbers and structures. Fujii and Stephens (2001,
2008) examined the role of quasi-variables (signs

indicating missing values in number sentences) as a
precursor to understanding generalization. Brown and
Coles (1999, 2001) develop a classroom environment
in a U.K. secondary school in which relationships are
developed which need to be expressed structurally,
and algebraic reasoning becomes a tool to make new
questions and transformations possible. These studies
span ages 6 to lower secondary and provide school-
based evidence that the development of algebraic
reasoning can happen in deliberately-designed
educational contexts. In all these contexts, calculation
is deliberately avoided by focusing on, quantifiable but
not quantified, relationships, and using Kieran’s first
level of structure, surface structure, to express
phenomena at her third level, equality of expressions.
A study with 105 11- and 12-year-olds suggests that
explaining verbally what to do in general terms is a
precursor to understanding algebraic structure
(Kieran’s third level) (Reggiani 1994). In this section I
have shown that it is possible for students to make
the necessary shifts given certain circumstances, and
can identify necessary experiences which can support
the move.

Summary of what has to be learnt to 
shift from arithmetic and algebra
• Students need to focus on relations and

expressions, not calculations.

• Students need to understand the meaning of
operations and inverses.

• Students need to represent general relations which
are manifested in situations

• In algebra letters and numbers are used together;
algebra is not just letters.

• The equals sign means ‘has same value as’ and ‘is
equivalent to’ – not ‘calculate’.

• Arithmetic can be seen as instances of general
relationships between quantities.

• Division is a tool for constructing a rational
expression.

• The value of a number is less important than its
relation to other numbers in an expression.

• Guessing and checking, or using known number
facts, has to be put aside for more general
methods.
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• A letter does not always stand for a particular
unknown.

Without explicit attention to these issues, learners
will use their natural and quasi-intuitive reasoning to:
• try to match their use of letters to the way they

use numbers
• try to calculate expressions
• try to use ‘=’ to mean ‘calculate’
• focus on value rather than relationship
• try to give letters values, often based on

alphabetical assumptions.

Understanding expressions
An expression such as 3x + 4 is both the answer to
a question, an object in itself, and also an algorithm 
or process for calculating a particular number. This is
not a new way of thinking in mathematics that only
appears with algebra: it is also true that the answer to
3 ÷ 5 is 3/5, something that students are expected to
understand when they learn about intensive
quantities and fractions. Awareness of this kind of
dual meaning has been called proceptual thinking
(Gray and Tall, 1994), combining the process with its
outcome in the same way as a multiple is a number
in itself and also the outcome of multiplication. The
notions of ‘procept’ and ‘proceptual understanding’
signify that there is a need for flexibility in how we
act towards mathematical expressions. 

Operational understanding
Many young students understand, at least under
some circumstances, the inverse relation between
addition and subtraction but it takes students
longer to understand the inverse relation 
between multiplication and division5. This may 
be particularly difficult when the division is not
symbolized by the division sign ÷ but by means of
a fraction, as in 1/3. Understanding division when it
is symbolically indicated as a fraction would require
students to realise that a symbol such as 1/3
represents not only a quantity (e.g. the amount of
pizza someone ate when the pizza was cut into
three parts) but also as an operation. Kerslake
(1986) has shown that older primary and younger
secondary students in the United Kingdom rarely
understand fractions as indicating a division. A
further difficulty is that multiplication, seen as
repeated addition, does not provide a ready image
on which to build an understanding of the inverse
operation. An array can be split up vertically or

horizontally; a line of repeated quantities can 
only be split up into commensurate lengths. The
language of division in schools is usually ‘sharing’ 
or ‘shared by’ rather than divide, thus triggering an
assignment metaphor. This is a long way from the
notion of number required in order to, for
example, find y when 6y = 7. There is evidence
that students understand some properties of
operations better in some contexts than in others
(e.g. Nunes and Bryant, 1995).

As well as knowing about operations and their
inverses, students need to know that only addition
and multiplication are commutative in arithmetic, so
that with subtraction and division it matters which
way round the numbers go. Also in subtraction and
multiplication it makes a difference if an unknown
number or variable is not the number being acted
on in the operation. For example, if 7 – p = 4, then
to find p the appropriate inverse operation is 7 – 4.
In other words ‘subtract from n’ is self-inverse. A
similar issue arises with ‘divide into n’. 

We are unconvinced by the U.S. National
Mathematics Advisory Panel’s suggestion that fractions
must be understood before algebra is taught (NMAP,
2008). Their argument is based on a ‘top-down’
curriculum view and not on research about how such
ideas are learnt. The problems just described are
algebraic, yet contribute to a full understanding of
fractions as rational structures. There is a strong
argument for seeing the mathematical structure of
fractions as the unifying concept which draws together
parts, wholes, divisions, ratio, scalings and multiplicative
relationships, but it may only be in such situations as
solving equations, algebraic fractions, and so on that
students need to extend their view of division and
fractions, and see these as related. 

To understand algebraic notation requires an
understanding that terms made up of additive,
multiplicative and exponential operations, e.g.
(4a3b – 8a), are variables rather than instruction
to calculate, and have a structure and equivalent
forms. It has been suggested that spending time
relating algebraic terms to arithmetical structures
can provide a bridge between arithmetic and
algebra (Banerjee and Subramaniam, 2004). More
research is needed, but working this way round,
rather than introducing terms by reverting to
substitution and calculation, seems to have
potential.

17 Key understandings in mathematics learning



18 SUMMARY – PAPER 2: Understanding whole numbers

Summary
• Learners tend to persist in additive methods rather

than using multiplicative and exponential where
appropriate.

• It is hard for students to learn the nature of
multiplication and division – both as inverse of
multiplication and as the structure of fractions and
rational numbers.

• Students have to learn that subtraction and division
are non-commutative, and that their inverses are
not necessarily addition and multiplication.

• Students have to learn that algebraic terms can
have equivalent forms, and are not instructions to
calculate. Matching terms to structures, rather than
using them to practice substitution, might be useful.

Relational reasoning

Students may make shifts between arithmetic and
algebra, and between operations and relations,
naturally with enough experience, but research
suggests that teaching can make a difference to the
timing and robustness of the shift. Carpenter and
Levi (2000) have worked substantially over decades
to develop an approach to early algebra based on
understanding equality, making generalisations
explicit, representing generalisations in various ways
including symbolically, and talking about justification
and proof to validate generalities. Following this
work, Stephens and others have demonstrated that
students can be taught to see expressions such as:

97 – 49 + 49

as structures, in Kieran’s second sense of
relationships among operations (see also the 
paper on natural numbers). In international studies,
students in upper primary in Japan generally tackled
these relationally, that is they did not calculate all the
operations but instead combined operations and
inverses, at a younger age than Australian students
made this shift. Chinese students generally appeared
to be able to choose between rapid computation
and relational thinking as appropriate, while 14-year-
old English students varied between teachers in their
treatment of these tasks (Fujii and Stephens, 2001,
2008; Jacobs, Franke, Carpenter, Levi and Battey,
2007). This ‘seeing’ relationally seems to depend on
the ability to discern details (Piaget, 1969 p. xxv) 
and application of an intelligent sense of structure

(Wertheimer, 1960) and also to know when and
how to handle specifics and when to stay with
structure. The power of such approaches is
illustrated in the well-known story of the young
Gauss’ seeing a structural way to sum an arithmetic
progression. In Fujii and Stephens’ work, seeing
patterns based on relationships between numbers,
avoiding calculation, identifying variation, having a
sense of limits of variability, were all found to be
predictors of an ability to reason with relationships
rather than numbers.

These are fundamental algebraic shifts. Seeing algebra
as ‘generalised arithmetic’ is not achieved by inductive
reasoning from special cases, but by developing a
structural perspective on number sentences. 

Summary
• Learners naturally generalise, they look for patterns

and habits, and familiar objects.

• Inductive reasoning from several cases is a natural
way to generalise, but it is often more important to
look at expressions as a whole.

• Learners can shift from ‘seeing’ number expressions
as instructions to calculate to seeing them as
relationships.

• This shift can be scaffolded by teaching which
encourages students not to calculate but to identify
and use relations between numbers.

• Learners who are fluent in both ways of seeing
expressions, as structures or as instructions to
calculate, can choose which to use.

Combining operations

Problems arise when an expression contains more
than one operation, as can be seen in our paper on
functional relations where young children cannot
understand the notion of relations between
relations, such as differences of differences. In
arithmetical and algebraic expressions, some relations
between relations appear as combinations of
operations, and learners have to decide what has 
to be ‘done’ first and how this is indicated in the
notation. Carpenter and Levi (2000), Fujii and
Stephens (2001, 2008), Jacobs et al. (2007), draw
attention to this in their work on how students read
number sentences. Linchevski and Herscovics (1996)
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studied how 12- and13-year-olds decided on the
order of operations. They found that students tended
to overgeneralise the order, usually giving addition
priority over subtraction; or using operations in left
to right order; they can show lack of awareness of
possible internal cancellations; they can see brackets
as merely another way to write expressions rather
than an instruction to act first, for example: 926 –
167 – 167 and 926 – (167 + 167) yielded different
answers (Nickson, 2000 p. 120); they also did not
understand that signs were somehow attached to
the following number. 

Apart from flow diagrams, a common way to teach
about order in the United Kingdom is to offer
‘BODMAS6’ and its variants as a rule. However, it is
unclear whether such an approach adequately
addresses typical errors made by students in their
use of expressions.

The following expression errors were manifested 
in the APU tests (Foxman et al., 1985). These tests
involved a cohort of 12 500 students age 11 to 15
years. There is also evidence in more recent studies
(see Ryan and Williams, 2007) that these are
persistent, especially the first. 

• Conjoining: e.g. a + b = ab

• Powers are interpreted as multiplication, an error
made by 20% of 15-year-olds

• Not understanding that having no coefficient means
the coefficient is 1

• Adding all three values when substituting in, say, u + gt

• Expressing the cost of a packet of sweets where x
packets cost 90p as x/90 

The most obvious explanation of the conjoining error
is that conjoining is an attempt to express and ‘answer’
by constructing closure, or students may just not know
that letters together in this notation mean ‘multiply’.

Ryan and Williams (2007) found a significant number
of 14-year-olds did not know what to do with an
expression; they tried to ‘solve’ it as if it is an
equation, again possibly a desire for an ‘answer’. They
also treated subtraction as if it is commutative, and
ignored signs associated with numbers and letters.
Both APU (Foxman et al., 1985) and Hart, (1981)
concluded that understanding operations was a
greater problem than the use of symbols to indicate

them, but it is clear from Ryan and Williams’ study
that interpretation is also significantly problematic.
The prevalence of similar errors in studies 20 years
apart is evidence that these are due to students’
normal sense-making of algebra, given their previous
experiences with arithmetic and the inherent non-
obviousness of algebraic notation.   

Summary
• Understanding operations and their inverses is a

greater problem than understanding the use of
symbols.

• Learners tend to use their rules for reading and
other false priorities when combining operations,
i.e. interpreting left to right, doing addition first,
using language to construct expressions, etc. They
need to develop new priorities.

• New rules, such as BODMAS (which can be
misused), do not effectively and quickly replace old
rules which are based on familiarity, habit, and
arithmetic. 

Equals sign

A significant body of research reports on difficulties
about the meaning of the equals sign Sfard and
Linchevski (1994) find that students who can do 7x
+ 157 = 248 cannot do 112 = 12x + 247, but
these questions include two issues: the position and
meaning of the equals sign and that algorithmic
approaches lead to the temptation to subtract
smaller from larger, erroneously, in the second
example. They argue that the root problem is the
failure to understand the inverse relation between
addition and subtraction, but this research shows
how conceptual difficulties, incomplete
understandings and notations can combine to make
multiple difficulties. If students are taught to make
changes to both sides of an equation in order to
solve it (i.e. transform the equation y – 5 = 8 into y
– 5 + 5 = 8 + 5) and they do not see the need to
maintain equivalence between the values in the two
sides of the equation, then the method that they
are being taught is mysterious to them, particularly
as many of the cases they are offered at first can be
easily solved by arithmetical methods. Booth (1984)
shows that these errors combine problems with
understanding operations and inverses and
problems understanding equivalence.
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There are two possible ways to tackle these problems:
to identify all the separate problems, treat them
separately, and expect learners to apply the relevant
new understandings when combinations occur; or to
treat algebraic statements holistically and semantically,
so that the key feature of the above examples is
equality. There is no research which shows conclusively
that one approach is better than the other (a
statement endorsed in NMAP’s review (2008)).

