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3 Key understandings in mathematics learning

Headlines
• Whole numbers are used in primary school to

represent quantities and relations. It is crucial for
children’s success in learning mathematics in
primary school to establish clear connections
between numbers, quantities and relations.

• Using different schemes of action, such as setting
objects in correspondence, children can judge
whether two quantities are equivalent, and if they are
not, make judgements about their order of magnitude.
These insights are used in understanding the number
system beyond simply producing a string of number
words in a fixed order. It takes children some time to
make links between their understanding of quantities
and their knowledge of number.

• Children start school with varying levels of 
ability in using different action schemes to solve
arithmetic problems in the context of stories. They
do not need to know arithmetic facts to solve
these problems: they count in different ways
depending on whether the problems they are
solving involve the ideas of addition, subtraction,
multiplication or division.

• Individual differences in the use of action schemes
to solve problems predict children’s progress in
learning mathematics in school.

• Interventions that help children learn to use their
action schemes to solve problems lead to better
learning of mathematics in school.

• It is considerably more difficult for children to use
numbers to represent relations than to represent
quantities. Understanding relations is crucial for their
further development in mathematics in school.

In children’s everyday lives and before they start
school, they have experiences of manipulating and
comparing quantities. For example, even at age four,
many children can share sweets fairly between two
recipients by using correspondences: they share giving
one-for-you, one-for-me, until there are no sweets left.
They do sometimes make mistakes but they know
that, when the sharing is done fairly, the two people
will have the same amount of sweets at the end. Even
younger children know some things about quantities:
they know that if you add sweets to a group of
sweets, there will be more sweets there, and if you
take some away, there will be fewer. However, they
might not know that if you add a certain number and
take away the same number, there will be just as many
sweets as there were before.

At the same time that young children are developing
these ideas about quantities, they are often learning
to count. They learn to say the sequence of number
words in the right order, they know that each object
that they are counting must be counted once and
only once, and that it does not matter if you count a
row of sweets from left to right or from right to left,
you should get to the same number.

Four-year-olds are thus amazing learners of
mathematics. But they lack one thing which is crucially
important: they do not at first make connections
between their understanding of quantities and their
knowledge of numbers. So if 
you ask a four-year-old, who just shared some sweets
fairly between two dolls, to count the sweets that
one doll has and then tell you, without counting, how
many sweets the other doll has, the majority (about
60%) will tell you that they do not know. Knowing
that the dolls have the same quantity is not sufficient
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to know that if one has 8 sweets, the other one has 
8 sweets also, i.e. has the same number.

Quantities and numbers are not the same thing. We
can use numbers as measures of quantities, but we
can think about quantities without actually having a
measure for them. Until children can understand the
connections between numbers and quantities, they
cannot use their knowledge of quantities to support
their understanding of numbers and vice versa.
Because the connections between quantities and
numbers are many and varied, learning about these
connections could take three to four years in
primary school.

An important link that children must make between
number and quantity is the link between the order 
of number words in the counting sequence and the
magnitude of the quantity represented. How do
children come to understand that the any number 
in the counting sequence is equal to the preceding
number plus 1? 

Different explanations have been proposed in the
literature. One is that they simply see that magnitude
increases as they count. But this explanation does
not work well: our perception of magnitude is
approximate and knowing that any number is equal
to its predecessor plus 1 is a very precise piece of
knowledge. A second explanation is that children 
use perception, language and inferences together to
reach this understanding. Young children discriminate
well, for example, one puppet from two puppets and
two puppets from three puppets. Because they
know these differences precisely, they put these 
two pieces of information together, and learn that
two is one more than one, and three is one more
than two. They then make the inference that all
numbers in the counting sequence are equal to the
predecessor plus one. But this sort of generalisation
could not be stretched into helping children
understand that any number is also equal to the 
last-but-one in the sequence plus 2. This process of
putting together perception with language and then
generalising is an explanation for only the n + 1 idea;
it would be much better if we could have a more
general explanation of how children understand 
the connection between quantities and the 
number sequence.

The third explanation for how children connect 
heir knowledge of quantities with the magnitude of
numbers in the counting sequence is that children’s
schemes of action play the most important part in this

development. The actions of adding and taking away
help them understand part–whole relations. When
they can link their understanding of part–whole
relations with counting, they will understand many
things about relations between numbers. A critical
change in young children’s behaviour when they add
two sets is from ‘count all’ to ‘count on’. If they know
that they have 5 sweets, and you add 4 to the 5, they
could either start from 1 and count all the sweets
(count all) or they could point to the 5, and count on
from there. ‘Count on’ is a sign that the children have
linked their knowledge of part–whole relations with
the counting sequence: they have understood the
additive composition number. This explanation works
for the relation between a number and its immediate
predecessor and any of its predecessors. It is
supported by much research that shows that counting
on is a sign of abstraction in part–whole relations,
which opens the way for children to solve many other
problems: they can add a quantity to an invisible set,
count coins of different denominations to form a single
total, and are ready to learn to use place value to
represent numbers in writing.

Adding and subtracting elements to sets also give
children the opportunity to understand the inverse
relation between addition and subtraction. This insight
is not gained in an all-or-nothing fashion: children first
apply it only to quantities and later on to number also.
The majority of five-year-olds realises that if you add 3
sweets to a set of sweets and then take the same
sweets away, the number of sweets in the set remains
the same. However, many of these children will not
realise that if you add 3 sweets to the set and then
take 3 other sweets away, the number of sweets is still
the same. They see that adding and taking away the
same quantity leaves the original quantity the same but
this does not immediately mean to them that adding
and taking away the same number also leaves the
original number the same. Research shows that the
step from understanding the inverse relation between
addition and subtraction of quantities is a useful start if
one wants to teach children about the inverse relation
between addition and subtraction of number.

Adding, taking away and understanding part–whole
relations form one part of the story of what
children know about quantities and numbers in the
early years of primary school. They relate to how
additive reasoning develops. The other part of the
story is surprising to many people: children also
know quite a lot about multiplicative reasoning
when they start school. 
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Children use two different schemes of action to solve
multiplication and division problems before they are
taught about these operations in school: they use
one-to-many correspondence and sharing. If five- 
and six-year-olds are shown, for example, four little
houses in a row, told that they should imagine that in
each live three dogs, and asked how many dogs live
in the street, the majority can say the correct number.
Many children will point three times to each house
and count in this way until they complete the
counting at the fourth house. They are not
multiplying: they are solving the problem using one-
to-many correspondence. Children can also share
objects to recipients and answer problems about
division. They do not know the arithmetic operations,
but they can use their reasoning to count in different
ways and solve the problem. So children manipulate
quantities using multiplicative reasoning and solve
problems before they learn about multiplication and
division in school.

If children are assessed in their understanding of the
inverse relation between addition and subtraction, 
of additive composition, and of one-to-many
correspondence in their first year of school, this
provides us with a good way of anticipating whether
they will have difficulties in learning mathematics in
school. Children who do well in these assessments 
go on to attain better results in mathematics
assessments in school. Those who do not do well can
improve their prospects through early intervention.
Children who received specific instruction on these
relations between quantities and how to use them to
solve problems did significantly better than a similar
group who did not receive such instruction. 

Finally, many studies have used story problems to
investigate which uses of additive reasoning are
easier and which are more difficult for children of
primary school age. Two sorts of difficulties have
been identified. 

The first relates to the need to understand that
addition and subtraction are the inverse of each
other. One story that requires this understanding is:
Ali had some Chinese stamps in his collection and his
grandfather gave him 2; now he has 8; how many
stamps did he have before his grandfather gave him
the 2 stamps? This problem exemplifies a situation in
which a quantity increases (the grandfather gave him
2 stamps) but, because the information about the
original number in his collection is missing, the
problem is not solved by an addition but rather by 
a subtraction. The problem would also be an inverse

problem if Ali had some Chinese stamps in his
collection and gave 2 to his grandfather, leaving his
collection with 6. In this second problem, there is a
decrease in the quantity but the problem has to be
solved by an increase in the number, in order to get
us back to Ali’s collection before he gave 2 stamps
away. There is no controversy in the literature: inverse
problems are more difficult than direct problems,
irrespective of whether the arithmetic operation that
is used to solve it is addition or subtraction. 

The second difficulty depends on whether the
numbers in the problem are all about quantities or
whether there is a need to consider a relation
between quantities. In the two problems about Ali’s
stamps, all the numbers refer to quantities. An example
of a problem involving relations would be: In Ali’s class
there are 8 boys and 6 girls; how many more boys
than girls in Ali’s class? (Or how many fewer girls than
boys in Ali’s class?). The number 2 here refers neither
to the number of boys nor to the number of girls: it
refers to the relation (the difference) between number
of boys and girls. A difference is not a quantity: it is a
relation. Problems that involve relations are more
difficult than those that involve quantities. It should not
be surprising that relations are more difficult to deal
with in numerical contexts than quantities: the majority,
if not all, the experiences that children have with
counting have to do with finding a number to
represent a quantity, because we count things and not
relations between things. We can re-phrase problems
that involve relations so that all the numbers refer to
quantities. For example, we could say that the boys
and girls need to find a partner for a dance; how many
boys won’t be able to find a girl to dance with? There
are no relations in this latter problem, all the numbers
refer to quantities. This type of problem is significantly
easier. So it is difficult for children to use numbers to
represent relations. This could be one step that
teachers in primary school want to help their children
take, because it is a difficult move for every child.
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Recommendations
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Research about mathematical
learning

Children’s pre-school knowledge of
quantities and counting develops
separately.

When children start school, they can solve
many different problems using schemes of
action in coordination with counting,
including multiplication and division
problems. 

Three logical-mathematical reasoning
principles have been identified in research,
which seem to be causally related to
children’s later attainment in mathematics 
in primary school. Individual differences in
knowledge of these principles predict later
achievement and interventions reduce
learning difficulties.

Children’s ability to solve word problems
shows that two types of problem cause
difficulties for children: those that involve
the inverse relation between addition and
subtraction and those that involve thinking
about relations.

Recommendations for teaching 
and research 

Teaching Teachers should be aware of the importance 
of helping children make connections between their
understanding of quantities and their knowledge of counting.

Teaching The linear view of development, according to 
which understanding addition precedes multiplication, is not
supported by research. Teachers should be aware of children’s
mathematical reasoning, including their ability to solve
multiplication and division problems, and use their abilities 
for further learning.

Teaching A greater emphasis should be given 
in the curriculum to promoting children’s understanding of the
inverse relation between addition and subtraction, additive
composition, and one-to-many correspondence. This would help
children who start school at risk for difficulties in learning
mathematics to make good progress in the first years.
Research Long-term longitudinal and intervention studies
with large samples are needed before curriculum and policy
changes can be proposed. The move from the laboratory to
the classroom must be based on research that identifies
potential difficulties in scaling up successful interventions.

Teaching Systematic use of problems involving these
difficulties followed by discussions in the classroom would give
children more opportunities for making progress in using
mathematics in contexts with which they have difficulty.
Research There is a need for intervention studies designed
to promote children’s competence in solving problems about
relations. Brief experimental interventions have paved the way
for classroom-based research but large-scale studies are
needed.



Counting and reasoning
At school, children’s formal learning about
mathematics begins with natural numbers (1, 2,
…17…103 …525…). Numbers are symbols for
quantities: they make it possible for the child to
specify single values precisely and also to work 
out the relations between different quantities. By
counting, the child can tell you that there are 20
books in the pile on the teacher’s desk (a single
quantity), and eventually should be able to work 
out that there is 1 book for every child in the class 
if there are 20 children there, or that there are 5 
more books than children (a relation between two
quantities) if there are 15 children in the class.  

Quantities and numbers are not the same. Thompson
(1993) suggested that ‘a person constitutes a quantity
by conceiving of a quality of an object in such a way
that he or she understands the possibility of measuring
it. Quantities, when measured, have numerical value,
but we need not measure them or know their
measures to reason about them. You can think of your
height, another person's height, and the amount by
which one of you is taller than the other without
having to know the actual values’ (pp. 165–166).1

Children experience and learn about quantities and
the relations between them quite independently of
learning to count. Similarly, they can learn to count
quite independently from understanding quantities
and relations between them. We shall argue in this
section that the most important task for a child who
is learning about natural numbers is to connect these
numbers to a good understanding of quantities and
relations. The connection should work at two levels. 

First, children must realise that their knowledge of
quantities and numbers should agree with one

another. If Sean has 15 books and Patrick 17, 
Patrick has more books than Sean. Unless children
understand that numbers are a precise way of
expressing quantities, the number system will have
no meaning for them. 

Second, they must realise eventually that the number
system enhances their knowledge of quantities in an
increasingly powerful way. They may not be able to
look at a pile of books and tell without counting that
the one with 17 has more books than the one with
15; indeed, the thickness of books varies and the pile
of 15 books could well be taller than the pile with 17.
By counting they can know which pile has more
books. When they know how to count, we can also
add and subtract numbers, and work out the exact
relations between them. If we understand lots of
things about quantities, e.g. how to create equivalent
quantities and how their equivalence is changed, but
we don’t have numbers to represent them, we
cannot add and subtract. 

In this section, therefore, we will focus on the
connections that children make, and sometimes fail 
to make, between their growing knowledge about
quantities and the number system. In many ways this
is an unusual thing to do. Most existing accounts of
how children learn about number are more
restricted. Either they leave out the number system
altogether and concentrate instead on children’s
ability to reason about quantities, or they are strictly
confined to how well children count sets of objects.  

Piaget’s theory (Piaget, 1952) is an example of the
first kind of theory. His view that children have to be
able to reason logically about quantity in order to
understand number and the number system is

7 Key understandings in mathematics learning
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almost certainly right, but it left out the possibility
that learning to count eventually transforms this
reasoning in children by making it more powerful
and more precise. 

In the opposite corner, Gelman’s influential theory
(Gelman and Gallistel, 1978), which focuses on how
children count single sets of objects and has little to
say about children’s quantitative reasoning, has the
serious disadvantage that it by-passes children’s
reasoning about relations between quantities. In the
end, numbers are only important because they allow
us to represent quantities and make sense of
quantitative relations. 

The first part of this section is an account of 
how children connect numbers with quantity. We 
will start this account with a detailed list of the
connections that they need to make. We argue that
children need to make three types of connections
between number words and quantities in order to
make the most of what they learn when they begin
to count: they need to understand cardinality; they
need to understand ordinal numbers, and they need
to understand the relation between cardinality and
addition and subtraction. The second part of this
section is an account of how children learn to use
numbers to solve problems. We argue that numbers
are used to represent quantities but that children
must also learn to use them to represent
transformations and relations, and that the different
meanings that numbers can have affect how easily
children solve problems. 

Giving meaning to numbers
Young children’s dissociation of
quantities and numbers

Children may know that two quantities are the same
and still not make the inference that the number of
objects in one is the same as the number of objects
in the other. Conversely, they may know how to
count and yet not make use of counting when asked
to create two equal sets. We review here briefly
research within two different traditions, inspired by
Piaget’s and Gelman’s theories, that shows that young
children do not necessarily make a connection
between what they know about quantities and 
what they know about counting.

Equivalence of sets in one-to-one
correspondence and its connection to
number words
Numbers have both cardinal and ordinal properties.
Two sets have the same cardinal value when the
items in one set are in one-to-one correspondence
with those in the other. There are as many eggcups in
a box of six egg-cups as there are eggs in a carton of
six eggs, and if there are six people at the breakfast
table each will have one of those eggs on its own
eggcup to eat. Thus, the eggcups, eggs and people are
all in one-to-one correspondence since there is one
egg and eggcup for each one person, which means
that each of these three sets has the same number. 

We shall deal with the ordinal properties of number
in a later section. At the moment, all that we need to
say is that numbers are arranged in an ordered series.

To return to cardinality, Piaget argued quite
reasonably that no one can understand the meaning
of ‘six’ unless he or she also understands the
number’s cardinal properties, and by this he meant
understanding not only that any set of six contains
the same number of items as any other set of six but
also that that the items in a set of six are in one-to-
one correspondence with any other set of six items.
So, if we are to pursue the approach of studying the
links between children’s quantitative reasoning and
how they learn about natural numbers, we need to
find out how well children understand the principle
that sets which are in one-to-one correspondence
with each other are equal in quantity, and also how
clearly they apply what they understand about one-
to-one correspondence to actual numbers like ‘six’.

Piaget based his claim that young children have a very
poor understanding of one-to-one correspondence
on the mistakes that they make when they are shown
one set of items (e.g. a row of eggs) and are asked to
form another set (e.g. of eggcups) of the same
number. Four- and five-year-olds often match the new
set with the old one on irrelevant criteria such as
two rows’ lengths and make no effort to put the
rows into one-to-one correspondence. Their ability
to establish one-to-one correspondence between
sets grows over time: it cannot be taken 
for granted.

However, even when children do establish a one-to-
one correspondence between two sets, they do not
necessarily infer that counting the elements in one set
tells them how many elements there are in the other
set. Piaget (1952) established this in an experiment in
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which he proposed to buy sweets from the children,
using a one-to-one exchange between pence and
sweets. For each sweet that the child gave to Piaget,
he gave the child a penny. As they exchanged pence
and sweets, the child was asked to count how many
pence he/she had. Piaget ensured that he stopped this
exchange procedure without going over the child’s
counting range. When he stopped the exchange, he
asked the child how many pence the child had. The
children were able to answer this without difficulty as
they had been counting their coins. He then asked the
child how many sweets he had. Piaget reports that
some children were unable to make the inference
that the number of sweets Piaget had was the same
as the number of pence that the child himself/herself
had. Unfortunately, Piaget gave no detailed description
of how the ability to make this inference related to
the children’s age. 

More recent research, which offers quantitative
information, shows that many four-year-olds who do
understand one-to-one correspondence well enough
to share fairly do not make the inference that
equivalent sets have the same number of elements.
Frydman and Bryant (1988) asked four-year-old
children to share a set of ‘chocolates’ to two
recipients. At this age, children often share things
between themselves, and they typically do so on a
one-for-A, one-for-B, one-for-A, one-for-B basis. In this
study, the children established the correspondence
themselves; this contrasts with Piaget’s study, where
Piaget controlled the exchange of sweets and pence.
When the child had done the sharing, the
experimenters counted out the number of items that
had been given to one recipient, which was six.
Having done this, they asked the child how many
chocolates had been given to the other recipient.

None of the children immediately made the
inference that there were the same number of
chocolates in one set as in the other, and therefore
that there were also six items in the second set.
Instead, every single child began to count the second
set. In each case, the experimenter then interrupted
the child’s counting, and asked him or her if there was
any other way of working out the number of items in
the second recipient’s share. Only 40% of the group
of four-year-olds made the correct inference that the
second recipient had also been given six chocolates.
The failure of more than half of the children is an
interesting one. The particular pre-school children
who made it knew that the two recipients’ shares
were equal, and they also knew the number of items
in one of the shares. Yet, they did not connect what

they knew about the relative quantities to the
number symbols. Other children, however, did make
this connection, which we think is the first significant
step in understanding cardinality. Whether all children
will have made this connection by the time that they
start learning about numbers and arithmetic at
school depends on many factors: for example, the
age they start school and their previous experiences
with number are related to whether they have taken
this important step by then (e.g. socio-economic
status related to maths ability at school entry: see
Ginsburg, Klein, and Starkey, 1998; Jordan,
Huttenlocher, and Levine, 1992; Secada, 1992). 

Counting and understanding relations
between quantities
Piaget’s theory of how children develop an
understanding of cardinality was confronted by an
alternative theory, by Gelman’s nativist view of
children’s counting and its connection to cardinal
number knowledge (Gelman and Gallistel, 1978).
Gelman claimed that children are born with a
genuine understanding of natural number, and that
this makes it possible for them to learn and use the
basic principles of counting as soon as they begin to
learn the names for numbers. She outlined five basic
counting principles. Anyone counting a set of objects
should understand that:
• you should count every object once and only once

(one-to-one correspondence principle)
• the order in which you count the actual objects

(from left-to right, from right to left or from the
middle outwards) makes no difference (order
irrelevance principle)

• you should produce the number words in a
constant order when counting: you cannot count 
1-2-3 at one time and 1-3-2 at another (fixed
order principle)

• whether the objects in a set are all identical to each
other or all quite different has no effect on their
number (the abstraction principle)

• the last number that you count is the number of
items in the set (cardinal principle).

Each of these principles is justified in the sense that
anyone who does not respect them will end up
counting incorrectly. A child who produces count
words in different orders at different times is bound
to make incorrect judgements about the number of
items in a set. So will anyone who does not obey the
one-to-one principle. 

Gelman’s original observations of children counting
sets of objects, and the results of some subsequent
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experiments in which children had to spot errors in
other protagonists’ counting (e.g. Gelman and Meck,
1983), all supported her idea that children obey and
apparently understand all five of these principles
with small sets of items long before they go to
school. The young children’s success in counting
smaller sets allowed her to dismiss their more
frequent mistakes with large sets of items as
executive errors rather than failures in
understanding. She agued that the children knew
the principles of counting and therefore of number,
but lacked some of the skills needed to carry them
out. This view became known as the ‘principles-
before-skills hypothesis’.

These observations of Gelman’s provoked a great
deal of useful further research on children’s counting,
most of which has confirmed her original results,
though with some modifications. For example, five-
year-old children do generally count objects in a one-
to-one fashion (one number word for each object)
but not all of the time (Fuson, 1988). They tend either
to miss objects or count some more than once in
disorganised arrays. It is now clear that gestures play
an important part in helping children keep track
during counting (Albilali and DiRusso, 1999) but
sometimes they point at some of the objects in a
target set without counting them.

Many of the criticisms of Gelman’s hypothesis 
were against her claims that children understand
cardinality. Ironically, even critics of Gelman (e.g.
Carey, 2004; LeCorre and Carey, 2007)) have in
their own research accepted her all too limited
definition of understanding cardinality (that it is the
realisation that the last number counted represents
the number of objects). However, several
researchers have criticised her empirical test of
cardinality. Gelman had argued that children, who
count a set of objects and emphasise the last
number (‘one-two-three-FOUR’) or repeat it 
(‘one-two-three-four- there are four’), understand
that this last number represents the quantity of the
counted set. However, Fuson (Fuson, and Hall,
1983; Fuson, Richards and Briars, 1982) and
Sophian (Sophian, Wood, and Vong, 1995) both
made the reasonable argument that emphasising or
repeating the last number could just be part of an
ill-understood procedure.

Although Gelman’s five principles cover some
essential aspects of counting, they leave others 
out. The five principles, and the tools that Gelman
devised to study children’s understanding of these

principles, only apply to what someone must know
and do in order to count a single set of objects.
They tell us nothing about children’s understanding
of numerical relations between sets. Piaget’s
research on number, on the other hand, was almost
entirely concerned with comparisons between
different quantities, and this has the confusing
consequence that when Gelman and Piaget used
the same terms, they gave them quite different
meanings. For Piaget, understanding cardinality 
was about grasping that all and only equivalent 
sets are equal in number : for Gelman it meant
understanding that the last number counted
represents the number of items in a single set.
When Piaget studied one-to-one correspondence,
he looked at children’s comparisons between two
quantities (eggs and egg cups, for example):
Gelman’s concern with one-to-one
correspondence was about children assigning 
one count word to each item in a set.