There is semantic and syntactic confusion about the
meaning of ‘=’ that goes beyond learning a notation
(Kieran, 1981; 1992). Sometimes, in algebra, it is used
to mean that the two expressions are equal in a
particular instance where their values are equal; other
times it is used to mean that two expressions are
equivalent and one can be substituted for another in
every occurrence. Strictly speaking, the latter is
equivalence and might be written as ‘ ’ but we are not
arguing for this to become a new ‘must do’ for 
the curriculum as this would cut across so much
contextual and historical practice. Rather, the
understanding of algebraic statements must be
situational, and this includes learning when to use ‘==’
to mean ‘calculate’; when to use it to mean ‘equal in
special cases’ and when to mean ‘equivalent’; and when
to indicate that ‘these two functions are related in this
way’ (Saenz-Ludlow and Walgamuth, 1998). These
different meanings have implications for how the letter
is seen: a quantitative placeholder in a structure; a
mystery number to be found to make the equality
work; or a variable which co-varies with others within
relationships. Saenz-Ludlow and Walgamuth showed,
over a year-long study with children, that the shift
towards seeing ‘=’ to mean ‘is the same as’ rather than
‘find the answer’ could be made within arithmetic with
consistent, intentional, teaching. This was a teaching
experiment with eight-year-olds in which children were
asked to find missing sums and addends in addition
grids. The verb ‘to be’ was used instead of the equals
sign in this and several other tasks. Another task
involved finding several binary calculations whose
answer was 12, this time using ‘=’. Word problems,
including some set by the children, were also used.
Children also devised their own ways to represent and
symbolise equality. We do not have space here to
describe more of the experiment, but at the end the
children had altered their initial view that ‘=’ was an
instruction to calculate. They understood ‘=’ as giving
structural information. Fujii and Stephens’ (2001)
research can be interpreted to show that students do
get better at using ‘new’ meanings of the equals sign
and this may be a product of repeated experience of
what Boero called the ‘new transformations’ made

possible by algebra, combined with ‘new anticipations’
also made possible by algebra. 

Alibali and colleagues (2007) studied 81 middle school
students over three years to map their understanding
of equations. They found that those who had, or
developed, a sophisticated understanding of the equals
sign were able to deal with equivalent equations, using
equivalence to transform equations and solve for
unknowns. Kieran and Saldanha (2005) used a
Computer Algebra System to enable five classes of
upper secondary students to explore different
meanings of ‘=’ and found that given suitable tasks they
were able to understand equivalence, generating for
themselves two different understandings: equivalence
as meaning that expressions would give them equal
values for a range of input values of the variables, and
equivalence as meaning that the expressions were
basically transformations of the same form. Both of
these understandings contribute to meaningful
manipulation from one form to another. Also focusing
on equivalence, Kieran and Sfard (1999) used a
graphical function approach and thus enabled students
to recognise that equivalent algebraic representations of
functions would generate the same graphs, and hence
represent the same relationships between variables. 

The potential for confusion between equality and
equivalence relates to confusion between finding
unknowns (such as values of variables when two
non-equivalent expressions are temporarily made
equal) and expressing relationships between
variables. Equivalence is seen when graphs coincide;
equality is seen when graphs intercept.

Summary
• Learners persist in using ‘=’ to mean ‘calculate’

because this is familiar and meaningful for them.

• The equals sign has different uses within
mathematics; sometimes it indicates equivalence
and sometimes equality; learners have to learn
these differences.

• Different uses of the equals sign carry different
implications for the meaning of letters: they can
stand for hidden numbers, or variables, or
parameters.

• Equivalence is seen when graphs coincide, and can
be understood either structurally or as generation
of equal outputs for every input; equality is seen
when graphs intercept.

20 Paper 6: Algebraic reasoning



Equations and inequality

In the CMF study (Johnson, 1989), 25 classes in 21
schools in United Kingdom were tested to find out
why and how students between 8 and 13 cling to
guess-and-check and number-fact methods rather
than new formal methods offered by teachers. The
study focused on several topics, including linear
equations. The findings, dependent on large scale
tests and additional interviews in four schools, are
summarised here and can be seen to include several
tendencies already described in other, related,
algebraic contexts. That the same tendencies emerge
in several algebraic contexts suggest that these are
natural responses to symbolic stimuli, and hence take
time to overcome.

Students tended to:
• calculate each side rather than operate on them 
• not use inverse operations with understanding
• use ad hoc number-specific methods
• interpret a box or triangle to mean ‘missing

number’ but could not interpret a letter for this
purpose

• not relate a method to the symbolic form of a
method

• be unable to explain steps of their procedures
• confuse a ‘changing sides’ method with a ‘balance’

metaphor, particularly not connecting what is said
to what is done, or to what is written

• test actual numbers rather than use an algebraic
method

• assume different letters had different values
• think that a letter could not have the value zero.

They also found that those who used the language
‘getting rid of ’ were more likely to engage in
superficial manipulation of symbols. They singled out
‘get rid of a minus’ for particular comment as it has
no mathematical meaning. These findings have been
replicated in United Kingdom and elsewhere, and
have not been refuted as evidence of common
difficulties with equations. 

In the same study, students were then taught using a
‘function machine’ approach and this led to better
understanding of what an equation is and the variable
nature of x. However, this approach only makes sense
when an input-output model is appropriate, i.e. not
for equating two functions or for higher order
functions (Vergnaud 1997). Ryan and Williams (2007)
found that function machines can be used by most
students age 12 to 14 to solve linear equations, but
only when provided. Few students chose to introduce

them as a method. Most 12-year-olds could reverse
operations but not their order when ‘undoing’ to find
unknowns in this approach. Booth (1984) and Piaget
and Moreau (2001) show that students who
understand inversion might not understand that,
when inverting a sequence of operations, the inverse
operations cannot just be carried out in any order:
the order in which they are carried out influences the
result. Robinson, Ninowski and Gray (2006) also
showed that coordinating inversion with associativity
is a greater challenge than using either inversion or
associativity by themselves in problem solving.
Associativity is the property that x + (y + z) is equal
to (x + y) + z, so that we can add either the first
two terms, and then the last, or the last two and then
the first. This property applies to multiplication also.
(Incidentally, note that the automatic application of
BODMAS here would be unnecessary.) Students 
get confused about how to ‘undo’ such related
operations, and how to undo other paired operations
which are not associative. As in all such matters,
teaching which is based on meaning has different
outcomes (see Brown and Coles, 1999, 2001).

Once learners understand the meaning of ‘=’ there is
a range of ‘intuitive’ methods they use to find
unknown numbers: using known facts, counting,
inverse operations, and trial substitution (Kieran,
1992). These do not generalize for situations in which
the unknown appears on both sides, so formal
methods are taught. Formal methods each carry
potential difficulties: function machines do not extend
beyond ‘one-sided’ equations; balance methods do not
work for negative signs or for non-linear equations;
change-side/change-sign tends to be misapplied rather
than seen as a special kind of transformation.

Many errors when solving equations appear to
come from misapplication of rules and processes
rather than a flawed understanding of the equals
sign. Filloy describes several ‘cognitive tendencies’
observed over several studies of students
progressing from concrete to abstract
understandings (e.g. Filloy and Sutherland, 1996).
These tendencies are: to cling to concrete models;
to use sign systems inappropriately; to make
inappropriate generalizations; to get stuck when
negatives appear ; to misinterpret concrete actions.
Problems with the balance metaphor could be a
manifestation of the general tendency to cling to
concrete models (Filloy and Rojano, 1989), and the
negative sign cannot be related to concrete
understandings or even to some syntactic rules
which may have been learnt (Vlassis, 2002). Another
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problem is that when the ‘unknown’ is on both sides
it can no longer be treated with simple inversion
techniques as finding ‘the hidden number’; 3x = 12
entails answering the question ‘what number must I
multiply 3 by to get 12?’. But when balancing ‘4m +
3’ with ‘3m + 8’ the balance metaphor can suggest
testing and calculating each side until they match,
rather than solving by filling-in arithmetical facts.
Vlassis devised a teaching experiment with 40 lower
secondary students in two classes. The first task was
a word problem which would have generated two
equal expressions in one variable, and students only
applied trial-and-error to this. The second task was 
a sequence of balance problems with diagrams
provided, and all students could solve these. The
final task was a sequence of similar problems
expressed algebraically, two of which used negative
signs. These generated a range of erroneous
methods, including failure to identify when to use an
inverse operation, misapplication of rules, syntactical
mistakes and manipulations whose meaning was
hard to identify. In subsequent exercises errors of
syntax and meaning diminished, but errors with
negative integers persisted. Eight months later, in a
delayed interview, Vlassis’ students were still using
correctly the principles represented in the balance
model, though not using it explicitly, but still had
problems when negatives were included. In Filloy
and Rojano (1989) a related tendency is described,
that of students creating a personal sense of
concrete action (e.g. ‘I shall move this from here to
here’) and using them as if they are algebraic rules
(also observed by Lima and Tall, 2008). More insight
into how learners understand equations is given by
English and Sharry (1996) who asked students to
classify equations into similar types. Some classified
them according to superficial syntactic aspects, and
others to underlying algebraic structure. English and
Sharry draw attention to the need for students to
have experience of suitable structures in order to
reason analogically and identify deeper similarities.

There is little research in students’ understanding of
inequality in algebra. In number, children may know
about ranges of smaller, or larger, or ‘between’
numbers from their position on a numberline, and
children often know that adding the same quantity
to two unequal quantities maintains the inequality.
There are well-known confusions about relative size
of decimal numbers due to misunderstandings about
the notation, but beyond the scope of this review
(Hart, 1981). Research by Tsamir and others
describe common problems which appear to relate
to a tendency to act procedurally with unequal

algebraic expressions without maintaining an
understanding of the inequality (Linchevski and Sfard,
1991; Tsamir and Bazzini, 2001; Tsamir and Almog,
2001). One of these studies compares the
performance of 170 Italian students to that of 148
Israeli students in higher secondary school (Tsamir
and Bazzini, 2001). In both countries students had
been formally taught about a range of inequalities.
They were asked whether statement about the set 
S ={ x Є R: x = 3} could be true or not: ‘S can be
the solution set of an equality and an inequality’.
Only half the students understood that it could be
the solution set of an inequality, and those few
Italians who gave examples chose a quadratic
inequality that they already knew about. Some
students offered a linear inequality that could be
solved to include 3 in the answer. The researchers
concluded that unless an inequality question was
answerable using procedural algebra it was too hard
for them. Another task asked if particular solution
sets satisfied 5x4 < 0. Only half were able to say that
x = 0, the next most popular answer being x < 0.
The researchers compared students’ responses to
both tasks. It seems that the image of ‘imbalance’
often used with algebraic inequalities is abandoned
when manipulation is done. The ‘imbalance’ image
does not extend to quadratic inequalities, for which
a graphical image works better, but again a
procedural approach is preferred by many students
who then misapply it.

Summary
• Once students understand the equals sign, they are

likely to use intuitive number-rules as a first resort.

• The appearance of the negative sign creates need
for a major shift to abstract meanings of operations
and relations, as concrete models no longer
operate.

• The appearance of the unknown on both sides of
an equation creates the need for a major shift
towards understanding equality and variables.

• Students appear to use procedural manipulations
when solving equations and inequalities without a
mental image or understanding strong enough to
prevent errors.

• Students appear to develop action-based rules
when faced with situations which do not have
obvious concrete manifestations.
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• Students find it very hard to detach themselves
from concrete models, images and instructions and
focus on structure in equations.

Manipulatives

It is not only arithmetical habits that can cause
obstacles to algebra. There are other algebraic
activities in which too strong a memory for process
might create obstacles for future learning. For
example, a popular approach to teaching algebra 
is the provision of materials and diagrams which
ascribe unknown numerical (dimensional) meaning
to letters while facilitating their manipulation to
model relationships such as commutativity and
distributivity. These appear to have some success in
the short term, but shifts from physical appearance
to mental abstraction, and then to symbolism, are
not made automatically by learners (Boulton-Lewis,
Cooper, Atweh, Pillay, Wilss and Mutch,1997). These
manipulatives provide persistent images and
metaphors that may be obstructions in future
work. On the other hand, the original approach to
dealing with variables was to represent them as
spatial dimensions, so there are strong historical
precedents for such methods. There are reported
instances of success in teaching this, relating to
Bruner’s three perspectives, enactive-iconic-
symbolic (1966), where detachment from the
model has been understood and scaffolded by
teaching (Filloy and Sutherland, 1996; Simmt and
Kieren, 1999). Detachment from the model has to
be made when values are negative and can no
longer be represented concretely, and also with
fractional values and division operations. Spatial
representations have been used with success 
where the image is used persistently in a range 
of algebraic contexts, such as expressions and
equations and equivalence, and where teachers 
use language to scaffold shifts between concrete,
numerical and relational perspectives.

Use of rod or bar diagrams as in Singapore (NMAP,
2008; Greenes and Rubenstein, 2007) to represent
part/whole comparisons, reasoning, and equations,
appears to scaffold thinking from actual numbers to
structural relationships, so long as they only involve
addition and/or repeated addition. Statements in the
problem are translated into equalities between
lengths. These equal lengths are constructed from
rods which represent both the actual and the
unknown numbers. The rod arrangements or values
can then be manipulated to find the value of the

unknown pieces. Equations with the variable on both
sides are taught to 11 and 12 year-olds in Singapore
using such an approach. The introduction of such
methods into classrooms where teachers are not
experienced in its use has not been researched. It
has some similarities to the approach based on
Cuisenaire rods championed by Gattegno in Europe.
Whereas use for numbers was widespread in U.K.
primary schools, use for algebra was not, possibly
because the curriculum focus on substitution and
simplification, rather than meaning and equivalence,
provided an obstacle to sustained use. 

Summary
• Manipulatives can be useful for modelling algebraic

relationships and structures.

• Learners might see manipulatives as ‘just something
else to learn’.

• Teachers can help learners connect the use of
objects, the development of imagery and the use of
symbols through language.

• Students have to appreciate the limitations of
concrete materials and shift to mental imagery 
and abstract understandings.

Application of formulae within
mathematics
Dickson’s study with three classes of ten-year-olds
(1989 a) into students’ use of formulae and formal
methods is based on using the formula for area of
rectangle in various contexts. In order to be
successful in such tasks, students have to understand
what multiplication is and how it relates to area, e.g.
through an array model, how to use the formula by
substitution and how the measuring units for area
are applied. Some students can then work out a
formula for themselves without formal teaching.
From this study, Dickson (1989a, 1989b) and her
colleagues found several problems in how students
approach formal methods in early secondary school.
A third of her subjects did not use a formal method
at all; a third used it in a test but could not explain it
in interviews; a third used it and explained it. She
found that they:

• may not have underlying knowledge on which to
base formalisation (note that formalisation can
happen spontaneously when they do have such
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knowledge)
• base their reasoning on incorrect method
• have a sound strategy that may not match formal

method
• may be taught methods leading up to formal, but

not matching the formal method
• may retain other methods, which may have limited

application
• may retain formalisation but lose meaning, then

misapply a formal method in future
• pre-formal enactive or iconic experiences may have

been forgotten
• might be able to use materials to explain formal

method
• may interpret formal notation inadequately.

The research described above, taken as a whole,
suggests that the problems students have with using
formulae in subjects other than mathematics are 
due to: not being fluent with the notation; not
understanding the underlying operations; experience
of using such formulae in mathematics lessons being
limited to abstract or confusing situations, or even to
situations in which an algebraic formula is not
necessary. In addition, of course, they may not
understand the intended context. 

Summary
• Learners are able to construct formulae for

themselves, at least in words if not symbols, if they
have sufficient understanding of the relationships
and operations.

• Learners’ problems using formulae have several
possible root causes.
1 Underlying knowledge of the situation or

associated concepts may be weak.
2 Existing working strategies may not match the

formal method.
3 Notational problems with understanding how 

to interpret and use the formula.

Part 2: problems arising in
different approaches to
developing algebraic reasoning
Since the CSMS study (Hart, 1981) there has been
an expansion of teaching approaches to develop
meaningful algebra as: 
• expressing generalities which the child already

knows, therefore is expressing something that has
meaning, and comparing equivalent expressions

• describing relationships between expressions as
equations, which can then be solved to find
unknown values (as in word problems)

• a collection of techniques for transforming
equations to either find unknown values or
represent relationships between variables in
different ways 

• expressing functions and their inverses, in which
inputs become outputs according to a sequence 
of operations; using multiple representations

• modelling situations by identifying variables and
how they co-vary.

Each of these offers more success in some aspects
than an approach based on rules for manipulating
expressions, but also highlights further obstacles to
reasoning. Research is patchy, and does not examine
how students learn across contexts and materials
(Rothwell-Hughes, 1979). Indeed, much of the
research is specifically about learning in particular
contexts and materials.

Expressing generalisations 
from patterns
One approach to address inherent difficulties in
algebra is to draw on our natural propensity to
observe patterns, and to impose patterns on
disparate experiences (Reed 1972). In this
approach, sequences of patterns are presented 
and students asked to deduce formulae to
describe quantitative aspects of a general term 
in the sequence. The expectation is that this
generates a need for algebraic symbolisation, which
is then used to state what the student can already
express in other ways, numerical, recursive,
diagrammatically or enactively. 

This approach is prevalent in the United Kingdom,
Australia and parts of North America. The NMAP
(2008) review finds no evidence that expressing
generality contributes to algebraic understanding, yet
others would say that this depends on the definition
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of algebraic understanding. Those we offered at the
start of this chapter include expression of generality as
an indication of understanding. In Australia, there are
contradictory findings about the value of such tasks.

The following is an example of one of the items
which was used in the large scale test administered
to students by MacGregor and Stacey (reported in
Mason and Sutherland, 2002).

Look at the numbers in this table and answer the
questions:

x y

1 5

2 6

3 7

4 8

5 9

6 ..

7 11

8 ...

.... ...

...

(i) When x is 2, what is y?
(ii) When x is 8, what is y?
(iii) When x is 800, what is y?
(iv) Describe in words how you would find y if you

were told that x is ………
(v) Use algebra to write a rule connecting x and y

………..

MacGregor and Stacey found performance on these
items varied from school to school. The success of
14-year-old students in writing an algebraic rule
ranged from 18% in one school to 73% in another. In
general students searched for a term-to-term rule
(e.g. Stacey, 1989). They also tested the same students
with more traditional items involving substitution to
show the meaning of notation and transformation, to
show equivalence and finding unknowns. From this
study they concluded that students taught with a

pattern-based approach to algebra did no better and
no worse on traditional algebra items than students
taught with a more traditional approach (MacGregor
and Stacey, 1993, 1995).

Redden (1994) studied the work of 1400 10- to 
13-year-olds to identify the stages through which
students must pass in such tasks. First they must
recognise the number pattern (which might be
multiplicative), then there must be a stimulus to
expression, such as being asked for the next term
and then the value of uncountable term; they must
then express the general rule and use symbols to
express it. Some students could only process one
piece of data, some could process more pieces of
data, some gave only a specific example, some gave
the term-to-term formula and a few gave a full
functional formula. A major shift of perception has to
take place to express a functional formula and this is
more to do with ‘seeing’ the functional relationship, a
shift of perception, than symbolising it. Rowland and
Bills (1996) describe two kinds of generalisation:
empirical and structural, the first being more
prevalent than the second. Amit and Neria (2007)
use a similar distinction and found that students who
had followed a pattern-generalisation curriculum
were able to switch representations meaningfully,
distinguish between variables, constants and their
relationships, and shift voluntarily from additive to
multiplicative reasoning when appropriate. 

Moss, Beatty and Macnab (2006) worked with nine-
year-old students in a longitudinal study and found
that developing expressions for pattern sequences
was an effective introduction to understanding the
nature of rules in ‘guess the rule’ problems. Nearly 
all of the 34 students were then able to articulate
general descriptions of functions in the classic
handshake problem7 which is known to be hard for
students in early secondary years. By contrast, Ryan
and Williams (2007) found in large-scale testing that
the most prevalent error in such tasks for 12- and
14-year-olds was giving the term-to-term formula
rather than the functional formula, and giving an
actual value for the nth term. Cooper and Warren
(2007, and Warren and Cooper, 2008), worked for
three years in five elementary classrooms, using
patterning and expressing patterns, to teach students
to express generalisations to use various
representations, and to compare expressions and
structures. Their students learnt to use algebraic
conventions and notations, and also understood that
expressions had underlying operational meanings.
Clearly, students are capable of learning these aspects
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of algebra in certain pedagogic conditions. Among
other aspects common to most such studies, Cooper
and Warren’s showed the value of comparing
different but equivalent expressions that arise from
different ways to generalise the patterns, and also
introduced inverse operations in the context of
function machines, and a range of mental arithmetic
methods. If other research about generalising patterns
applies in this study, then it must be the combination
of pattern-growth with these other aspects of algebra
that made the difference in the learning of their
students.They point to ‘the importance of
understanding and communicating aspects of
representational forms which allowed commonalities
to be seen across or between representations’. 

As Carraher, Martinez & Schliemann (2007) show, it
is important to nurture the transition from empirical
(term-to-term) generalizations (called naïve
induction by Radford, 2007), to generalisations that
follow from explicit statements about mathematical
relations between independent and dependent
variables, and which might not be ‘seen’ in the data.
Steele (2007) indicates some of the ways in which a
few successful 12 to 13 year old students go about
this transition when using various forms of data,
pictorial, diagrammatic and numerical, but bigger
studies show that this shift is not automatic and
benefits from deliberate tuition. Radford further
points out that once a functional relation is
observed, expressing it is a further process involving
integration of signs and meaning. Stephens’ work
(see Mason, Stephens and Watson, in press) shows
that the opportunity and ability to exemplify
relationships between variables as number pairs, 
and to express the relationship within the pairs, are
necessary predictors of the ability to focus on and
express a functional relationship. This research also
illustrates that such abilities are developmental, and
hence indicates the kind of learning experiences
required to make this difficult shift.

Rivera and Becker (2007), looking longitudinally at
middle school students’ understanding of sequences
of growing diagrammatic patterns in a teaching
experiment, specify three forms of generalization
that students engage with: constructive standard,
constructive nonstandard, and deconstructive. It is
the deconstruction of diagrams and situations that
leads most easily to the functional formula, they
found, rather than reasoning inductively from
numbers. However, their students generally reverted
to arithmetical strategies, as reported in many other
studies of this and other shifts towards algebra.