Since two sets are equal in quantity if they contain
the same number of items and unequal if they do
not, one way to compare two sets quantitatively is 
to count each of them and to compare the two
numbers. Another, for much the same reason, is to
use one-to-one correspondence: if the sets are in
correspondence they are equal; if not, they are
unequal. This prompts a question: how soon and how
well do children realise that counting sets is a valid
way, and sometimes the only feasible valid way, of
comparing them quantitatively? Another way of
putting the same question is to ask: how soon and
how well do children realise that numbers are a
measure by which they can compare the quantities 
of two or more different sets.

Most of the research on this topic suggests that it
takes children some time to realise that they can, and
often should, count to compare. Certainly many pre-
school children seem not to have grasped the
connection between counting and comparing even if
they have been able to count for more than one year. 

One source of evidence comes from the work by
Sophian (1988), who asked children to judge whether
someone else (a puppet) was counting the right way
when asked to do two things. The puppet was faced
with two sets of objects, and was asked in some trials
to say whether the two sets were equal or not and in
others to work out how many items there were on
the table altogether. Sometimes the puppet did the
right thing, which was to count the two sets
separately when comparing them and to count all the
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items together when working out the grand total. 
At other times he got it wrong, e.g. counted all the
objects as one set when asked to compare the two
sets. The main result of Sophian’s study was that the
pre-school children found it very hard to make this
judgement. Most 3-year-olds judged counting each set
was the right way to count in both tasks while 4-year-
olds judged counting both sets together was the right
way to count in both tasks. Neither age group could
identify the right way to count reliably.

A second type of study shows that even at school
age many children seem not to understand fully 
the significance of numbers when they make
quantitative comparisons. There is, for example, the
striking demonstration by Pierre Gréco (1962), a
colleague of Piaget’s, that children will count two
rows of counters, one of which is more spread out
and longer than the other, and correctly say that
they both have the same number (this one has six,
and so does the other) but then will go on to say
that there are more counters in the longer row
than in the other. A child who makes this mistake
understands cardinality in Gelman’s sense (i.e. is
able to say how many items in the set) but does
not know what the word ‘six’ means in Piaget’s
sense. Barbara Sarnecka and Susan Gelman (2004)
recently replicated this observation. They report
that children three- and four-year-olds know that if
a set had five objects and you add some to it, it no
longer has five objects; however they did not know
that equal sets must have the same number word.

Another source of evidence is the observation,
repeated in many studies, that children, who can
count quite well, nevertheless fail to count the
items in two sets that they have been asked to
compare numerically (Cowan, 1987; Cowan and
Daniels, 1989; Michie, 1984; Saxe, Guberman and
Gearhart, 1987); instead they rely on perceptual
cues, like length, which of course are unreliable.
Children who understand the cardinality of 
number should understand that they can make the
comparison only by counting or using one-to-one
correspondence, and yet at the age of five and six
years most of them do neither, even when, as in the
Cowan and Daniels study, the one-to-one cues are
emphasised by lines drawn between items in the
two sets that the children were asked to compare.

Finally, the criterion for the cardinality principle has
itself been criticised as insufficient to show that
children understand cardinality. The criticism is both
theoretical and also based on empirical results. From

a theoretical standpoint, Vergnaud (2008) pointed 
out that Gelman’s cardinality criterion should actually
be viewed as showing that children have some
understanding of ordinal, not of cardinal, number:
Gelman’s criterion is indeed based on the position of
the number word in the counting sequence, because
the children use the last number word to represent
the set. Vergnaud argues that ordinal numbers cannot
be added whereas cardinal numbers can. He predicts
that children whose knowledge of cardinal number is
restricted to Gelman’s cardinality principle will not be
able to continue counting to answer how many
objects are in a set if you add some objects to the
set that they have just counted: they will need to
count again from one. Research by Siegler and
Robinson (1982) and Starkey and Gelman (1982)
produced results in line with this prediction: 3-year-
olds do not spontaneously count to solve addition
problems after counting the first set. Ginsburg, Klein
and Starkey (1998) also interpreted such results as
indicative of an insufficient development of the
concept of cardinality in young children. We return 
to the definition of cardinality later on, after we have
discussed alternative explanations to Gelman’s theory
of an innate counting principle as the basis for
learning about cardinality.

Three further studies will be used here to illustrate
that some children who are able to use Gelman’s
cardinality principle do not seem to have a full grasp
of when this principle should be applied; so meeting
the criterion for the cardinality principle does not
mean understanding cardinality. 

Fuson (1988) showed that three-year-old children who
seem to understand the cardinality principle continue
to use the last number word in the counting sequence
to say how many items are in a set even if the counting
started from two, rather than from one. Counting in
this unusual way should at least lead the children to
reject the last word as the cardinal for the set.

Using a similar experimental manoeuvre, Freeman,
Antonuccia and Lewis (2000) assessed three- and
five-year-olds’ rejection of the last word after counting
if there had been a mistake in counting. The children
participated in a few different tasks, one of which was
a task where a puppet counted an array with either 
3 or 5 items, but the puppet miscounted, either by
counting an item twice or by skipping an item. The
children were asked whether the puppet had counted
right, and if they said that the puppet had not, they
were asked: How many does the puppet think there
are? How many are there really? All children had
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shown that they could count 5 items accurately (2 
of 22 could count accurately to 6, another 4 could 
do so to 7, and the remaining 18 could count items
accurately to 10). However, their competence in
counting was no assurance that they realised that the
puppet’s answer was wrong after miscounting: only
about one third of the children were able to say that
the answer was not right after they had detected the
error. The children’s rejection of the puppet’s wrong
answer increased with age: 82% of the five-year-olds
correctly rejected the puppet’s answer in all three
trials when a mistake had been made. However, the
majority of the children could not say what the
cardinal for the set was without recounting: the
majority counted the set again in order to answer the
question ‘how many are there really?’ They neither said
immediately the next number when the puppet had
skipped one nor used the previous number when the
puppet double-counted an item. So, quite a few of the
younger children passed Gelman’s cardinality principle
but did not necessarily see that the cardinality
principle should not be applied when the counting
principles are violated. Most of the older children, who
rejected the use of the cardinality principle, did not
use it to deduce what the correct cardinal should be;
instead, all they demonstrated was that they could
replace the wrong routine with the correct one, and
then they could say what the number really was.
Understanding that the next number is the cardinal
for the set if the puppet skipped one item, without
having to count again, would have demonstrated that
the children have a relatively good grasp of cardinality.
Freeman and his colleagues reported that only about
one third of the children who detected the puppet’s
error were able to say what the correct number of
items was without recounting. In the subsequent
section we return to the importance of knowing what
the next number is for the concept of cardinality.

The third study we consider here was by Bermejo,
Morales and deOsuna (2004), who argued that if
children really understand cardinality, and not just the
Gelman’s cardinality principle, they should do better
than just re-implement the counting in a correct way.
For example, they should be able to know how many
objects are in a set even if the counting sequence is
implemented backwards. If you count a set by saying
‘three, two, one’, and you reach the last item when you
say ‘one’, you know that there are three objects in the
set. If you count backwards from three and the label
‘one’ does not coincide with the last object, you know
that the set does not have three objects. Just like
starting to count from two, counting backwards is
another way of separating out Gelman’s cardinality

principle from understanding cardinality: when you
count backwards, the first number label is the cardinal
for the set if there is a one-to-one correspondence
between number labels and objects. Bermejo and
colleagues showed that four- and six-year-old children
who can say that there are three objects in a set when
you count forward cannot necessarily say that if you
count backwards from four and the last number label is
‘two’, this does not mean that there are two objects in
the set. In fact, many children did not realize that there
was a contradiction between the two answers: for
them, the set could have three objects if you count one
way and two if you count in another way. They also
showed that children who were given the opportunity
to discuss what the cardinal for the set was when the
counting was done backwards showed marked
progress in other tasks of understanding cardinality,
which included starting to count from other numbers
in the counting sequence than the number one, as in
Fuson’s task. They concluded that reflecting about the
use of counting and the different actions involved in
achieving a correct counting created opportunities for
children to understanding cardinality better.

The evidence that we have presented so far
suggests very strongly and remarkably consistently
that learning to count and understanding relations
between quantities are two different achievements.
On the whole, children can use the procedures for
counting long before they realise how counting
allows them to measure and compare different
quantities, and thus to work out the relations
between them. We think that it is only when
children establish a connection between what 
they know about relations between quantities 
and counting that they can be said to know the
meaning of natural numbers.2

Summary
1 Natural numbers are a way of representing

particular quantities and relations between
quantities. 

2 When children learn numbers, they must find out
not just about the counting sequence and how to
count, but also about how the numbers in the
counting system represent quantities and relations
between them.

3 One basic aspect of this representation is the
cardinality of number: all sets with the same
number have the same quantity of items in them.
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4 Another way of expressing cardinality is to say 
that all sets with the number are in one-to-one
correspondence with each other.

5 There is evidence that young children’s first
successful experiences with one-to-one
correspondence come through sharing; however,
even if they succeed in sharing fairly and know the
number of items in one set, many do not make the
inference that the number of items in the other
set is the same.

6 Because of its cardinal properties, number is a
measure: one can compare the quantity of items 
in two different sets by counting each set.

7 Several studies have shown that many children as
old as six years are reluctant to count, although
they know how to count, when asked to compare
sets. They resort to perceptual comparisons
instead.

8 This evidence suggests that learning about
quantities and learning about numbers develop
independently of each other in young children. But
in order to understand natural numbers, children
must establish connections between quantities and
numbers. Thus schools must ensure that children
learn not only to count but also learn to establish
connections between counting and their
understanding of quantities.

Current theories about the origin of
children’s understanding of the
meaning of cardinal number
We have seen that Piaget’s theory defines children’s
understanding of number on the basis of their
understanding of relations between quantities; for
him, cardinality is not just saying how many items 
are in sets but grasping that sets in one-to-one
correspondence are equivalent in number and vice-
versa. He argued that children could only be said to
understand numbers if they made a connection
between numbers and the relations between
quantities that are implied by numbers. He also
argued that this connection was established by
children as they reflected about the effect of 
their actions on quantities: setting items in
correspondence, adding and taking items away are
schemes of action which form the basis for children’s
understanding of how to compare and to change
quantities. Piaget acknowledges that learning to count

can accelerate this process of reflection on actions,
and so can other forms of social interaction, because
they may help the children realise the contradictions
that they fall into when they say, for example, that
two quantities are different and yet they are labelled
by the same number. However, the process that
eventually leads to their understanding of the
meanings of natural numbers and the implications 
of these representations is the child’s growing
understanding of relations between quantities.

Piaget’s studies of children’s understanding of the
relations between quantities involved three different
ideas that he considered central to understanding
number: understanding equivalence, order, and class-
inclusion (which refers to the idea that the whole is
the sum of the parts, or that a set with 6 items
comprises a set with 5 items plus 1). The methods
used in these studies have been extensively
criticised, as has the idea that children develop
through a sequence of stages that can be easily
traced and are closely associated with age. However,
to our knowledge the core idea that children come
to understand relations between quantities by
reflecting upon the results of their actions is still a
very important hypothesis in the study of how
children learn about numbers. We do not review this
vast literature here as there are several collections of
papers that do so (see, for example, Steffe, Cobb
and Glaserfeld, 1988; Steffe and Thompson, 2000).
Later sections of this paper will revisit Piaget’s theory
and discuss related research.