Reed (1972) hypothesised that classifying is a natural
act that enables us to make distinctions, clump ideas,
and hence deal with large amounts of new
information. It is therefore useful to think of what sort
of information learners are trying to classify in these
kinds of task. Reed found that people extract
prototypes from the available data and then see how
far other cases are from this prototype. Applying this
to pattern-growth and sequence tasks makes it
obvious that term-to-term descriptions are far easier
and likely to be dominant when the data is expressed
sequentially, such as in a table. We could legitimately
ask the question: is it worth doing these kinds of
activity if the shifts to seeing and then expressing
functional relationships are so hard to make? Does
this just add more difficulties to an already difficult
subject? To answer this, we looked at some studies in
which claims are made of improvements in seeing and
expressing algebraic relationships, and identifying
features of pedagogy or innovation which may have
influenced these improvements. Yeap and Kaur (2007)
in Singapore found a wider range of factors influencing
success in unfamiliar generalisation tasks than has been
reported in studies which focus on rehearsed
procedures. In a class of 38 ten-year-old students they
set tasks, then observed and interviewed students
about the way they had worked on them. Their aim
was to learn more about the strategies students had
used and how these contributed towards success. The
task was to find the sums of consecutive odd
numbers: 1 + 3 + 5 + …+ (2n – 1). Students were
familiar with adding integers from 1 to 100, and also
with summing multiples. They were given a sequence
of subtasks: a table of values to complete, to find the
sum or 1 + 3 + … + 99 and to find the sum of 51 +
53 + … + 99. The researchers helped students by
offering simpler versions of the same kinds of
summation if necessary. Nearly all students were able
to recognize and continue the pattern of sums (they
turn out to be the square numbers); two-thirds were
able to transfer their sense of structure to the ‘sum to
99’ task, but only one-third completed the ‘sum from
51’ task – the one most dissimilar to the table-filling
tasks, requiring adaptation of methods and use of
previous knowledge to make an argument. The
researcher had a series of designed prompts to help
them, such as to find the sum from 1 to 49, and then
see what else they needed to get the sum to 99.
Having found an answer, students then had to find it
again using a different method. They found that
success depended on: 
• the ability to see structures and relationships
• prior knowledge
• metacognitive strategies
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• critical-thinking strategies
• the use of organizing heuristics such as a table
• the use of simplifying heuristics such as trying out

simpler cases
• task familiarity
• use of technology to do the arithmetic so that large

numbers can be handled efficiently.

As with all mathematics teaching, limited experience
is unhelpful. Some students only know one way to
construct cases, one way to accomplish generalisation
(table of values and pattern spotting), and have only
ever seen simple cases used to start sequence
generation, rather than deliberate choices to aid
observations. Students in this situation may be
unaware of the necessity for critical, reflective thinking
and the value of simplifying and organising data.
Furthermore, this collection of studies on expressing
generality shows that construction, design, choice and
comparison of various representational means does
not happen spontaneously for students who are
capable of using them. Choosing when and why to
switch representations has long been known to be a
mark of successful mathematics students (Krutetskii,
1976) and therefore this is a strategy which needs to
be deliberately taught. Evidence from Blanton and
Kaput’s intervention study with 20 teachers (2005) is
that many primary children were able to invent and
solve ‘missing number’ sentences using letters as
placeholders, symbolize quantities in patterns, devise
and use graphical representations for single variables,
and some could write simple relations using letters,
codes, ‘secret messages’ or symbols. The intervention
was supportive professional development which
helped teachers understand what algebraic reasoning
entails, and gave them resources, feedback, and other
support over five years. Ainley (1996) showed that
supportive technology can display the purpose of
formal representations, and also remove the technical
difficulties of producing new representations. Ten-year-
old students in her study had worked for a few years
in a computer-rich environment and used
spreadsheets to collect data from purposeful
experiments. They then generated graphs from the
data and studied these, in relation to the data, to
make conjectures and test them. One task was
designed to lead to a problematic situation so that
students would have to look for a shortcut, and she
observed that the need to ‘teach the computer’ how
to perform a calculation led to spontaneous formal
representation of a variable.

So, if it is possible for students to learn to make
these generalizations only with a great deal of

pedagogic skill and technical know-how, why should
it be pursued? The reason is that skill in the meaning
and use of algebra enables further generalizations to
be made, and transformations of mathematical
relationships to be used and studied. The work
required to understand the functional relationship is
necessary to operate at a higher level than merely
using algebra to symbolize what you do, as with
term-to-term formulae. It is algebra that provides the
means to building concepts upon concepts, a key
aspect of secondary mathematics, by providing
expression of abstract relationships in ways that can
be manipulated. In algebra, the products are not
answers, but structures, relationships, and information
about relationships and special instances of them.
These tasks provide contexts for that kind of shift,
but do not guarantee that it will take place.

Assumptions, such as that which appears to be made
in Redden’s study, that understanding term-to-term
relationships is a route to understanding functional
relations contradict the experience of
mathematicians that algebra expresses the structure
of relations, and this can be adduced from single
cases which are generic enough to illustrate the
relationship through diagrams or other spatial
representations. Numerical data has to be backed up
with further information about relationships. For
example, consider this data set:

x y

1 1

2 4

3 9

... ...

While it is possible for these values to be examples
of the function y = x2 it is also possible that they
exemplify y = x2 + (x – 1)(x – 2)(x – 3). Without
further information, such as x being the side of a
square and y being its area, we cannot deduce a
functional formula, and inductive reasoning is
misapplied. There is much that is mathematically
interesting in the connection between term-to-term
and functional formulae, such as application of the
method of differences, and students have to learn
how to conjecture about algebraic relationships, but
to only approach generalisation from a sequence
perspective is misleading and, as we have seen from
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these studies, very hard without the support of
specially-designed tasks comparing and transforming
equivalent structural generalisations.

Summary
• Learners naturally make generalisations based on

what is most obviously related; this depends on the
visual impact of symbols and diagrams.

• Seeing functional, abstract, relationships is hard and
has to be supported by teaching.

• Deconstruction of diagrams, relationships, situations
is more helpful in identifying functional relationships
than pattern-generation.

• Development of heuristics to support seeing
structural relationships is helpful.

• There is a further shift from seeing to expressing
functional relationships.

• Learners who can express relationships correctly
and algebraically can also exemplify relationships
with number pairs, and express the relationships
within the pairs; but not all those who can express
relationships within number pairs can express the
relationship algebraically.

• Learners who have combined pattern-
generalisation with function machines and other
ways to see relationships can become more fluent
in expressing generalities in unfamiliar situations.

• Conflicting research results suggest that the nature
of tasks and pedagogy make a difference to success.

• Functional relationships cannot be deduced from
sequences without further information about
structure.

Using an equation-centred approach
to teaching algebra

There are new kinds of problem that arise in an
equation-centred approach to teaching algebra in
addition to those described earlier: the solution of
equations to find unknown values, and the construction
of equations from situations. The second of these new
problems is considered in Paper 7. Here we look at
difficulties that students had in teaching studies designed
to focus on typical problems in finding unknowns.

Students in one class of Booth’s (1984) intervention
study (which took place with four classes in lower
secondary school) had a teacher who emphasised
throughout that letters had numerical value. These
students were less likely than others to treat a letter
as merely an object. In her study, discussion about
the meaning of statements before formal activity
seemed to be beneficial, and those students who
were taught a formal method seemed to understand
it better some time after the lesson, maybe after
repeated experiences. However, some students did
not understand it at all. As with all intervention
studies, the teaching makes a difference. Linchevski
and Herscovics (1996) taught six students to collect
like terms and then decompose additive terms in
order to focus on ‘sides’ or equations as expressions
which needed to be equated. While this led to them
being better able to deal with equations, there were
lingering problems with retaining the sign preceding
the letter rather than attaching the succeeding sign. 

Several other intervention studies (e.g. van Ameron,
2003; Falle, 2005) confirm that the type of equation
and the nature of its coefficients often make non-
formal methods available to learners, even if they
have had significant recent teaching in formal
methods. These studies further demonstrate that
students will use ad hoc methods if they seem more
appropriate, given that they understand the meaning
of an equation; where they did not understand they
often misapplied formal methods. Falle’s study
included more evidence that the structure a/x = b
caused particular problems as learners interpreted
‘division’ as if it were commutative. As with other
approaches to teaching algebra, using equations as
the central focus is not trouble-free.

Summary
• As with all algebraic expressions, learners may react

to the visual appearance without thinking about the
meaning.

• Learners need to know what the equation is telling
them.

• Learners need to know why an algebraic method is
necessary; this is usually demonstrated when the
unknown is negative, or fractional, and/or when the
unknown is on both sides. They are likely to choose
ad hoc arithmetic methods such as guess- and-
check, use of known number facts, compensation or
trial-and-adjustment if these are more convenient.
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• Learners’ informal methods of making the sides
equal in value may not match formal methods.

• ‘Undoing’ methods depend on using inverse
operations with understanding.

• Fluent technique may be unconnected to explaining
the steps of their procedures.

• Learners can confuse the metaphors offered to
‘model’ solving equations, e.g. ‘changing sides’ with
‘balance’.

• Metaphors in common use do not extend to
negative coefficients or ‘unknowns’ or non-linear
equations.

• Non-commutative and associative structures are
not easily used with inverse reasoning.

• As in many other contexts, division and rational
structures are problematic.

Spreadsheets

Learners have to know how to recognise structures
(based on understanding arithmetical operations
and what they do), express structures in symbols,
and calculate particular cases (to stimulate inductive
understanding of concepts) in order to use algebra
effectively in other subjects and in higher
mathematics. Several researchers have used
spreadsheets as a medium in which to explore
what students might be able to learn 
(e.g. Schwartz and Yerushalmy, 1992; Sutherland and
Rojano, 1993; Friedlander and Tabach, 2001). The
advantages of using spreadsheets are as follows.

• In order to use spreadsheets you have to know the
difference between parameters (letters and numbers
that structure the relationship) and variables, and the
spreadsheet environment is low-risk since mistakes
are private and can easily be corrected.

• The physical act of pointing the cursor provides an
enactive aspect to building abstract structures.

• Graphical, tabular and symbolic representations are
just a click away from each other and are updated
together.

• Correspondences that are not easy to see in other
media can be aligned and compared on a

spreadsheet, e.g. sequences can be laid side by side,
input and output values for different functions can
be compared, and graphs can be related directly to
numerical data.

• Large data sets can be used so that questions
about patterns and generalities become more
meaningful.

In Sutherland and Rojano’s work, two small groups
of students 10- to 11-years-old with no formal
algebraic background were given some algebraic
spreadsheet tasks based on area. It was found that
they were less likely to use arithmetical approaches
when stuck than students reported in non-
spreadsheet research, possibly because these
arithmetical approaches are not easily available in a
spreadsheet environment. Sutherland and Rojano
used three foci known to be difficult for students: the
relation between functions and inverse functions, the
development of equivalent expressions and word
problems. The arithmetic methods used included
whole/part approaches and trying to work from
known to unknown. Most of the problems, however,
required working from the unknown to the known
to build up relationships. In a similar follow-up study
15-year-old students progressively modified the
values of the unknowns until the given totals were
reached (Sutherland and Rojano, 1993). There was
some improvement in post-tests over pre-tests for
the younger students, but most still found the tasks
difficult. One of the four intervention sessions
involved students constructing equivalent
spreadsheet expressions. Some students started by
constructing expressions that generated equality in
specific cases, rather than overall equivalence.
Students who had started out by using particular
arithmetical approaches spontaneously derived
algebraic expressions in the pencil-and-paper tasks 
of the post-test. This appears to confound evidence
from other studies that an arithmetical approach
leads to obstacles to algebraic generalization. The
generation of numbers, which can be compared to
the desired outputs, and adjusted through adapting
the spreadsheet formula, may have made the need
for a formula more obvious. The researchers
concluded that comparing expressions which
referred only to numbers, to those which referred 
to variables, appeared to have enabled students to
make this critical shift.

A recent area of research is in the use of computer
algebra systems (CAS) to develop algebraic
reasoning. Kieran and Saldanha (2005) have had
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some success with getting students to deal with
equations as whole meaningful objects within CAS.

Summary
Use of spreadsheets to build formulae:
• allows large data sets to be used
• provides physical enactment of formula

construction
• allows learners to distinguish between variables and

parameters
• gives instant feedback
• does not always lock learners into arithmetical and

empirical viewpoints.