This is not the only theory about how children come
to understand the meaning of cardinal numbers. There
are at least two alternative theories which are widely
discussed in the literature. One is a nativist theory,
which proposes that children have from birth access
to an innate, inexact but powerful ‘analog’ system,
whose magnitude increases directly with the number
of objects in an array, and they attach the number
words to the properties occasioning these
magnitudes (Dehaene 1992; 1997; Gallistel and
Gelman, 1992; Gelman and Butterworth, 2005; Xu
and Spelke, 2000; Wynn, 1992; 1998). This gives all 
of us from birth the ability to make approximate
judgements about numerical quantities and we
continue through life to use this capacity. The
discriminations that this system allows us to make are
much like our discriminations along other continua,
such as loudness, brightness and length. One feature
of all these discriminations is that the greater the
quantities (the louder, the brighter or the longer they
are) the harder they are to discriminate (known, after
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the great 19th century psycho-physicist who
meticulously studied perceptual sensitivity, as the
‘Weber function’). To quote Carey (2004): ‘Tap out as
fast as you can without counting (you can prevent
yourself from counting by thinking 'the' with each tap)
the following numbers of taps: 4, 15, 7, and 28. If you
carried this out several times, you'd find the mean
number of taps to be 4, 15, 7, and 28, with the range
of variation very tight around 4 (usually 4, occasionally
3 or 5) and very great around 28 (from 14 to 40 taps,
for example). Discriminability is a function of the
absolute numerical value, as dictated by Weber's law’
(p. 63). The evidence for this analog system being an
innate one comes largely from studies of infants (Xu
and Spelke, 2000; McCrink and Wynn, 2004) and to 
a certain extent studies of animals as well, and is
beyond the scope of this review. The evidence for its
importance for learning about number and arithmetic
comes from studies of developmental or acquired
dyscalculia (e.g. Butterworth, Cipolotti and
Warrington, 1996; Landerl, Bevana and Butterworth,
2004). However important this basic system may be
as a neurological basis for number processing, it is not
clear how the link between an analog and imprecise
system and a precise system based on counting can
be forged: ‘ninety’ does not mean ‘approximately
ninety’ any more than ‘eight’ could mean
‘approximately eight’. In fact, as reported in the
previous section, three- and four-year-olds know that
if a set has 6 items and you add one item to it, it no
longer has 5 objects: they know that ‘six’ is not the
same as ‘approximately six’.

A third well-known theoretical alternative, which
starts from a standpoint in agreement with Gelman’s
theory, is Susan Carey’s (2004) hypothesis about
three ways of learning about number. Carey accepts
Gelman and Gallistel’s (1978) limited definition of the
cardinality principle but rejects their conclusions
about how children first come to understand this
principle. Carey argues that initially (by which she
means in the first three years of life), very young
children can represent number in three different
ways (Le Corre and Carey, 2007). The first is the
analog system, described in the previous paragraphs.
However, although Carey thinks that this system plays
a part in people’s informal experiences of quantity
throughout their lives, she does not seem to assign 
it a role in children’s learning about the counting
system, or in any other part of the mathematics that
they learn about at school.

In her theory, the second of Carey’s three systems,
which she calls the ‘parallel individuation’ system, plays

the crucial part in making it possible for children to
learn how to connect number with the counting
system. This system makes it possible for infants to
recognise and represent very small numbers exactly
(not approximately like the analog system). The
system only operates for sets of 1, 2 and 3 objects
and even within this restricted scope there is marked
development over children’s first three years. 

Initially the system allows very young children to
recognise sets of 1 as having a distinct quantity. The
child understands 1 as a quantity, though he or she
does not at first know that the word ‘one’ applies to
this quantity. Later on the child is able to discriminate
and recognise – in Carey’s words ‘to individuate’ –
sets of 1 and 2 objects, and still later, around the age
of three- to four-years, sets of 1, 2 and 3 objects as
distinct quantities. In Carey’s terms young children
progress from being ‘one-knowers’ to becoming ‘two-
knowers’ and then ‘three-knowers’. 

During the same period, these children also learn
number words and, though their recognition of 1, 2
and 3 as distinct quantities does not in any way
depend on this verbal learning, they do manage to
associate the right count words (‘one’, ‘two’ and ‘three’)
with the right quantities. This association between
parallel individuation and the count list eventually leads
to what Carey (2004) calls ‘bootstrapping’: the children
lift themselves up by their own intellectual bootstraps.
They do so, some time in their fourth or fifth year, and
therefore well before they go to school. 

This bootstrapping takes two forms. First, with the help
of the constant order of number words in the count
list, the children begin to learn about the ordinal
properties of numbers: 2 always comes after 1 in the
count list and is always more numerous than 1, and 3 is
more numerous than 2 and always follows 2. Second,
since the fact that the count list that the children learn
goes well beyond 3, they eventually infer that the
number words represent a continuum of distinct
quantities which also stretches beyond ‘three’. They also
begin to understand that the numbers above three are
harder to discriminate from each other at a glance than
sets of 1, 2 and 3 are, but that they can identify by
counting. In Carey’s words ‘The child ascertains the
meaning of 'two' from the resources that underlie
natural language quantifiers, and from the system of
parallel individuation, whereas she comes to know the
meaning of 'five' through the bootstrapping process –
i.e., that 'five' means one more than four, which is one
more than three – by integrating representations of
natural language quantifiers with the external serial
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ordered count list’. Carey called this new understanding
‘enriched parallel individuation’ (Carey, 2004; p. 65). 

Carey’s main evidence for parallel individuation and
enriched parallel individuation came from studies in
which she used a task, originally developed by Wynn,
called ‘Give – a number’. In this, an experimenter asks
the child to give her a certain number of objects
from a set of objects in front of them: ‘Could you
take two elephants out of the bowl and place them
on the table?’ Children sometimes put out the
number asked for and sometimes just grab objects
apparently randomly. Using this task Carey showed
that different three-, four- and five-year-old children
can be classified quite convincingly as ‘one-’ ‘two-’ or
‘three-knowers’ or as ‘counting-principle-knowers’.
The one-knowers do well when asked to provide
one object but not when asked the other numbers
while the two- and three-knowers can respectively
provide up to two and three objects successfully. 
The ‘counting-principle-knowers’ in contrast count
quantities above three or four. 

The evidence for the existence of these three
groups certainly supports Carey’s interesting idea 
of a radical developmental change from ‘knowing’
some small quantities to understanding that the
number system can be extended to other numbers
in the count list. The value of her work is that it
shows developmental changes in children’s learning
about the counting system. These had been by-
passed both by Piaget and his colleagues because
their theory was about the underlying logic needed
for this learning and not about counting itself, and
also by Gelman, because her theory about counting
principles was about innate or rapidly acquired
structures and not about development. However,
Carey’s explanation of children’s counting in terms
of enriched parallel individuation suffers the
limitation that we have mentioned already: it has 
no proper measure of children’s understanding of
cardinality in its full sense. Just knowing that the last
number that you counted is the number of the set
is not enough. 

The third way in which children learn number,
according to Carey’s theory, is through a system
which she called ‘set-based quantification’: this is
heavily dependent on language and particularly on
words like ‘a’ and ‘some’ that are called ‘quantifiers’.
Thus far the implications of this third hypothesised
system for education are not fully worked out, and
we shall not discuss it further. 

Carey’s theory has been subjected to much criticism
for the role that it attributes to induction or analogy
in the use of the ‘next’ principle and to language.
Gelman and Butterworth (2005), for example, argue
that groups that have very restricted number
language still show understanding of larger quantities;
their number knowledge is not restricted to small
numerosities as suggested in Carey’s theory. Rips,
Asmuth and Bloomfield (2006; 2008) address it
more from a theoretical standpoint and argue that
the bootstrapping hypothesis presupposes the very
knowledge of number that it attempts to explain.
They suggest that, in order to apply the ‘next
number’ principle, children would have to know
already that 1 is a set included in 2, 2 in 3, and 3 in 4.
If they already know this, then they do not need to
use the ‘next number’ principle to learn about what
number words mean.

Which of these approaches is right? We do not think
that there is a simple answer. If you hold, as we do,
that understanding number is about understanding 
an ordered set of symbols that represent quantitative
relations, Piaget’s approach definitely has the edge.
Both Gelman’s and Carey’s theory only address the
question of how children give meaning to number
words: neither entertains the idea that numbers
represent quantities and relations between quantities,
and that it is necessary for children to understand
this system of relations as well as the fact that the
word ‘five’ represents a set with 5 items in order to
learn mathematics. Their research did nothing to dent
Piaget’s view that children of five years and six years
are still learning about very basic relations between
quantities, sometimes quite slowly.

Summary

1 Piaget’s studies of learning about number
concentrated on children’s ability to reason
logically about quantitative relations, and bypassed
their acquisition of the counting system.

2 In contrast many current theories concentrate 
on children learning to count, and omit children’s
reasoning about quantitative relations. The most
notable omission in these theories is the question
of children’s understanding of cardinality.

3 Gelman’s studies of children’s counting,
nevertheless, did establish that even very young
children systematically obey some basic counting
principles when they do count.
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Ordinal number 

Numbers, as we have noted, come in a fixed order,
and this order represents a quantitative series.
Numbers are arranged in an ascending scale: 2 is
more than 1 and 3 more than 2 and so on. Also the
next number in the scale is always 1 more than the
number that precedes it. Ordinal numbers indicate
the position of a quantity in a series.

Piaget developed much the same argument about
ordinal number as about cardinal number. He claimed
that children learn to count, and therefore to
produce numbers in the right fixed order, long before
they understand that this order represents an ordinal
series. This claim about children’s difficulties with
ordinality was based on his experiments on ‘seriation’
and also on ‘transitivity’.

In his ‘seriation’ experiments, Piaget and his colleagues
(Piaget, 1952) showed children a set of sticks all
different in length and arranged in order from
smallest to largest, and then jumbled them up and
asked the child to re-order them in the same way.
However, the children were asked to do so not by
constructing the visual display all at once, which they
would be able to do perceptually and by trial-and-
error, but by giving the sticks to the experimenter
one by one, in the order that they think they should
be placed. 

This is a surprisingly difficult task for young children
and, at the age range that we are considering here
(five- to six-years), children tend to form groups of
ordered sticks instead of creating a single ordered
series. Even when they do manage to put the sticks
into a proper series, they tend then to fail an
additional test, which Piaget considered to be the
acid test of ordinal understanding: this was to insert
another stick which he then gave them into its
correct place in the already created series, which was
now visible. These difficulties, which are highly reliable
and have never been refuted or explained away, are
certainly important, but they may not be true of
number. Children’s reactions to number series may
well be different precisely because of the extensive
practice that they have with producing numbers in 
a fixed order.

Recently, however, Brannon (2002) made the striking
claim that even one-year-old-children understand
ordinal number relations. The most direct evidence
that Brannon offered for this claim was a study in
which she showed the infant sequences of three

cards, each of which depicted a different number of
squares. Each three-card sequence constituted either
an increasing or a decreasing series. In some
sequences the number of squares increased from
card to card e.g. 2, 4, 8 and 3, 6, 12: in others the
numbers decreased e.g. 16, 8, 4. 

Brannon’s results suggested that 11-month-old infants
could discriminate the two kinds of sequence (after
seeing several increasing sequences they were more
interested in looking at a decreasing than at yet
another increasing sequence, and vice versa), and 
she concluded that even at this young age children
have some understanding of seriation. 

However, her task was a very weak test of the
understanding of ordinality. It probably shows that
children of this age are to some extent aware of the
relations ‘more’ and ‘less’, but it does not establish that
the children were acting on the relation between all
three numbers in each sequence. 

The point here is that in order to understand
ordinality the child must be able to co-ordinate 
a set of ‘more’ and ‘less’ relations. This means
understanding that b is smaller than a and at the
same time larger than c in an a >b > c series. Piaget
was happy to accept that even very young children
can see quite clearly that b is smaller than a and at
another time that it is larger than c, but he claimed
that in order to form a series children have to
understand that intermediary quantities like b are
simultaneously larger than some values and smaller
than others. Of course, Brannon did not show
whether the young children in her study could or
could not grasp these two-way relations.