Functional approach

Authors vary in their use of the word ‘function’.
Technically, a function is a relationship of
dependency between variables, the independent
variables (input) which vary by some external
means, and the dependent variables (output) which
vary in accordance with the relationship. It is the
relationship that is the function, not a particular
representation of it, however in practice authors
and teachers refer to ‘the function’ when indicating 
a graph or equation. An equivalence such as
temperature conversion is not a function, because
these are just different ways to express the same
thing, e.g. t = 9/5 C + 32 where t is temperature in
degrees Fahrenheit and C temperature in degrees
Celsius (Janvier 1996). Thus a teaching approach
which focuses on comparing different expressions of
the same generality is concerned with structure and
would afford manipulation, while an approach which
focuses on functions, such as using function
machines or multiple representations, is concerned
with relationships and change and would afford
thinking about pairs of values, critical inputs and
outputs, and rates of change.

Function machines
Some researchers report that students find it hard
to use inverses in the right order when solving
equations. However, in Booth’s work (1984) with
function machines she found that lower secondary
students were capable of instructing the ‘machine’ by
writing operations in order, using proper algebraic
syntax where necessary, and could make the shift to
understanding the whole expression. They could
then reverse the flow diagram, maintaining order, 
to ‘undo’ the function.

We have discussed the use of function machines to
solve equations above.

Multiple representations
A widespread attempt to overcome the obstacles of
learning algebra has been to offer learners multiple
representations of functions because:
• different representations express different aspects

more clearly
• different representations constrain interpretations –

these have to be checked out against each other 
• relating representations involves identifying and

understanding isomorphic structures (Goldin 2002). 

By and large these methods offer graphs, equations,
and tabular data and maybe a physical situation or
diagram from which the data has been generated. 
The fundamental idea is that when the main focus is
on meaningful functions, rather than mechanical
manipulations, learners make sensible use of
representations (Booth, 1984; Yerushalmy, 1997; Ainley,
Nardi and Pratt, 1999; Hollar and Norwood, 1999).

A central issue is that in most contexts for a letter
to represent anything, the student must understand
what is being represented, yet it is often only by the
use of a letter that what is being represented can be
understood. This is an essential shift of abstraction. It
may be that seeing the use of letters alongside other
representations can help develop meaning, especially
through isomorphisms. 

This line of thought leads to a substantial body of
work using multiple representations to develop
understandings of functions, equations, graphs and
tabular data. All these studies are teaching
experiments with a range of students from upper
primary to first year undergraduates. What we learn
from them is a range of possibilities for learning and
new problems to be overcome. Powell and Maher
(2003) have suggested that students can themselves
discover isomorphisms. Others have found that
learners can recognise similar structures (English and
Sharry, 1996) but need experience or prompts in
order to go beyond surface features. This is because
surface features contribute to the first impact of any
situation, whether they are visual, aural, the way the
situation is first ‘read’, or the first recognition of
similarity.

Hitt (1998) claims that ‘A central goal of
mathematics teaching is taken to be that the
students be able to pass from one representation
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type to another without falling into contradictions.’
(p. 134). In experiments with teachers on a course
he asked them to match pictures of vessels with
graphs to represent the relationship between the
volume and height of liquid being poured into them.
The most common errors in the choice of functions
were due to misinterpretation of the graphical
representation, and misidentification of the
independent variable in the situation. Understanding
the representation, in addition to understanding the
situation, was essential. The choice of representation,
in addition to understanding, is also influential in
success. Arzarello, Bazzini and Chiappini, (1994) gave
137 advanced mathematics students this problem:
‘Show that if you add a 4-digit number to the 4-digit
number you get if you reverse the digits, the answer
is a multiple of eleven’. There were three strategies
used by successful students, and the most-used was
to devise a way to express a 4-digit number as the
sum of multiples of powers of ten. This strategy leads
immediately to seeing that the terms in the sum
combine to show multiples of eleven. The
relationship between the representation and its
meaning in terms of ‘eleven’ was very close. ‘Talk’ 
can structure a choice of representations that most
closely resemble the mathematical meaning 
(see also Siegler and Stern, 1998).

Even (1998) points to the ability to select, use, move
between and compare representations as a crucial
mathematical skill. She studied 162 early students 
in 8 universities (the findings are informative for
secondary teaching) and found a difference between
those who could only use individual data points and
those who could adopt a global, functional approach.
Nemirovsky (1996) demonstrates that the Cartesian
relationship between graphs and values is much
easier to understand pointwise, from points to line
perhaps via a table of values, than holistically, every
point on a line representing a particular relationship. 

Some studies such as Computer-Intensive Algebra
(e.g. Heid, 1996) and CARAPACE (Kieran, Boileau
and Garancon,1996) go some way towards
understanding how learners might see the duality of
graphs and values. In a study of 14 students aged
about 13, the CARAPACE environment (of graphs,
data, situations and functions) seemed to support
the understanding of equality and equivalence of 
two functions. This led to findings of a significant
improvement in dealing with ‘unknown on both
sides’ equations over groups taught more
conventionally. The multiple-representation ICT
environment led to better performance in word

problems and applications of functions, but students
needed additional teaching to become as fluent in
algebra as ‘conventional’ students. But teaching to
fluency took only six weeks compared to one year
for others. This result seems to confirm that if
algebra is seen to have purpose and meaning then
the technical aspects are easier to learn, either
because there is motivation, or because the learner
has already developed meanings for algebraic
expressions, or because they have begun to develop
appropriate schema for symbol use. When students
first had to express functions, and only then had to
answer questions about particular values, they had
fewer problems using symbols.

There were further benefits in the CARAPACE
study: they found that their students could switch
from variable to unknown correctly more easily than
has been found in other studies; the students saw a
single-value as special case of a function, but their
justifications tended to relate to tabular data and
were often numerical, not relating to the overall
function or the context. The students had to
consciously reach for algebraic methods, even to use
their own algorithms, when the situations became
harder. Even in a multi-representational environment,
using functions algebraically has to be taught; this is
not spontaneous as long as numerical or graphical
data is available. Students preferred to move
between numerical and graphical data, not symbolic
representations (Brenner, Mayer, Moseley, Brar, Duran,
Reed and Webb,1997). This finding must depend on
task and pedagogy, because by contrast Lehrer,
Strom and Confrey,(2002) give examples where
coordinating quantitative and spatial representations
appears to develop algebraic reasoning through
representational competence. Even (1998) argues
that the flexibility and ease 
with which we hope students will move from
representation to representation depends on what
general strategy students bring to mathematical
situations, contextual factors and previous
experience and knowledge. We will look further 
at this in the next paper.

Further doubts about a multiple representation
approach are raised by Amit and Fried (2005) in
lessons on linear equations with 13 – 14 year-olds:
‘students in this class did not seem to get the idea
that representations are to be selected, applied, and
translated’. The detail of this is elaborated through
the failed attempts of one student, who did make
this link, to persuade her peers about it. Hirschhorn
(1993) reports on a longitudinal comparative study
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at three sites in which those taught using multiple
representations and meaningful contexts did
significantly better in tests than others taught more
conventionally, but that there was no difference in
attitude to mathematics. All we really learn from this
is that the confluence of opportunity, task and
explanation are not sufficient for learning. Overall 
the research suggests that there are some gains in
understanding functions as meaningful expressions of
variation, but that symbolic representation is still hard
and the least preferred choice. 

The effects of multiple representational
environments on students’ problem-solving and
modeling capabilities are described in the next paper.

Summary
• Learners can compare representations of a

relationship in graphical, numerical, symbolic and
data form.

• Conflicting research results suggest that the nature
of tasks and pedagogy make a difference to success.

• The hardest of these representations for learners is
the symbolic form.

• Previous experience of comparing multiple
representations, and the situation being modelled,
helps students understand symbolic forms.

• Learners who see ‘unknowns’ as special cases of
equality of two expressions are able to distinguish
between unknowns and variables.

• Teachers can scaffold the shifts between
representations, and perceptions beyond surface
features, through language.

• Some researchers claim that learners have to
understand the nature of the representations in
order to use them to understand functions, while
others claim that if learners understand the
situations, then they will understand the
representations and how to use them.

What students could do if taught, but
are not usually taught

Most research on algebra in secondary school is 
of an innovative kind, in which particular tasks or
teaching approaches reveal that learners of a

particular age are, in these circumstances, able to
display algebraic behaviour of particular kinds. Usually
these experiments contradict curriculum
expectations of age, or order, or nature, of learning.
For example, in a teaching experiment over several
weeks with 8-year-old students, Carraher, Brizuela
and Schliemann (2000) report that young learners
are able to engage with problems of an algebraic
nature, such as expressing and finding the unknown
heights in problems such as: Tom is 4 inches taller
than Maria, Maria is 6 inches shorter than Leslie;
draw their heights. They found that young learners
could learn to express unknown heights with letters
in expressions, but were sometimes puzzled by the
need to use a letter for ‘any number’ when they had
been given a particular instance. This is a real source
for confusion, since Maria can only have one height.
Students can naturally generalise about operations
and methods using words, diagrams and actions
when given suitable support (Bastable and Schifter,
2008). They can also see operators as objects
(Resnick, Lesgold and Bill, 1990). These and other
studies appear to indicate that algebraic thinking can
develop in primary school.

In secondary school, students can work with a wider
range of examples and a greater degree of complexity
using ICT and graphical approaches than when
confined to paper and pencil. For example, Kieran and
Sfard (1999) used graphs successfully to help 12- and
13-yearold students to appreciate the equivalence of
expressions. In another example, Noss, Healy and
Hoyles (1997) constructed a matchsticks microworld
which requires students to build up LOGO
procedures for drawing matchstick sequences. They
report on how the software supported some 12- to
13-year-old students in finding alternative ways to
express patterns and structures of Kieran’s second
and third kinds. Microworlds provide support for
students’ shifts from particular cases to what has to be
true, and hence support moves towards using algebra
as a reasoning tool.

In a teaching study with 11 year-old students, Noble,
Nemirovsky, Wright and Tierney, (2001) suggest that
students can recognise core mathematical structures
by connecting all representations to personally-
constructed environments of their own, relevant for
the task at hand. They asked pairs of students to
proceed along a linear measure, using steps of
different sizes, but the same number of steps each,
and record where they got to after each step. They
used this data to predict where one would be after
the other had taken so many steps. The aim was to
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compare rates of change. Two further tasks, one a
number table and the other a software-supported
race, were given and it was noticed from the ways in
which the students talked that they were bringing to
each new task the language, metaphors and
competitive sense which had been generated in the
previous tasks. This enabled them to progress from
the measuring task to comparing rates in multiple
contexts and representations. This still supports the
fact that students recognize similarities and look for
analogical prototypes within a task, but questions
whether this is related to what the teacher expects in
any obvious way. In a three-year study with 16 lower
secondary students, Lamon (1998) found that a year’s
teaching which focused on modelling sequential
situations was so effective in helping students
understand how to express relationships that they
could distinguish between unknowns, variables and
parameters and could also choose to use algebra
when appropriate – normally these aspects were not
expected at this stage, but two years further on. 

Lee (1996) describes a long series of teaching
experiments: 50 out of 200 first year university
students committed themselves to an extra study
group to develop their algebraic awareness. This
study has implications for secondary students, as
their algebraic knowledge was until then rule-based
and procedural. She forced them, from the start, to
treat letters as variables, rather than as hidden
numbers. By many measures this group succeeded
in comparative tests, and there was also evidence of
success beyond testing, improvements in attitude
and enjoyment. However, the impact of
commitment to extra study and ‘belonging’ to 
a special group might also have played a part.
Whatever the causal factors, this study shows that
the notion of variable can be taught to those who
have previously failed to understand, and can form 
a basis for meaningful algebra.

Summary
With teaching:

• Young children can engage with missing number
problems, use of letters to represent unknown
numbers, and use of letters to represent
generalities that they have already understood.

• Young children can appreciate operations as
objects, and their inverses.

• Students can shift towards looking at relationships if
encouraged and scaffolded to make the shift,
through language or microworlds, for example.

• Students can shift from seeing letters as unknowns
to using them as variables.

• Students will develop similarities and prototypes to
make sense of their experience and support future
action.

• Students can shift from seeing cases as particular to
seeing algebraic representations as statement about
what has to be true.

• Comparison of cases and representations can
support learning about functions and learning how
to use algebra to support reasoning.
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Part 3: Conclusions 
and recommendations

Conclusions

Error research about elementary algebra and 
pre-algebra is uncontentious and the findings are
summarised above. However, it is possible for young
learners to do more than is normally expected in
the curriculum, e.g. they will accept the use of letters
to express generalities and relationships which they
already understand. Research about secondary
algebra is less coherent and more patchy, but broadly
can be summarised as follows.

Teaching algebra by offering situations in which
symbolic expressions make mathematical sense, 
and what learners have to find is mathematically
meaningful (e.g. through multiple representations,
expressing generality, and equating functions) is more
effective in leading to algebraic thinking and skill use
than the teaching of technical manipulation and
solution methods as isolated skills. However, these
methods need to be combined through complex
pedagogy and do not in themselves bring about all
the necessary learning. Technology can play a big part
in this. There is a difference between using ICT in 
the learner’s control and using ICT in the teacher’s
control. In the learner’s control the physical actions
of moving around the screen and choosing between
representations can be easily connected to the
effects of such moves, and feedback is personalised
and instant. 

There is a tenuous relationship between what it
means to understand and use the affordances of
algebra, as described in the previous paragraph, and
understanding and using the symbolic forms of
algebra. Fluency in understanding symbolic
expressions seems to develop through use, and 
also contributes to effective use – this is a two-way
process. However, this statement ignores the
messages from research which is purely about
procedural fluency, and which supports repetitive
practice of procedures in carefully constructed
varying forms. Procedural research focuses on
obstacles such as dealing with negative signs and
fractions, multiple operations, task complexity and
cognitive load but not on meaning, use, relationships,
and dealing with unfamiliar situations.

Recommendations

For teaching
These recommendations require a change from a
fragmented, test-driven, system that encourages an
emphasis on fluent procedure followed by
application. 

• Algebra is the mathematical tool for working
with generalities, and hence should permeate
lessons so that it is used wherever mathematical
meaning is expressed. Its use should be
commonplace in lessons.

• Teachers and writers must know about the
research about learning algebra and take it into
account, particularly research about common
errors in understanding algebraic symbolisation and
how they arise.

• Teachers should avoid using published and web-
based materials which exacerbate the difficulties by
over-simplifying the transition from arithmetic to
algebraic expression, mechanising algebraic
transformation, and focusing on algebra as
‘arithmetic with letters’.

• The curriculum, advisory schemes of work, and
teaching need to take into account how shifts from
arithmetical to algebraic understanding take time,
multiple experiences, and clarity of purpose.

• Students at key stage 3 need support in shifting
to representations of generality, understanding
relationships, and expressing these in
conventional forms.

• Students have to change focus from calculation,
quantities, and answers to structures of operations
and relations between quantities as variables. This
shift takes time and multiple experiences.

• Students should have multiple experiences of
constructing algebraic expressions for structural
relations, so that algebra has the purpose of
expressing generality. 

• The role of ‘guess-the-sequence-rule’ tasks in the
algebra curriculum should be reviewed: it is
mathematically incorrect to state that a finite
number of numerical terms indicates a unique
underlying generator.
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• Students need multiple experiences over time to
understand: the role of negative numbers and the
negative sign; the role of division as inverse of
multiplication and as the fundamental operation
associated with rational numbers; and the meaning
of equating algebraic expressions.

• Teachers of key stage 3 need to understand how
hard it is for students to give up their arithmetical
approaches and adopt algebraic conventions.

• Substitution should be used purposefully for
exemplifying the meaning of expressions and
equations, not as an exercise in itself. Matching
terms to structures, rather than using them to
practice substitution, might be more useful.

• The affordances of ICT should be exploited fully, in
the learner’s control, in the teacher’s control, and in
shared control, to support the shifts of
understanding that have to be made including
constructing objects in order to understand
structure.

• Teachers should encourage the use of symbolic
manipulation, using ICT, as a set of tools to support
transforming expressions for mathematical
understanding.

For policy
• The requirements listed above signal a training

need on a national scale, focusing solely on algebra
as a key component in the drive to increase
mathematical competence and power.

• There are resource implications about the use of
ICT. The focus on providing interactive whiteboards
may have drawn attention away from the need for
students to be in control of switching between
representations and comparisons of symbolic
expression in order to understand the syntax and
the concept of functions. The United Kingdom may
be lagging behind the developed world in exploring
the use of CAS, spreadsheets and other software
to support new kinds of algebraic thinking.

• In several other countries, researchers have been
able to develop differently-sequenced curricula in
which students have been able to use algebra as a
way of expressing general and abstract notions as
these arise. Manipulation, solution of equations,
and other technical matters to do with symbols
develop as well as with formal teaching, but are

better understood and applied. Similar
development in the United Kingdom has not been
possible due to an over-prescriptive curriculum
and frequent testing which forces a focus on
technical manipulation.

• Textbooks which promulgate an ‘arithmetic with
letters’ approach should be avoided; this approach
leads inevitably to the standard, obvious errors and
hence turns students off algebra and mathematics
in favour of short-term gains.

• Symbolic manipulators, graph plotters and other
algebraic software are widely available and used to
allow people to focus on meaning, application and
implications. Students should know how to use
these and how to incorporate them into
mathematical explorations and extended tasks.

• We need to be free to draw on research and
explore its implications in the United Kingdom, and
this may include radical re-thinking of the algebra
curriculum and how it is tested. This may happen as
part of the ‘functional maths’ agenda but its
foundations need to be established when students
are introduced to algebra.

For research
• Little is known about school learning of algebra in

the following areas.

• The experiences that an average learner needs, in
educational environments conducive to change, to
shift from arithmetical to algebraic thinking.

• The relationship between understanding the nature
of the representations in order to use them to
understand functions, and understanding the
situations as an aid to understanding the
representations and how to use them.

• Whether teaching experiments using functional,
multi-representational, equation or generalisation
approaches have an impact on students’ typical
notation-related difficulties. In other words, we do
not know if and how semantic-focused approaches
to algebra have any impact on persistent and well-
known syntactic problems.

• How learners’ synthesise their knowledge to
understand quadratic and other polynomials, their
factorisation and roots, simultaneous equations,
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inequalities and other algebraic objects beyond
elementary expressions and equations.

• Whether and how the use of symbolic
manipulators to transform syntax supports
algebraic understanding in school algebra.

• Using algebra to justify and prove generalities,
rather than generate and express them.

• How students make sense of different metaphors
for solving equations (balance, doing-undoing,
graphical, formal manipulation).

Endnotes
1 The importance of inverses was discussed in the paper on

natural numbers

2 In the paper on rational numbers we talk more about the
relationship between fractions and rational numbers, and we
often use these words interchangeably.

3 The advantage of this is that spotting like terms might be easier,
but this can also mask some other characteristics such as
physical meaning (e.g. E = mc2) and symmetry e.g. x2y + y2x.

4 This should be contrasted with the problems young learners
have with expressing relations using number, described in our
paper on functional relations. Knowing that relations are
themselves number-like objects does not necessarily mean we
have to calculate them.

5 This is discussed in detail in our papers on whole numbers and
rational numbers and outlined here.

6 A very common mnemonic to remind people to do: brackets,
‘of ’, division, multiplication, addition and subtraction in that
order. It does not always work.

7 If n people all shake hands with each other, how many
handshakes will there be?

Acknowledgements
This chapter was produced with the help of Nichola
Clarke who did much of the technical work.

36 Paper 6: Algebraic reasoning



Ainley, J. (1996) Purposeful Contexts for Formal
Notation in a Spreadsheet Environment. Journal of
Mathematical Behavior, 15(4) 405-422

Ainley, J., Nardi, E., and Pratt, D. (1999). Constructing
Meaning for Formal Notation in Active Graphing,
in I. Scwank (Ed.) Proceedings of the First
Conference of the European Society for Research in
Mathematics Education, vol. 1 Forschungsinstitut
fuer Mathematikdidaktik, Osnabrueck, 

Alibali, M., Knuth, E., Hattikudur, S., Mcneil, N. and
Stephens, A. (2007) A Longitudinal Examination
of Middle School Students’ Understanding of the
Equal Sign and Equivalent Equations Mathematical
Thinking and Learning, Volume 9, Issue 3, 2007,
221 – 247

Amit, M. and Fried, M. (2005) Multiple
representations in 8th grade algebra lessons:
Are learners really getting it? In Chick, H. L., and
Vincent, J. L. (Eds.). (2005). Proceedings of the
International Group for the Psychology of
Mathematics Education 2-57 to 2-64
Melbourne: PME

Amit, M. and Neria, D. (2007) ‘‘Rising to the
challenge’’: using generalization in pattern
problems to unearth the algebraic skills of
talented pre-algebra students ZDM Mathematics
Education 40:111–129

Anghileri J., Beishuizen, M. and van Putten, C. (2002)
From informal strategies to structured
procedures: Mind the gap! Educational Studies in
Mathematics 49(2) 149-170. 

Arcavi A. (1994) Symbol sense: The informal sense-
making in formal mathematics, For the Learning of
Mathematics, 14 (3) p24-35.

Arzarello, F., Bazzini, L., Chiappini, G. (1994) The
process of naming in algebraic problem solving, in
J. Ponte and J. Matos (Eds.) Proc. PME XVIII, Lisbon,
II, p40-44.

Baker, B., Hemenway, C., Trigueros, M. (2001) On
transformations of basic functions. In Chick, H.,
Stacey, K., Vincent, J. and Vincent, J. (eds.)
Proceedings of the 12th ICMI study conference: The
future of the teaching and learning of algebra.
pp.41-47 University of Melbourne, Australia, Dec
9-14, 2001.

Banerjee, R. and Subramaniam, K. (2004) ‘Term’ as a
bridge concept between algebra and arithmetic.
Paper presented at Episteme international
conference December 13-17, International
Centre, Dona Paula, Goa

Bastable, V. and Schifter D. (2008) Classroom stories:
examples of elementary students engaged in
early algebra. In J. Kaput, D. Carraher and M.
Blanton (eds.) Algebra in the early grades. 165-
184. New York: Erlbaum

Bednarz, N. and Janvier, B. (1996). Emergence and
development of algebra as a problem solving
tool: Continuities and discontinuities with
arithmetic. In N. Bednarz, C. Kieran and L. Lee, L.
(Eds.), Approaches to Algebra (pp. 115 136).
Dordrecht/Boston/London: Kluwer Academic
Publishers.

Bednarz, N., Kieran C., Lee, L. (1996) Approaches to
algebra: perspectives for research on teaching. In
Bednarz, N., Kieran C., Lee, L. (eds.) Approaches to
algebra: perspectives for research on teaching. pp.3-
14 Dordrecht: Kluwer

Bell, A. (1996) Algebraic thought and the role of
manipulable symbolic language. In Bednarz, N.,
Kieran C., Lee, L. (eds.) Approaches to algebra:
perspectives for research on teaching. 151-154
Kluwer, Dordrecht 

Bills, L. (2007) Stereotypes of literal symbol use in
senior school algebra. In E.Pehkonen (ed.)
Proceedings of the annual conference of the
Internatioanl Group for the Psychology of
Mathematics Education. (2) 73-80. Lahti:
University of Helsinki.

37 Key understandings in mathematics learning

References



38 SUMMARY – PAPER 2: Understanding whole numbers

Blanton, M and Kaput, J (2005) Characterizing a
classroom practice that promotes algebraic
reasoning. Journal for Research in Mathematics
Education, 36 (5) 412-446, pp. 35-25 

Bloedy-Vinner, H. (1994) The analgebraic mode of
thinking: the case of the parameter. In J.Ponte and
J. Matos (eds.) Proceedings of the annual
conference of the International Group for the
Psychology of Mathematics Education. (2) 88-95.
Lisbon, University of Lisboa.