Piaget’s (1921) most direct evidence for children’s
difficulties with two-way relations came from another
kind of task – the transitivity task. The relations
between quantities in any ordinal series are transitive.
If A > B and B > C, then it follows that A > C, and
one can draw this logical conclusion without ever
directly comparing A with C. This applies to number
as well: since 8 is more than 4 and 4 more than 2, 8 is
more than 2. 

Piaget claimed that children below the age of roughly
eight years are unable to make these inferences
because they find it difficult to understand that B 
can be simultaneously smaller than one quantity (A) 
and larger than another (C). In his experiments on
transitivity Piaget did find that children very rarely
made the indirect inference between A and C on the
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basis of being shown that A > C and B > C, but this
was not very strong evidence for his hypothesis
because he failed to check the possibility that the
children failed to make the inference because they
had forgotten the premises – a reason which has
nothing directly to do with logic or with reasoning. 

Subsequent studies, in which care was taken to
check how well the children remembered the
premises at the time that they were required to
make the A > C inference (Bryant and Trabasso,
1971; Bryant and Kopytynska, 1976 ; Trabasso, 1977)
consistently showed that children of five years or
older do make the inference successfully, provided
that they remember the relevant premises correctly.
Young children’s success in these tasks throws some
doubt on Piaget’s claim that they do not understand
ordinal quantitative relations, but by and large there
is still a host of unanswered questions about
children’s grasp of ordinality. We shall return to 
the issue of transitivity in the section on Space 
and Geometry.

Above all we need a comprehensive set of seriation
and transitivity experiments in which the quantities
are numbers (discontinuous quantities), and not
continuous quantities like the rods of different lengths
that have been the staple diet of previous work on
these subjects.

Summary

1 The count list is arranged in order of the magnitude
of the quantities represented by the numbers. The
relations between numbers in this series are
transitive: if A > B and B > C, then A > C.

2 Piaget argued that young children find ordinal
relations, as well as cardinal relations, difficult to
understand. He attributed these difficulties to 
an inability, on the part of young children, to
understand that, in an A > B > C series, B is
simultaneously smaller than A and larger than B.

3 Piaget’s evidence for this claim came from studies
of seriation and transitivity. The difficulties that
children have in the seriation experiment, in which
they have to construct an ordered series of sticks,
are surprising and very striking.

4 However, the criterion for constructing the series
in the seriation experiment (different lengths of
some sticks) cannot be applied by counting.

Therefore, seriation studies do not deal directly
with children’s understanding of natural number.
The question of the seriation of number is still 
an open one.

Cardinality, additive reasoning and
extensive quantities

So far we have discussed how children give meaning
to number and how easy or difficult it is for them to
make connections between what they understand
about quantity and the numbers that they learn
when they begin to count. Now we turn to another
aspect of cardinal number, its connection with
addition and subtraction – or, more generally, with
additive reasoning. There are undeniable connections
between the concept of cardinality and additive
reasoning and we shall explore them in this section,
which is about the additive composition of number,
and in the subsequent section, which is about the
inverse relations between addition and subtraction. 

Piaget (1952) included in his definition of children’s
understanding of number their realisation that a
quantity (and its numerical representation) is only
changed by addition or subtraction, not by other
operations such as spreading the elements or
bunching them together. This definition, he indicated,
is valid for the domain of extensive quantities, which
are measured by the addition of units because the
whole is the sum of the parts. If the quantity is made
of discrete elements (e.g. a set of coins), the task of
measuring it and assigning a number to it is easy: all
the children have to do is to count. If the quantity is
continuous (e.g. a ribbon), the task of measuring it is
more difficult: normally a conventional unit would be
applied to the quantity and the number that
represents the quantity is the number of iterations of
these units. Extensive quantities differ from intensive
quantities, which are measured by the ratio between
two other quantities. For example, the concentration
of a juice is measured by the ratio between amount
of concentrate and amount of water used to make
the juice. These quantities are considered in Paper 4.

His studies of children’s understanding of the
conservation of quantities have been criticised on
methodological grounds (e.g. Donaldson, 1978;
Light, Buckingham and Robbins, 1979; Samuel and
Bryant, 1984) but, so far as we know, his idea that
children must realise that extensive quantities
change either by addition or by subtraction has 
not been challenged. 
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Piaget (1952) also made the reasonable suggestion
that you cannot understand what ‘five’ is unless you
also know that it is composed of numbers smaller
than it. Any set of five items contains a sub-set of 4
items and another sub-set of 1, or one sub-set of 3
and another of 2. A combination of or, in other
words, an addition of each of these pairs of sets
produces a set of five. This is called the additive
composition of number, which is an important aspect
of the understanding of relations between numbers. 

Piaget used the idea of class-inclusion to describe this
aspect of number; others (e.g. Resnick and Ford,
1981) have called it part-whole relations. Piaget’s
studies consisted in asking children about the
quantitative relations between classes, one of which
was included in the other. For example, in some tasks
children were asked to compare the number of dogs
with the number of animals in sets which included
other animals, such as cats. For an adult, there is no
need to know the actual number of dogs, cats, and
animals in such a task: there will be always more
animals than dogs because the class of dogs is
included in the class of animals. However, some
children aged four- to six-years do not necessarily
think like adults: if the number of dogs is quite a bit
larger than the number of cats, the children might
answer that there are more dogs than animals.
According to Piaget, this answer which to an adult
seems entirely illogical, was the result of the children’s
difficulties with thinking of the class of dogs as
simultaneously included in the class of animals and
excluded from it for comparison purposes. Once they
mentally excluded the dogs from the set of animals,
they could no longer think of the dogs as part of the
set of animals: they would then be unable to focus on
the fact that the whole (the overall class, animals) is
always larger than one part (the included class, dogs).

Piaget and his colleagues (Piaget, 1952; Inhelder,
Sinclair and Bovet, 1974) did use a number of
conditions to try to eliminate alternative hypotheses
for children’s difficulties. For example, they asked the
children whether in the whole world there would be
more dogs or more animals. This question used the
same linguistic format but could be answered without
an understanding of the necessary relation between a
part and a whole: the children could think that there
are many types of animals in the world and therefore
there say that there are more animals than dogs.
Children are indeed more successful in answering this
question than the class-inclusion one. Another
manipulation Piaget and his colleagues used was to
ask the children to circle with a string the dogs and

the animals: this had no effect on the children’s
performance, and they continued to exclude the 
dogs mentally from the class of animals. The only
manipulation that helped the children was to ask the
children to first think of the set of animals without
separating out the dogs, then replace the dogs with
visual representations that marked their inclusion in
the class of animals, while the dogs were set in a
separate class: the children were then able to create a
simultaneous representation of the dogs included in
the whole and as a separate part and answer the
question correctly. After having answered the question
in this situation, some children went on to answer it
correctly when other class-inclusion problems were
presented (for example, about flowers and roses)
without the support of the extra visual signs.

The Piagetian experiments on class-inclusion have
been criticised on many grounds: for example, it has
been argued that the question the children are asked
is an anomalous question because it uses disjunction
(dogs or animals) when something can be
simultaneously a dog and an animal (Donaldson,
1978; Markman, 1979). However, Piaget’s hypothesis
that part-whole relations are an important aspect of
number understanding has not been challenged. As
discussed in the previous sections, it has been argued
(e.g. by Rips, Asmuth and Bloomfield, 2008) that it is
most unlikely that a child will understand the
ordinality of number until she has grasped the
connection between the next number and the plus-
one compositions: i.e. that a set of 5 items contains a
set of 4 items plus a set of 1, and a set of 4 items is
composed of a set of 3 plus 1, and so on. 

For exactly the same reasons, the understanding of
additive composition of number is essential in any
comparison between two numbers. To judge the
difference, for example, between 7 and 4, something
which as we shall see is not always easy for young
children, you need to know that 7 is composed of 4
and 3, which means that 7 is 3 greater than 4.

Of course, even very young children have a great deal
of informal experience of quantities increasing or
decreasing as a result of additions and subtractions.
There is good evidence that pre-schoolers do
understand that additions increase and subtractions
decrease quantities (Brush, 1978; Cooper, 1984; Klein,
1984) but this does not mean that they realise that
the only changes that affect quantity are addition and
subtraction. It is possible that their understanding of
these changes is qualitative in the sense that it lacks
precision. We can take as an example what happens
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when young children are shown two sets that are
unequal and are arranged in one-to-one
correspondence, as in Figure 2.1, so that it is possible
for the children to see the size of the difference (say
one set has 10 objects and the other 7). The
experimenter proposes to add to the smaller set
fewer items than the difference (i.e. she proposes to
add 2 to the set with 7). Some preschoolers judge
that the set to which elements are added will become
larger than the other. Others think that it is now the
same as the other set. It is only at about six- or seven-
years that children actually take into account the
precise difference between the sets in order to know
whether they will be the same or not after the
addition of items to the smaller set (Klein, 1984;
Blevins-Knabe, Cooper, Mace and Starkey, 1987). 

The basic importance of the additive composition of
number means that learning to count and learning to
add and subtract are not necessarily two successive
and separate intellectual steps, as common sense
might suggest. At first glance, it seems quite a
plausible suggestion that children must understand
number and know about the counting system in
order to do any arithmetic, like adding and
subtracting. It seems simply impossible that they
could add 6 and 4 or subtract 4 from 6 without
knowing what 6 and 4 mean. However, we have now
seen that this link between counting and arithmetic
must work in the opposite direction as well, because
it is also impossible that children could know what 6
or 4 or any other number mean, or anything about
the relations between these numbers, without also
understanding something about the additive
composition of number.

Given its obvious importance, there is remarkably little
research on children’s grasp of additive composition of
number. The most relevant information, though it is
somewhat indirect, comes from the well-known
developmental change from ‘counting-all’ to ‘counting-
on’. As we have seen, five-year-old children generally
know how to count the number of items in a set
within the constraints of one-to-one counting.

However, their counting is not always economic. If, for
example, they are given a set of 7 items which they
duly count and then 6 further items are added to this
set and the children are asked about the total number
in the newly increased set, they tend to count all the
13 items in front of them including the subset that
they counted before. Such observations have been
replicated many times (e.g. Fuson, 1983; Nunes and
Bryant, 1996; Wright, 1994) and have given origin to 
a widely used analysis of children’s progress in
understanding cardinality (e.g. Steffe, Cobb and von
Glaserfeld, 1988; Steffe, Thompson and Richards, 1982;
Steffe, von Glasersfeld, Richards and Cobb, 1983). This
counting of all the items is not wrong, of course, but
the repeated counting of the initial items is
unnecessary. The children could just as well and much
more efficiently have counted on from the initial set
(not ‘1, 2, 3,…..13’ but ‘8, 9, 10…..13’). 

According to Vergnaud (2008), the explanation for
children’s uneconomical behaviour is conceptual: as
referred in the previous section, he argues that their
understanding of number may be simply ordinal
(i.e. what they know is that the last number word
represents the set) and so they cannot add because
ordinal numbers cannot be added. They can, however,
count a new, larger set, and give to it the label of the
last number word used in counting.

Studies of young children’s reactions to the kind 
of situation that we have just described have
consistently produced two clear results. The first is
that young children of around the age of five years
consistently count all the items. The second is that
between the ages of five and seven years, there is a
definite developmental shift from counting-all to
counting-on: as children grow older they begin to
adopt the more economic strategy of counting-on
from the previously counted subset. This new strategy
is a definite sign of children’s eventual recognition of
the additive composition of the new set: they appear
to understand that the total number of the new set
will contain the original 7 items plus the newly added
6 items. The fact that younger children stick to
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counting-all does not establish that they cannot
understand the additive composition of the new 
set (as is often the case, it is a great deal easier to
establish that children do understand some principle
than that they do not). However, the developmental
change that we have just described does suggest an
improvement in children’s understanding of additive
relations between numbers during their first two
years at school.

The study of the connections that children make, or
fail to make, between understanding number, additive
composition and additive reasoning plainly supports
the Piagetian thesis that children give meaning to
numbers by establishing relations between quantities
though their schemes of action. They do need to
understand that addition increases and subtraction
decreases the number of items in a set. This forms a
foundation for their understanding of the precise way
in which the number changes: adding 1 to set a
creates a number that is equal to a + 1. This number
can be seen as a whole that includes the parts a and
1. Instead of relying on the ‘next number’ induction or
analogy, children use addition and the logic of part-
whole to understand numbers.

Summary

1 In order to understand number as an ordinal
series, children have to realise that numbers are
composed of combinations of smaller numbers.

2 This realisation stems from their progressive
understanding of how addition affects number: at
first they understand that addition increases the
number of items in a set without being precise
about the extent of this increase but, as they co-
ordinate their knowledge of addition with their
understanding of part-whole relations, they can
also become more precise about additive
composition.

3 Young children’s tendency to count-all rather than
to count-on suggests either that they do not
understand the additive composition of number 
or that their grasp of additive composition is too
weak for them to take advantage of it.

4 Their difficulties suggest that children should 
be taught about additive composition, and
therefore about addition, as they learn about 
the counting system.

The decade structure and additive
composition   

Additive composition and the understanding of
number and counting are linked for another
important reason. The power and the effectiveness of
counting rest largely on the invention of base systems,
and these systems depend on additive composition.
The base-10 system, which is now widespread, frees
us from having to remember long strings of numbers,
as indeed any base system does. In English, once we
know the simple rules for the decimal system and
remember the number words for 1 to 20, for the
decades, and then for a hundred, a thousand and a
million, we can generate most of the natural numbers
that we will ever need to produce with very little
effort or difficulty. The link between understanding
additive composition and adopting a base system is
quite obvious. Base systems rest on the additive
composition of number and the decade structure is in
effect a clear reminder that ‘fourteen’ is a combination
of 10 and 4, and ‘thirty-five’ of three 10s and 5.

Additive composition is the basic concept that
underlies any counting system with a base, oral or
written. This includes of course the Hindu-Arabic
place-value system that we use to write numbers. For
example, the decimal system explicitly represents the
fact that all the numbers between 10 and a 100 must
be a combination of one or more decades and a
number less than 10: 17 is a combination of 10 and 7
and 23 a combination of two 10s and 3. The digits
express the additive composition of any number
from 10 on: e.g. in 23, 2 represents two 10s which
are added to 3, which represents three units.

Additive composition is also at the root of our ability
to count money using coins and notes of different
denominations. When we have, for example, one 10p
and five 1p coins, we can only count the 10p and the
1p coins together if we understand about additive
composition. 

The data from the ‘shop task’, a test devised by Nunes
and Schliemann (1990), suggest that initially children
find it hard to combine denominations in this way. In
the shop task children are shown a set of toys in a
‘shop’, are given some (real or artificial) money and are
asked to choose a toy that they would like to buy.
Then the experimenter asks them to pay a certain
sum for their choice. Sometimes the child can pay for
this with coins of one denomination only: for example,
the experimenter charges a child 15p for a toy car and
the child has that number of pence to make the
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purchase or the charge is 30p and the child can pay
with three 10p coins. In other trials, the child can pay
only by combining denominations: the car costs 15p
and the child, having fewer 1p coins than that, must 
pay with the combination of a 10p and five 1p coins.
Although the values that the children are asked to pay
when they use only 10p coins are larger than those
they pay when using combinations of different values,
children can count in tens (ten, twenty, thirty etc.)
using simple correspondences between the counting
labels and the coins. This task does not require
understanding additive composition. So Nunes and
Schliemann predicted that the mixed denomination
trials would be significantly more difficult than the
other trials in the task. They found that the mixed
denominations trials were indeed much harder for the
children than the single denomination trials and that
there was a marked improvement between the ages
of five and seven years in children’s performance in the
combined denomination trials. This work was originally
carried out in Brazil and the results have been
confirmed in other research in the United Kingdom
(Krebs, Squire and Bryant, 2003; Nunes et al., 2007).

A fascinating observation in this task is that children
don’t change from being unable to carry out the
additive composition to counting on from ten as they
add 1p coins to the money they are counting. The
show the same count-all behaviour that they show
when they have a set of objects and more object are
added to the set. However, as there are no visible 1p
coins within the 10p, they point to the 10p ten times
as they count, or they lift up 10 fingers and say ‘ten’,
and only then go on to count ‘eleven, twelve, thirteen
etc.’ This repeated pointing to count invisible objects
has been documented also by Steffe and his colleagues
(e.g. Steffe, von Glasersfeld, Richards and Cobb, 1983),
who interpreted it, as we do, as a significant step in
coordinating counting with a more mature
understanding of cardinality.

In a recent training study (Nunes et al., 2007), we
encouraged children who did not succeed in the
shop-task to use the transition behaviour we had
observed, and asked them to show us ten with their
fingers; we then pointed to their fingers and the 10p
coin and asked the children to say how much there
was in each display; finally, we encouraged them to go
on and count the money. Our study showed that
some children seemed to be able to grasp the idea
of additive composition quite quickly after this
demonstration and others took some time to do 
so, but all children benefited significantly from brief
training sessions using this procedure.

Since children appear to be finding out about the
additive nature of the base-10 system and at the same
time (their first two years at school) about the additive
composition of number in general, one can reasonably
ask what the connection between these two is. One
possibility is that children must gain a full understanding
of the additive composition of number before they can
understand the decade structure. Another is that
instruction about the decade structure is children’s first
entrée to additive composition. First they learn that 12
is a combination of 10 and 2 and then they extend this
knowledge to other combinations (e.g. 12 is also a
combination of 8 and 4). The results of a recent study
by Krebs, Squire and Bryant (2003), in which the same
children were given the shop task and counting
all/counting on tasks, favour the second hypothesis. All
the children who consistently counted on (the more
economic strategy) also did well on the shop task, but
there were some children who scored well in the
shop task but nevertheless tended not to count on.
However, no child scored well in the counting all/on
task but poorly in the shop task. This pattern suggests
that the cues present in the language help children
learn about the decimal system first and then extend
their new understanding of additive composition to
combinations that do not involve decades.

Summary

1 The decimal system is a good example of an
invented and culturally transmitted mathematical
tool. It enhances our power to calculate and frees
us from having to remember extended sequences
of number.

2 Once we know the rules for the decade system
and the names of the different classes and orders
(tens, hundreds, thousands etc.), we can use the
system to count by generating numbers ourselves. 

3 However, the system also makes some quite
difficult intellectual demands. Children find it hard
at first to combine different denominations, such as
tens and ones.

4 Teachers should be aware that the ability to
combine denominations rests on a thorough grasp
of additive composition.  

5 There is some evidence that experience with the
structure of the decimal system may enhances
children’s understanding of additive composition.
There is also evidence that it is possible to use
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money to provoke children’s progress in
understanding additive composition.

The inverse relation between
addition and subtraction

The research we have considered so far suggests
that by the age of six or seven children understand
quite a lot about number : they understand
equivalence well enough to know that if two sets
are equivalent they can infer the number that
describes one by counting the other ; they
understand that addition and subtraction are the
operations that change the number in a set; they
understand additive composition and what must 
be added to one set to make it equivalent to the
other ; they understand that they can count on if
you add more elements to a set; and they
understand about ordinal number and can make
transitive inferences. However, there is an insight
about how addition and subtraction affect the
number of elements in a set that we still need to
consider. This is the insight that addition is the
inverse of subtraction and vice versa, and thus that
equal additions and subtractions cancel each other
out: 27 + 19 – 19 = 27 and 27 – 19 + 19 = 27. 

It is easy to see that one cannot understand either
addition or subtraction or even number fully without
also knowing about the inverse relation of each of
these operations to the other. It is absolutely essential
when adding and subtracting to understand that
these are reversible actions. Otherwise one will not
understand that one can move along the number
scale in two opposite directions – up and down.

The understanding of any inverse relation should,
according to Piaget (1952), be particularly hard for
young children, since in his theory young children are
not able to carry out ‘reversible’ thought processes.
Children in the five- to eight-year range do not see
that if 4 + 8 = 12, therefore 12 – 8 = 4 because
they do not realise that the original addition (+8) is
cancelled out by the inverse subtraction (–8). This
claim is a central part of Piaget’s theory about
children’s arithmetical learning, but he never tested it
directly, even though it would have been quite easy
to do so. 

In one of his last publications, Piaget and Moreau
(2001) did report an ingenious, but rather too
complicated, study of the inverse relations between
addition and subtraction and also between

multiplication and division. They asked children,
aged from six- to ten-years, to choose a number
but not to tell them what this was. Then they asked
the child first to add 3 to this number, next to
double the sum and then to add 5 to the result of
the multiplication. Next, they asked the child what
the result was, and went on to tell him or her what
was the number that s/he chose to start with.
Finally the experimenters asked each child to
explain how they had managed to work out what
this initial number was.  

Piaget and Moreau reported that this was a difficult
task. The youngest children in the sample did not
understand that the experimenters had performed
the inverse operations, subtracting where the child
had added and dividing where s/he had multiplied.
The older children did show some understanding
that this was how the experimenters reached the
right number, but did not understand that the order
of the inverse operations was important. The
experimenters accounted for the younger children’s
difficulties by arguing that these children had failed to
understand the adult’s use of inversion (equal
additions and subtractions and equal multiplications
and divisions) because they did not understand the
principle of inversion. 

This was a highly original study but Piaget and
Moreau’s conclusions from it can be questioned. One
alternative explanation for the children’s difficulties is
that they may perfectly have understood the inverse
relations between the different operations, but they
may still not have been able to work out how the
adult used them to solve the problem. The children,
also, had to deal with two kinds of inversion
(addition-subtraction and multiplication-division) in
order to explain the adult’s correct solution, and 
so their frequent failures to produce a coherent
explanation may have been due to their not knowing
about one of the inverse relations, e.g. between
multiplication and division, even though they were
completely at home with the other, e.g. between
addition and subtraction.

Nevertheless, some following studies seemed to
confirm that young school-children are often
unaware aware that inverse transformations cancel
each other out in a + b – b sums. In two studies
(Bisanz and Lefevre, 1990; Stern, 1992), the vast
majority of the younger children did no better with
inverse a + b – b sums in which they could take
advantage of the inversion principle than with control
a + b – c sums where this was not possible. For
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example, Stern reported that only 13% of the seven-
year-old children and 48% of the nine-year-olds in her
study used the inversion principle consistently, when
some of the problems that they were given were 
a + b – b sums and others a + b – c sums. 

This overall difficulty was confirmed in a further study
by Siegler and Stern (1998), who gave eight-year-old
German children inversion problems in eight
successive sessions. Their aim was to see whether 
the children improved in their use of the inversion
principle to solve problems. The children were also
exposed to other traditional scholastic problems 
(e.g. a + b – c), which could not be solved by using
the inverse principle. In the last of the eight sessions,
Siegler and Stern also gave the children control
problems, which involved sequences such as a + b +
b, so that the inversion principle was not appropriate
for solution. The experimenters recorded how well
children distinguished the problems that could be
solved through the inversion principle from those
that had to be solved in some other way.

The study showed that the children who were given
lots of inversion problems in the first seven sessions
tended to get better at solving these problems over
these sessions, but in the final session in which the
children were given control as well as inversion
problems they often, quite inappropriately,
overgeneralised the inversion strategy to the control
sums: they would give a as the answer in a + b + b
control problems as well as in inverse a + b – b
problems. Their relatively good performance with 
the inversion problems in the previous sessions,
therefore, was probably not the result of an
increasing understanding of inversion. They seem to
have learned some lower-level and totally inadequate
strategy, such as ‘if the first number (a) is followed by
another number (b) which is then repeated, the
answer must be a’.