Boero, P. (2001). Transformation and anticipation as
key processes in algebraic problem solving. In
Sutherland, R., Rojano, T., Bell, A. and Lins, R.(eds.)
Perspectives on School Algebra. pp. 99-119
Dordrecht, Kluwer.

Booth, L. (1984) Algebra: Children’s strategies and
errors, a report of the strategies and errors in the
secondary school project, NFER-Nelson, London.

Boulton-Lewis, G. M., Cooper, T. J., Atweh, B., Pillay, H.,
Wilss, L., and Mutch, S. (1997). The transition from
arithmetic to algebra: A cognitive perspective. In
E. Pehkonen (ed.) Proceedings of the International
Group for the Psychology of Mathematics Education,
21(2), 185-192.

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran,
R., Reed, B. S. and Webb, D. (1997) Learning by
understanding: The role of multiple
representations in learning algebra. American
Educational Research Journal, 34(4), 663-689.

Britt, M. and Irwin, K. (2007) Algebraic thinking with
and without algebraic representation: a three-year
longitudinal study. ZDM Mathematics Education
40, 39-53 

Brown, L. and Coles, A. (1999) Needing to use
algebra – a case study. In O Zaslavsky (ed.)
Proceedings of the 23rdt annual conference of the
International Group for the Psychology of
Mathematics Education, Technion; Haifa, 2, 153-160.

Brown, L. and Coles, A. (2001) Natural algebraic
activity. In Chick, H., Stacey, K., Vincent, J. and
Vincent, J. (eds.) Proceedings of the 12th ICMI study
conference: The future of the teaching and learning
of algebra. pp.120-127 University of Melbourne,
Australia, Dec 9-14, 2001.

Bruner, J. (1966). Toward a Theory of Instruction.
Cambridge, MA: Harvard University Press

Carpenter, T. and Levi, L. (2000) Developing
conceptions of algebraic reasoning in the primary
grades. Research Report, Madison WI: National
Center for Improving Student Learning and
Achievement in Mathematics and Science.
www.wcer.wisc.edu/ncisla/publications

Carraher, D. Brizuela, B. and Schliemann A. (2000)
Bringing out the algebraic character of arithmetic:
Instantiating variables in addition and subtraction,
in T. Nakahara and M. Koyama (Eds.), Proceedings
of PME–XXIV, Vol. 2. Hiroshima, Japan, p 145-152.

Carraher, D., Brizuela, B. M., and Earnest, D. (2001).
The reification of additive differences in early
algebra. In H. Chick, K. Stacey, J. Vincent, and J.
Vincent (Eds.), The future of the teaching and
learning of algebra: Proceedings of the 12th ICMI
Study Conference (vol. 1). The University of
Melbourne, Australia. 

Carraher, D., Martinez, M. and Schliemann, A. (2007)
Early algebra and mathematical generalization
ZDM Mathematics Education 40, 3-22 

Carraher, D., Schliemann, A., and Brizuela, B. (2001).
Can young students operate on unknowns?
Proceedings of the XXV Conference of the
International Group for the Psychology of
Mathematics Education, Utrecht, The Netherlands.
Vol. 1, 130-140

Collis, K. (1971) A study of concrete and formal
reasoning in school mathematics. Australian Journal
of Psychology. 23, 289-296.

Cooper, T. and Warren, E. (2007) The effect of
different representations on Years 3 to 5 students’
ability to generalize. ZDM Mathematics Education
40 29-37

Davydov V. (1990) Types of generalisation in
instruction: Logical and psychological problems in the
structuring of school curricula. Reston, VA: NCTM. 

Dettori, G. Garutti, R. Lemut, E. (2001) From
arithmetic to algebraic Thinking by using a
spreadsheet, in R. Sutherland, T. Rojano, A. Bell and
R. Lins (Eds) Perspectives on School Algebra, p 191-
208, Kluwer, Dordrecht.

Dickson, L. (1989a) Area of rectangle. In D. Johnson
(ed.) Children’s Mathematical Frameworks 8 – 13:
a study of classroom teaching. 88-125, Windsor:
NFER-Nelson.

Dickson, L. (1989b) Equations. In D. Johnson (ed.)
Children’s Mathematical Frameworks 8 to 13: a
study of classroom teaching. pp. 151-190 Windsor:
NFER- Nelson 

Dougherty, B. (1996) The write way: a look at journal
writing in first-year algebra. Mathematics Teacher
89, 556-560

Dougherty, B. (2001) Access to algebra: a process
approach. In Chick, H., Stacey, K., Vincent, J. and
Vincent, J. (eds.) Proceedings of the 12th ICMI study
conference: The future of the teaching and learning
of algebra. pp. 207-212 University of Melbourne,
Australia, Dec 9-14, 2001.

38 Paper 6: Algebraic reasoning



Drijvers, P. (2001) The concept of parameter in a
computer algebra environment. In Chick, H.,
Stacey, K., Vincent, J. and Vincent, J. (eds.)
Proceedings of the 12th ICMI study conference: The
future of the teaching and learning of algebra. pp.
221-227 University of Melbourne, Australia, Dec
9-14, 2001.

English, L. and Sharry, P. (1996) Analogical reasoning
and the development of algebraic abstraction.
Educational Studies in Mathematics, 30(2), 135-157. 

Even, R. (1998). Factors involved in linking
representations of functions. Journal of
Mathematical Behavior, 17(1), 105-121.

Falle, J. (2005) From arithmetic to algebra: novice
students’ strategies for solving equations.
Proceedings of annual conference of Mathematics
Education Research Group of Australasia.
Downloaded from
http://www.merga.net.au/search.php April 2008

Filloy E. and Rojano, T. (1989) Solving equations: the
transition from arithmetic to algebra. For the
Learning of Mathematics, 9(2) 19-25. 

Filloy, E. and Sutherland, R. (1996), Designing
curricula for teaching and learning algebra, in A.
Bishop, K. Clements, C. Keitel, J. Kilpatrick and C.
Laborde (Eds.) International Handbook of
Mathematics Education Part 1, Chapter 4, Kluwer,
Dordrecht, p 139-160.

Filloy, E. Rojano, T. and Robio, G. (2001) Propositions
concerning the resolution of arithmetical-algebraic
problems, in R. Sutherland (Ed.) Perspectives on
Algebra, Kluwer, Dordrecht, p155-176.

Foxman, D., Ruddock, G., Joffe, L., Mason, K., Mitchell, P.,
and Sexton, B. (1985) A Review of Monitoring in
mathematics 1978 to 1982, Assessment of
Performance Unit, Department of Education and
Science, London.

Friedlander, A. and Tabach, M. (2001) Developing a
curriculum of beginning algebra in a spreadsheet
environment. In Chick, H., Stacey, K., Vincent, J. and
Vincent, J. (eds.) Proceedings of the 12th ICMI study
conference: The future of the teaching and learning
of algebra. Pp.252-257. University of Melbourne,
Australia.

Fujii, T. and Stephens, M. (2001) Fostering an
understanding of generalisation through numerical
expressions: the role of quasi-variables. In Chick,
H., Stacey, K., Vincent, J. and Vincent, J. (eds.)
Proceedings of the 12th ICMI study conference: The
future of the teaching and learning of algebra.
Pp.258-264.University of Melbourne, Australia.

Fujii, T. and Stephens, M. (2008) Using number
sentences to introduce the idea of variable. In.C.
Greenes and R. Rubenstein (eds.) Algebra and
Algebraic Thinking in School Mathematics. 70th

Yearbook. pp. 127-140. Reston,VA: NCTM.
Furinghetti, F. and Paola, D. (1994). Parameters,

unknowns and variables: a little difference?, in
Proceedings of the XVIII International Conference for
the Psychology of Mathematics Education, pp. ??
University of Lisbon, Portugal.

Goldin, G. (2002) Representation in mathematical
learning in English, L (ed.) Handbook of
international research in mathematics education
pp.197-218, Mahwah NJ, Erlbaum. 

Gray, E. and Tall, D. (1994). Duality, ambiguity and
flexibility: A proceptual view of simple arithmetic,
Journal for Research in Mathematics Education, 26
(2), 115-141

Greenes, C. and Rubenstein, R. (2007) (eds.) Algebra
and algebraic thinking in school mathematics. 70th

Yearbook. Reston,VA: NCTM.
Hart, K. (Ed.) (1981) Children’s understanding of

mathematics 11-16, Murray, London..
Heid, M. (1996) Computer Intensive Algebra:

Reflections on a functional approach to beginning
algebra. In Bednarz, N., Kieran C., Lee, L. (eds.)
Approaches to algebra: perspectives for research on
teaching. Kluwer, Dordrecht

Herscovics, N. and Linchevski, L. (1994) A cognitive
gap between arithmetic and algebra, Educational
studies in mathematics, Vol. 27, pp. 59-78.

Hirschhorn, D. (1993) A longitudinal study of
students completing four years of UCSMP
mathematics Journal for Research in Mathematics
Education 24 (2), 136-158 

Hitt, F. (1998) Difficulties in the articulation of different
representations linked to the concept of function.
Journal of Mathematical Behavior, 17(1), 123-134.

Hollar, J. and Norwood, K. (1999) The effects of a
graphing-approach intermediate algebra
curriculum on students’ understanding of function
Journal for Research in Mathematics Education 30
(2) 220-226.

Jacobs, V., Franke, M., Carpenter, T., Levi, L., Battey, D.
(2007) Professional development focused on
children’s algebraic reasoning in elementary
school. Journal of Research in Mathematics
Education 38(3) 258-288

Janvier, C. (1996) Modeling and the initiation into
algebra. In Bednarz, N., Kieran C., Lee, L. (eds.)
Approaches to algebra: perspectives for research on
teaching. pp. 225-238. Kluwer, Dordrecht 

39 Key understandings in mathematics learning



40 SUMMARY – PAPER 2: Understanding whole numbers

Johnson, D. (1989) (ed.) Children’s Mathematical
Frameworks 8 – 13: a study of classroom teaching.
Windsor: NFER-Nelson.

Kaput, J. (1998) Transforming algebra from an engine
of inequity to an engine of mathematical power
by ‘algebrafying’ the K–12 curriculum. In National
Council of Teachers of Mathematics and
Mathematical Sciences Education Board (Eds.).The
nature and role of algebra in the K–14 curriculum:
Proceedings of a National Symposium (pp. 25–26).
Washington, DC: National Research Council,
National Academy Press.

Kaput, J. (1999). Teaching and learning a new algebra.
In E. Fennema and T. A. Romberg (Eds.),
Mathematics classrooms that promote
understanding (pp. 133-155). Mahwah, NJ:Erlbaum.

Kerslake, D. (1986) Fractions: Children’s strategies and
errors. Windsor: NFER-Nelson.

Kieran, C. (1981) Concepts associated with the
equality symbol. Educational Studies in
Mathematics 12, 317-326

Kieran, C. (1983) Relationships between novices’
views of algebraic letters and their use of
symmetric and asymmetric equation-solving
procedures. In J. Bergeron and B. Herscovics
(eds.) Proceedings of the International Group 
for the Psychology of Mathematics Education
pp.1.161-1-168, Montreal: Universite de
Montreal.

Kieran, C. (1989) The early learning of algebra: a
structural perspective. In S. Wagner and C. Keiran
(eds. ) Research issues in the learning and teaching
of algebra. pp. 33-56, Reston, VA, NCTM.

Kieran, C. (1992). The learning and teaching of
algebra, in D.A. Grouws (Ed.), Handbook of
Research on Mathematics Teaching and Learning,
Macmillan, New York, p390-419.