The pervasive failures of the younger school children
in these studies to take advantage of the inversion
principle certainly suggest that it is extremely difficult
for them to understand and to learn how to use this
principle, as Piaget first suggested. However, in all
these tasks the problems were presented either
verbally or in written form. Other studies, which
employed sets of physical objects, paint a different
picture. (Bryant, Christie and Rendu, 1999;
Rasmussen, Ho and Bisanz, 2003). For example,
Bryant et al. used sets of bricks to present five- 
and six-year-old children with a + b – b inversion
problems and a + a – b control problems. In this

particular task young children did a great deal better
with the inversion problems than with the control
problems, which is good evidence that they were
using the inversion principle when they could. In the
same study the children were also given equivalent
inversion and control problems as verbal sums (27 +
14 – 14): they used the inversion principle much less
often in this task than in the task with bricks, a result
which resonates well with Hughes’ (1981) discovery
that pre-school children are much more successful at
working out the results of additions and subtractions
in problems that involve concrete objects than in
abstract, verbal sums.

The fact that young children are readier to use the
inversion principle in concrete than in abstract
problems suggests that they may learn about
inversion initially through their actions with concrete
material. Bryant et al. raised this possibility, and they
also made a distinction between two levels in the
understanding of the inverse relation between
addition and subtraction. One is the level of identity:
when identical stuff is added to and then subtracted
from an object, the final state of this object is the
same as the initial state. Young children have many
informal experiences of inverse transformations at
this level. A child gets his shirt dirty (mud is added to
it) and then it is cleaned (mud is subtracted) and the
shirt is as it was before. At meal-times various objects
(knives, forks etc.) are put on the dining room table
and then subtracted when the meal is over; the table
top is as empty after the meal, as it was before. 

Note that understanding the inversion of identity
may not involve quantity. The child can understand
that, if the same (or identical) stuff is added and then
removed, the status quo is restored without having to
know anything about the quantity of the stuff.

The other possible level is the understanding of the
inversion of quantity. If I have 10 sweets and someone
gives me 3 more and then I eat 3, I have the same
number left as at the start, and it doesn’t matter
whether the 3 sweets that I ate are the same 3
sweets as were given to me or different ones.
Provided that I eat the same number as I was given,
the quantitative status quo is now restored.

In a second study, again using toy bricks, Bryant et al.
established that five- and six-year-old children found
problems, called identity problems, in which exactly
the same bricks were added to and then subtracted
from the initial set (or vice versa), easier than other
problems, called quantity problems, in which the
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same number of bricks was added and then
subtracted (or vice versa), but the actual bricks
subtracted were quite different from the bricks that
had been added before. Bryant et al. also found a
greater improvement with age in children’s
performance in quantity inversion problems than in
identity inversion problems. These results point to a
developmental hypothesis: children’s understanding
of the inversion of identity precedes, and may
provide the basis for, their understanding of the
inversion of quantity. First they understand that
adding and subtracting the same stuff restores the
physical status quo. Then they extend this knowledge
to quantity, realising now that adding and subtracting
the same quantity restores the quantitative status
quo, whether the addend and subtrahend are the
same stuff or not. 

However, the causal determinants of learning about
inversion might vary between children. Certainly
there are many reports of substantial individual
differences within the same age groups in the
understanding of the inversion principle. Many of the
seven- and nine-year-olds in Bisanz and LeFevre's
study (1990) used the inversion principle to solve
appropriate problems but over half of them did not.
Over half of the ten-year-olds tested in Stern’s
(1992) original study did take advantage of the
principle, but around 40% seemed unable to do so.

Recent work by Gilmore (Gilmore and Bryant, 2006;
Gilmore and Papadatou-Pastou, 2008) suggests that
the underlying pattern of these individual differences
might take a more complex and also a more
interesting form than just a dichotomy between
those who do and those who do not understand
the inversion principle. She used cluster analysis 
with samples of six- to eight-year-olds who had 
been given inversion and control problems (again
the control problems had to be solved through
calculation), and consistently found three groups 
of children. One group appeared to have a clear
understanding of inversion and good calculation skills
as well; these children did better in the inversion
than in the control problems, but their scores in the
control problems were also relatively high. Another
group consisted of children who seemed to have
little understanding of inversion and whose
calculation skills were weak as well. The remaining
group of children had a good understanding of
inversion, but their calculation skills were weak: in
other words, these children did better in the
inversion than in the control problems, but their
scores in the control problems were particularly low. 

Thus, the discrepancy between knowing about
inversion and knowing how to calculate went one
way but not the other. Gilmore identified a group of
children who could use the inversion principle and
yet did not calculate well, but she found no evidence
at all for the existence a group of children who
could calculate well but were unable to use the
inversion principle. Children, therefore, do not have
to be good at adding and subtracting in order to
understand the relation between these two
operations. On the contrary, they may need to
understand the inverse relation before they can
learn to add and subtract efficiently.

How can knowledge of inversion facilitate children’s
ability to calculate? Our answer to this is only
hypothetical at this stage, but it is worth examining
here. If children understand well the principle of
inversion, they may use their knowledge of number
facts more flexibly, and thus succeed in more
problems where calculation is required than children
who cannot use their knowledge flexibly. For
example, if they know that 9 + 7 = 16 and
understand inversion, they can use this knowledge 
to answer two more questions: 16 – 9 = ? and 
16 – 7 = ? Similarly, the use of ‘indirect addition’ to
solve difficult subtraction problems depends on
knowing and using the inverse relation between
addition and subtraction. One must understand
inversion to be able to see, for example, that an easy
way to solve the subtraction 42 – 39 is to convert it
into an addition: the child can count up from 39 to
42, find that this is 3, and will then know that 42 – 39
must equal 3. In our view, no one could reason this
way without also understanding the inverse relation
between addition and subtraction.

If this hypothesis is correct, it has fascinating
educational implications. Children spend much time
at home and in school practising number facts,
perhaps trying to memorise them as if they were
independent of each other. However, a mixture of
learning about number facts and about mathematical
principles that help them relate one number fact to
others, such as inversion, could provide them with
more flexible knowledge as well as more interesting
learning experiences. So far as we know, there is no
direct evidence of how instruction that focuses both
on number facts and principles works in comparison
with instruction that focuses only on number facts.
However, there is some preliminary evidence on 
the role of inversion in facilitating children’s
understanding of the relation between the 
sum a + b = c and c – b (or – a) = ?
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Some researchers have called this ‘the complement’
question and analysed its difficulty in a quite direct
way by telling children first that a + b = c and then
immediately asking them the c – a = ? question
(Baroody, Ginsburg and Waxman, 1983; Baroody,
1999; Baroody and Tiilikainen, 2003; Resnick, 1983;
Putnam, de Bettencourt and Leinhardt, 1990). These
studies established that the step from the first to the
second sum is extremely difficult for children in their
first two or three years at school, and most of them
fail to take it. Only by the age of about eight years do
a majority of children use the information from the
addition to solve the subtraction, and even at this age
many children continue to make mistakes. Would
they be able to do better if their understanding of
the inverse relation improved?

The study by Siegler and Stern (1998) described
earlier on, with eight-year-olds, seems to suggest that
it is not that easy to improve children’s understanding
of the inverse relation between addition and
subtraction: after solving over 100 inversion
problems, distributed over 7 days, the children did
very poorly in using it selectively; i.e. using it when it
was appropriate, and not using it when it was not
appropriate. However, the method that they used
had several characteristics, which may not have
facilitated learning. First, the problems were all
presented simply as numbers written on cards, with
no support of concrete materials or stories. Second,
the children were encouraged to answer correctly
and also quickly, if possible, but they did not receive
any feedback on whether they were correct. Finally,
they were asked to explain how they had solved the
problem, but if they indicated that they had used the
inverse relation to solve it, they were neither told
that this was a good idea nor asked to think more
about it if they had used it inappropriately. In brief, it
was not a teaching study.

Recently we completed two studies on teaching
children about the inverse relation between addition
and subtraction (Nunes, Bryant, Hallett, Bell and
Evans, 2008). Our aims were to test whether it is
possible to improve children’s understanding of the
inverse relation and to see whether they would
improve in solving the complement problem after
receiving instruction on inversion.

One of the studies was with eight-year-olds, i.e.
children of the same age as those who participated 
in the Siegler and Stern study. Our study was
considerably briefer, as it involved a pre-test, two
teaching sessions, and a post-test. In the pre-test the

children answered inverse problems (a + b – b),
control problems (a + b – c) and complement
problems (a + b = c; c – a/b = ?). During the training,
they only worked on inversion problems. So if the
taught groups improved significantly on the
complement problems, this would have to be a
consequence of realising the relevance of the 
inverse principle to this type of problem.

For the teaching phase, the children were randomly
assigned to one of three groups: a Control group, 
who only received practice in calculation; a Visual
Demonstration group and a Verbal Calculator group,
both receiving instruction on the inverse relation. The
form of the instruction varied between the two groups. 

The Visual Demonstration group was taught with the
support of concrete materials, and started with a
series of trials that took advantage of the identity
inversion. First the children counted the number 
of bricks in a row of Unifix bricks, which was
subsequently hidden under a cloth so that no
counting was possible after that. Next, the
experimenter added some bricks to the row and
subtracted others. The child was then asked how
many bricks were left under the cloth. The number of
bricks added and subtracted was either the same or
differed by one; this required the children to attend
during all trials, as the answer was not in all examples
the same number as before the additions and
subtractions, but they could still use the inverse
principle easily because the difference of one did not
make the task too different from an exact inversion
trial. When they had given their answer, they received
feedback and explained how they had found the
answer. If they had not used the inversion principle,
they were encouraged to think about it (e.g. How
many were added? How many were taken away?
Would the number be the same or different?). 

The Verbal Calculator group received the same
number of trials but no visual demonstration. After
they had provided their answer, they were encouraged
to repeat the trial verbally as they entered the
operations into a calculator and checked the answer.
Thus they would be saying, for example, ‘fourteen plus
eight minus eight is’ and looking at the answer.

As explained, we had three types of problems in 
the pre- and post-test: inversion, control and
complement problems, which were transfer problems
for our intervention group, as they had not learned
about these directly during the training. We did not
expect the groups to differ in the control trials, as the
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amount of experience they had between pre- 
and post-test was limited, but we expected the
experimental teaching groups to perform significantly
better than the Control group in the inversion and
transfer problems. 

The results were clear :

• Both taught groups made more progress than the
Control group from the pre-test to the post-test in
the inversion problems.

• The Visual Demonstration group made more
progress than the Control group in the transfer
problems; the Verbal Calculator group’s
improvement did not differ from the improvement
in the Control group in the transfer problems.

• The children’s performance did not improve
significantly in the control problems in any of 
the groups.

Thus with eight-year-olds both Visual and Verbal
methods can be used to promote children’s reflection
about the inverse relation between addition and
subtraction. Although the two methods did not differ
when directly compared to each other, they differed
when compared with the fixed-standard provided by
the control group: the Visual Demonstration method
was effective in promoting transfer from the types of
items used in the training to new types of items, of a
format not presented during the training, and the
Verbal method did not.

In our second teaching study, we worked with much
younger children, whose mean age was just five years.
We carried out the study using the same methods,
with a pre-test, two teaching sessions, and a post-test,
but this time all the children were taught using the
Visual Demonstration method. Because the children
were so young, we did not use complement problems
to assess transfer, but we included a delayed post-test,
given to the children about three weeks after they
had completed the training in order to see whether
the effects of the intervention, if any, would remain
significant at a later date without further instruction.