Kieran, C. and Saldanha, L. (2005) Computer algebra
systems (CAS) as a tool for coaxing the
emergence of reasoning about equations of
algebraic expressions. In Chick, H. L., and Vincent,
J. L. (Eds.). (2005). Proceedings of the International
Group for the Psychology of Mathematics Education
pp.3-193-3-200 Melbourne: PME

Kieran, C. and Sfard, A. (1999), Seeing through
symbols: The case of equivalent expressions, Focus
on Learning Problems in Mathematics, 21 (1) p1-17

Kieran, C., Boileau, A.and Garancon, M. (1996)
Introducing algebra by means of a technology-
supported, functional approach. In Bednarz, N.,
Kieran C., Lee, L. (eds.) Approaches to algebra:
perspectives for research on teaching. Pp. 257-294
Kluwer, Dordrecht 

Kirshner David (1989)The Visual Syntax of Algebra
Journal for Research in Mathematics Education
20(3) 274-287 

Krutetskii, V. (1976). The psychology of mathematical
abilities in school children. Chicago: University of
Chicago Press.

Küchemann, D. (1981) Algebra, in K. Hart (Ed.)
Children’s Understanding of Mathematics 11-16, p
102-119 Murray, London..

Lamon, S. (1998) Algebra: meaning through
modelling, in A. Olivier and K. Newstead (Eds)
22nd Conference of the International Group for
the Psychology of Mathematics Education, vol. 3,
pp.167-174. Stellenbosch: International Group
for the Psychology of Mathematics Education.

Lampert, M. (1986) Knowing, doing and teaching
multiplication. Cognition and Instruction 3 ,305-342.

Lee, L. (1996) An incitation into algebraic culture
through generalization activities. In Bednarz, N.,
Kieran C., Lee, L. (eds.) Approaches to algebra:
perspectives for research on teaching. pp. 87-106.
Kluwer, Dordrecht

Lehrer, R., Strom, D. and Confrey, J. (2002) Grounding
metaphors and inscriptional resonance: children’s
emerging understanding of mathematical
similarity. Cognition and Instruction 20(3) 359-398.

Lima, R. and Tall, D. (2008) Procedural embodiment
and magic in linear equations. Educational Studies
in Mathematics 67(1) 3-18

Linchevski, L., and Herscovics, N. (1996). Crossing the
cognitive gap between arithmetic and algebra:
Operating on the unknown in the context of
equations. Educational Studies in Mathematics,
30,1, 39-65.

Linchevski, L. and Sfard, A. (1991) Rules without
reasons as processes without objects: The case of
equations and inequalities. In F. Furinghetti (ed.)
Proceedings of the 15th International Group for the
Psychology of Mathematics Education. 2, 317-324.

Lins, R.L. (1990). A framework of understanding what
algebraic thinking is. In G. Booker, P.Cobb and T.
Mendicuti (eds.) Proceedings of the 14th
Conference of the International Group for the
Psychology of Mathematics Education, 14, 2, 93-
101. Oaxtepec, Mexico.

MacGregor, M. and Stacey, K. (1993) Cognitive
Models Underlying Students’ Formulation of
Simple Linear Equations Journal for Research in
Mathematics Education 24(3) 274-232 

MacGregor, M. and Stacey, K. (1995), The Effect of
Different Approaches to Algebra on Students’
Perceptions of Functional Relationships,
Mathematics Education Research Journal, 7 (1)
p69-85.

40 Paper 6: Algebraic reasoning



MacGregor M.and Stacey K. (1997) Students’
understanding of algebraic notation 11-15,
Educational Studies in Mathematics. 33(1), 1-19

Mason, J. and Sutherland, R. (2002), Key Aspects of
Teaching Algebra in Schools, QCA, London. 

Mason, J., Stephens, M. and Watson, A. (in press)
Appreciating mathematical structure for all.
Mathematics Education Research Journal.

Moss, J., R. Beatty, L. Macnab.(2006) Design for the
development and teaching of an integrated
patterning curriculum. Paper present to AERA
(April 2006.)

Nemirovsky, R. (1996) A functional approach to
algebra: two issues that emerge. In Bednarz, N.,
Kieran C., Lee, L. (eds.) Approaches to algebra:
perspectives for research on teaching. pp. 295-316.
Kluwer, Dordrecht 

Nickson, M. (2000) Teaching and learning
mathematics: a teacher’s guide to recent research
and its applications. Cassell London

NMAP, National Mathematics Advisory Panel (2008)
downloaded April 2008 from:
http://www.ed.gov/about/bdscomm/list/mathpanel
/index.html

Noble, T., Nemirovsky, R., Wright, T., and Tierney, C.
(2001) Experiencing change: The mathematics of
change in multiple environments. Journal for
Research in Mathematics Education, 32(1) 85-108.

Noss, R., Healy, L., Hoyles, C. (1997) The construction
of mathematical meanings: Connecting the visual
with the symbolic. Educational Studies in
Mathematics 33(2), 203-233

Nunes, T. and Bryant, P. (1995) Do problem situations
influence children’s understanding of the
commutativity of multiplication? Mathematical
Cognition, 1, 245-260.

O’Callaghan, B. (1998) Computer-Intensive Algebra
and Students’ Conceptual Knowledge of
Functions, Journal For Research in Mathematics
Education, 29 (1) p21-40.

Piaget, J. (1969) The mechanisms of perception.
London: RKP

Piaget, J., & Moreau, A. (2001). The inversion of
arithmetic operations (R. L. Campbell, Trans.). In J.
Piaget (Ed.), Studies in reflecting abstraction (pp.
69–86). Hove, UK: Psychology Press.Powell, A. B.
and Maher, C. A. (2003). Heuristics of Twelfth
Graders’ Building Isomorphism. In Pateman, N.,
Dougherty, B. and Zilliox, J. (eds.) Proceedings of
the 27th conference of the international group for
the psychology of mathematics education 4, pp. 23-
30. Honolulu, Hawaii: University of Hawaii.

Radford, L. (2007) Iconicity and contraction: a
semiotic investigation of forms of algebraic
generalizations of patterns in different contexts
ZDM Mathematics Education 40 83-96

Redden, T. (1994) Alternative pathways in the
transition from arithmetical thinking to algebraic
thinking. In J. da Ponte and J. Matos (eds.)
Proceedings of the 18th annual conference of the
International Group for the Psychology of
Mathematics Education vol. 4, 89-96, University of
Lisbon, Portugal.

Reed, S. (1972) Pattern recognition and
categorization. Cognitive Psychology 3, 382-407 

Reggiani, M. (1994) Generalization as a basis for
algebraic thinking: observations with 11-12 year
old pupils Proceedings of PME XVIII, IV, p97 - 104.

Resnick, L. B., Lesgold, S., and Bill, V. (1990). From
protoquantities to number sense. In G. Booker, J.
Cobb, and T. N. de Mendicuti (Eds.), Proceedings of
the Fourteenth Psychology of Mathematics
Education Conference (Vol. 3, pp. 305-311). Mexico
City, Mexico: International Group for the
Psychology of Mathematics Education.

Rivera, F. and Becker, J. (2007) Middle school children’s
cognitive perceptions of constructive and
deconstructive generalizations involving linear figural
patterns ZDM Mathematics Education 40 65-82

Robinson, K., Ninowski, J. and Gray, M. (2006)
Children’s understanding of the arithmetic
concepts of inversion and associativity, Journal of
Experimental Child Psychology 94, pp. 349–362.

Rothwell-Hughes, E.(1979) Conceptual Powers of
Children: an approach through mathematics and
science. Schools Council Publications.

Rowland, T. and Bills, L. (1996) ‘Examples,
Generalisation and Proof ’ Proceedings of British
Society for Research in Learning Mathematics
London Institute of Education, pp. 1-7

Ryan, J. and Williams, J. (2007) Children’s Mathematics
4 -15: learning from errors and misconceptions
Maidenhead Open University Press.

Sáenz-Ludlow, A.and Walgamuth, C. (1998) Third
Graders’ Interpretations of Equality and the Equal
Symbol Educational Studies in Mathematics, 35(2)
153-187.

Schwartz, J. and Yerushalmy, M. (1992) Getting
students to function in and with algebra. In G.
Harel and E. Dubinsky (eds.) The concept of
function: Aspects of epistemology and pedagogy.
MAA Notes, 25, 261-289. Washington DC: MAA.

Sfard, A. and Linchevski, L. (1994) . The gains and the
pitfalls of reification: The case of algebra.
Educational Studies in Mathematics , 26, 191-228.

41 Key understandings in mathematics learning



42 SUMMARY – PAPER 2: Understanding whole numbers

Siegler, R. S., and Stern, E. (1998). Conscious and
unconscious strategy discoveries: a microgenetic
analysis. Journal of Experimental Psychology 127,
377-397.

Simmt, E. and Kieren, T. (1999). Expanding the
cognitive domain: the role(s) and consequence of
interaction in mathematics knowing. In F. Hitt and
M. Santos (Eds.) Proceedings of the Twenty First
Annual Meeting Psychology of Mathematics
Education North American Chapter, pp.299-305. 

Stacey, K. (1989) Finding and Using Patterns in Linear
Generalising Problems, Educational Studies in
Mathematics, 20, p147-164.

Stacey, K., and MacGregor, M. (2000). Learning the
algebraic method of solving problems. Journal of
Mathematical Behavior, 18(2), 149-167.

Steele, D. (2007) Seventh-grade students’
representations for pictorial growth and change
problems 97-110 ZDM Mathematics Education
40 97-110

Sutherland R. and Rojano T. (1993) A Spreadsheet
Algebra Approach to Solving Algebra Problems,
Journal of Mathematical Behavior, 12, 353-383.

Thomas, M. and Tall, D. (2001) The long-term
cognitive development of symbolic algebra. In
Chick, H., Stacey, K., Vincent, J. and Vincent, J. (eds.)
Proceedings of the 12th ICMI study conference: The
future of the teaching and learning of algebra
pp.590-597. University of Melbourne, Australia,
Dec 9-14, 2001.

Tsamir, P., and Almog, N. (2001). Students’ strategies
and difficulties: The case of algebraic inequalities.
International Journal of Mathematics Education in
Science and Technology, 32, 513-524.

Tsamir, P., and Bazzini, L. (2001). Can x=3 be the
solution of an inequality? A study of Italian an
Israeli students. In M. van den Heuvel-Panhuizen
(Ed.), Proceedings of the 25th Annual Meeting for
the Psychology of Mathematics Education,
Utrecht: Holland. (Vol IV, pp. 303-310).

van Ameron. B. (2003) Focusing on informal
strategies when linking arithmetic to early algebra.
Educational Studies in Mathematics, 2003, vol. 54,
no. 1, p. 63-75.. 

Vergnaud, G. (1997) The nature of mathematical
concepts. In T. Nunes and P. Bryant (eds.) Learning
and teaching mathematics: an international
perspective. pp. 5-28 Hove: Psychology Press

Vergnaud, G. (1998). A comprehensive theory of
representation for mathematics Journal of
Mathematical Behavior, 17(2), 167-181

Vlassis, J., (2002) The balance model: Hindrance or
support for the solving of linear equations with
one unknown. Educational Studies in Mathematics
49(3), 341-359.

Warren, E. and Cooper, T. (2008) Patterns that
support early algebraic thinking in the elementary
school. In.C. Greenes and R. Rubenstein (eds.)
Algebra and Algebraic Thinking in School
Mathematics. 70th Yearbook. pp.113-126,
Reston,VA: NCTM.

Wertheimer, M. (1960) Productive thinking. New York:
Harper

Wong, M. (1997) Numbers versus letters in algebraic
manipulation: which is more difficult? In
E.Pehkonen (ed.) Proceedings of the annual
conference of the Internatioanl Group for the
Psychology of Mathematics Education. (4) 285-290.
Lahti: University of Helsinki.

Yeap, B-H. and Kaur, B. (2007) Elementary school
students engaging in making generalisation:a
glimpse from a Singapore classroom ZDM
Mathematics Education 40, 55-64

Yerushalmy, M. (1997) Designing representations:
Reasoning about functions of two variables.
Journal for Research in Mathematics Education,
28 (4) 431-466.

42 Paper 6: Algebraic reasoning



Published by the Nuffield Foundation, 28 Bedford Square, London WC1B 3JS
Telephone 020 7631 0566

Copyright © Nuffield Foundation 2009

ISBN 978-0-904956-73-3

www.nuffieldfoundation.org