The intervention showed significant effects for the
children in one school but not for the children in the
other school; the effects persisted until the delayed
post-test was given. Although we cannot be certain,
we think that the difference between the schools 
was due to the fact that in the school where the
intervention did not have a significant effect we were

unable to find a quite room to work with the
children without interruptions and the children had
difficulty in concentrating. 

The main lesson from this second study was that it is
possible for this intervention to work with such young
children and for the effects to last without further
instruction, but it is not certain that it will do so.

Finally, we need to consider whether knowing about
inversion is really as important as we have claimed
here. Two studies support this claim. The first was by
Stern (2005). She established in a longitudinal study
that German children’s performance in inversion
tasks, which they solved in their second year at
school, significantly predicted their performance in an
algebra assessment given about 15 years later, when
they were 23 years old and studying in university. In
fact, the brief inversion task that she gave to the
children had a higher correlation with their
performance in the algebra test than the IQ test
given at about the same time as the inversion task.
Partialling out the effect of IQ from the correlation
between the inversion and the algebra tests did not
affect this predictive relation between the inversion
task and the algebra test. 

The second study was by our own team (Nunes et
al., 2007). It combined longitudinal and intervention
methods to test whether the relation between
reasoning principles and mathematics learning is a
causal one. The participants in the longitudinal study
were tested in their first year in school. In the second
year, they completed the mathematics achievement
tests administered by the teachers and designed
centrally in the United Kingdom. The gap between
our assessment and the mathematics achievement
test was about 14 months. One of the components
of our reasoning test was an assessment of children’s
understanding of the inverse relation between
addition and subtraction; the others were additive
composition (assessed by the shop task) and
correspondence (in particular, one-to-many
correspondence). We found that children’s
performance in the reasoning test significantly
predicted their mathematics achievement even after
controlling for age, working memory, knowledge of
mathematics at school entry, and general cognitive
ability. We did not report the specific connection
between the inversion problems and the children’s
mathematics achievement in the original paper, so we
report it here. We used a fixed-order regression
analysis so that the connection between the inversion
task and mathematics achievement could be
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considered after controlling for the children’s age,
general cognitive ability and working memory. The
inversion task remained a significant predictor of the
children’s mathematics achievement, and explained
12% extra variance. This is a really remarkable result:
6 inversion problems given about 14 months before
the mathematics achievement test made a significant
contribution to predicting children’s achievement
after such stringent controls.

Our study also included an intervention component.
We identified children who were underperforming in
the logical assessment for their age at the beginning
of their first year in school and created a control and
an intervention group. The control children received
no intervention and the intervention group received
instruction on the reasoning principles for one hour a
week for 12 weeks during the time their peers were
participating in mathematics lessons. So they had no
extra time on maths but specialised instruction on
reasoning principles. We then compared their
performance in the state-designed mathematics
achievement tests with that of the control group. The
intervention group significantly outperformed the
control group. The mean for the control group in the
mathematics assessment was at the 28th percentile
using English norms; the intervention group’s mean
was just above the 50th percentile, i.e. above the
mean. So a group of children who seemed at risk for
difficulties with mathematics caught up through this
intervention. In the intervention study it is not
possible to separate out the effect of inversion; the
children received instruction on three reasoning
principles that we considered of great importance as
a basis for their learning. It would be possible to carry
out separate studies of how each of the three
reasoning principles that we taught the children
affects their mathematics performance but we did
not consider this a desirable approach, as our view is
that each one of them is central to children’s
mathematics learning.

The combination of longitudinal and intervention
methods in the analysis of the causes of success and
difficulties in learning to read is an approach that was
extremely successful (Bradley and Bryant, 1983). 
The study by Nunes et al., (2007) shows that this
combination of methods can also be used
successfully in the analysis of how children learn
mathematics. However, three caveats are called for
here. First, the study involved relatively small samples:
a replication with a larger sample is highly
recommended. Second, it is our view that it is also
necessary to attempt to replicate the results of the

intervention in studies carried out in the classroom.
Experimental studies, such as ours, provide a proof of
existence: they show that it is possible to accomplish
something under controlled conditions. But they do
not show that it is possible to accomplish the same
results in the classroom. The step from the laboratory
to the classroom must be carefully considered (see
Nunes and Bryant, 2006, for a discussion of this
issue). Finally, it is clear to us that developmental
processes that describe children’s development when
they do not have any special educational needs (they
do not have brain deficiencies, for example, and have
hearing and sight within levels that grant them access
to information normally accessed by children) may
need further analysis when we want to understand
the development of children who do have special
educational needs. We exemplify here briefly the
situation of children with severe or profound hearing
loss. The vast majority of deaf children are born to
hearing parents (about 90%), who may not know
how to communicate with their children without
much additional learning. Mathematics learning
involves logical reasoning, as we have argued, and also
involves learning conventional representations for
numbers. Knowledge of numbers can be used to
accelerate and promote children’s reflections about
their schemes of action, and this takes place through
social interaction. Parents teach children a lot about
counting before they go to school (Schaeffer,
Eggleston and Scott, 1974; Young-Loveridge, 1989)
but the opportunities for these informal learning
experiences may be restricted for deaf children. They
would enter school with less knowledge of counting
and less understanding of the relations between
addition, subtraction, and number. This does not mean
that they have to develop their understanding of
numbers in a different way from hearing children, but
it does mean that they may need to learn in a much
more carefully planned environment so that their
learning opportunities are increased and appropriate
for their visual and language skills. In brief, there may
be special children whose mathematical development
requires special attention. Understanding their
development may or may not shed light on a more
general theory of mathematics learning.
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Summary

1 The inversion principle is an essential part of
additive reasoning: one cannot understand either
addition or subtraction unless one also
understands their relation to each other.

2 Children probably first recognise the inverse
relation between adding and subtracting the
identical stuff. We call this the inversion of identity.

3 The understanding of the inversion of quantity is 
a step-up. It means understanding that a quantity
stays the same if the same number of items is
added to it and subtracted from it, even though
the added and subtracted items are different from
each other. 

4 The inversion of quantity is more difficult for young
children to understand, but in tasks that involve
concrete objects, many children in the five- to
seven-year age range do grasp this form of
inversion to some extent.

5 There are however strong individual differences
among children in this form of understanding.
Children in the five- to eight-year range fall into
three main groups. Those who are good a
calculating and also good at using the inversion
principle, those who are weak in both things, 
and those who are good at using the inversion
principle, but weak in calculating.

6 The evidence suggests that children’s
understanding of the inversion principle plays an
important causal role in their progress in learning
about mathematics. Children’s understanding of
inversion is a good predictor of their mathematical
success, and improving this understanding has the
result of improving children’s mathematical
knowledge in general.

Additive reasoning and
problem solving
In this section we continue to analyse children’s 
ability to solve additive reasoning problems. Additive
reasoning refers to reasoning used to solve problems
where addition or subtraction are the operations
used to find a solutions. We prefer to use this
expression, rather than addition and subtraction
problems, because it is often possible to solve the
same problem either by addition or by subtraction.

For example, if you buy something that costs £35,
you may pay with two £20-notes. You can calculate
your change by subtraction (40 – 35) or by addition
(35 + 5). So, problems are not addition or
subtraction problems in themselves, but they can be
defined by the type of reasoning that they require,
additive reasoning.

Although preschoolers’ knowledge of addition and
subtraction is limited, as we argued in the previous
section, it is clear that their initial thinking about these
two arithmetical operations is rooted in their
everyday experiences of seeing quantities being
combined with, or taken away from, other quantities.
They find purely numerical problems like ‘what is 2
and 1 more?’ a great deal more difficult than
problems that involve concrete situations, even when
these situations are described in words and left
entirely to the imagination (Ginsburg, 1977; Hughes,
1981; 1986; Levine, Jordan and Huttenlocher, 1992). 

The type of knowledge that children develop initially
seems to be related to two types of action: putting
more elements in a set (or joining two sets) and
taking out elements from one set (or separating two
sets). These schemes of action are used by children
to solve arithmetic problems when they are
presented in the context of stories.

By and large, three main kinds of story problem have
been used to investigate children’s additive reasoning: 

• the Change problem (‘Bill had eight apples and then
he gave three of them away. How many did he
have left?’). 

• the Combine problem (‘Jane has three dolls and Mary
has four. How many do they have altogether?’). 

• the Compare problem (‘Sam has five books and
Sarah has eight. How many more books does Sarah
have than Sam?’).  

A great deal of research (e.g. Brown, 1981; Carpenter,
Hiebert and Moser, 1981; Carpenter and Moser, 1982;
De Corte and Verschaffel, 1987; Kintsch and Greeno,
1985; Fayol, 1992; Ginsburg, 1977; Riley, Greeno and
Heller, 1983; Vergnaud, 1982) has shown that in
general, the Change and Combine problems are 
much easier than the Compare problems. The most
interesting aspect of this consistent pattern of results
is that problems that are solved by the same
arithmetic operation – or in other words, by the same
sum – can differ radically in how difficult they are. 
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Usually pre-school children do make the appropriate
moves in the easiest Change and Combine problems:
they put together and count up (counting on or
counting all) and separate and count the relevant set 
to find the answer. Very few pre-school children seem
to know addition and subtraction facts, and so they
succeed considerably more if they have physical objects
(or use their fingers) in order to count. Research by
Carpenter and Moser (1982) gives an indication of
how pre-school children perform in the simpler
problems. These researchers interviewed children (aged
about four to five years) twice before they had had
been given any instruction about arithmetic in school;
we give here the results of each of these interviews, as
there is always some improvement worth noting
between the testing occasions. 

For Combine problems (given two parts, find the
whole), 75% and 82% of the answers were correct
when the numbers were small and 50% and 71%
when the numbers were larger; only 13% of the
responses with small numbers were obtained through
the recall of number facts and this was the largest
percentage of recall of number facts observed in their
study. For Change problems (Tim had 11 candies; he
gave 7 to Martha; how many did he have left?), the
pre-schoolers were correct 42% and 61% with larger
numbers (Carpenter and Moser do not report the
figures for smaller numbers) at each of the two
interviews; only 1% of recall of number facts is
reported. So, pre-school children can do relatively well
on simple Change and Combine problems before
they know arithmetic facts; they do so by putting sets
together or by separating them and counting.

This classification of problems into three types –
Combine, Change and Compare – is not sufficient
to describe story problem-solving. In a Change
problem, for example, the story might provide the
information about the initial state and the change
(Tim had 11 candies; he gave 7 to Martha); the child
is asked to say what the final state is. But it is also
possible to provide information, for example, about
the transformation and the end state (Tim had
some candies; he gave Martha 7 and he has 4 left)
and ask the child to say what the initial state was
(how many did he have before he gave candies to
Martha?). This sort of analysis has resulted in more
complex classifications, which consider which
information is given and which information must be
supplied by the children in the answer. Stories that
describe a situation where the quantity decreases, as
in the example above, but have a missing initial state
can most easily be solved by an addition. The conflict

between the decrease in quantity and the operation
of addition can be solved if the children understand
the inverse relation between subtraction and
addition: by adding the number that Tim still has 
and the number he gave away, one can find out 
how many candies he had before.

Different analyses of word problems have been
proposed (e.g. Briars and Larkin, 1984; Carpenter and
Moser, 1982; Fuson, 1992; Nesher, 1982; Riley, Greeno
and Heller, 1983; Vergnaud, 1982). We focus here on
some aspects of the analysis provided by Gérard
Vergnaud, which allows for the comparison of many
different types of problems and can also be used to
help understand the level of difficulty of further types
of additive reasoning problems, involving directed
numbers (i.e. positive and negative numbers).

First, Vergnaud distinguishes between numerical and
relational calculation. Numerical calculation refers to the
arithmetic operations that the children carry out to
find the answer to a problem: in the case of additive
reasoning, addition and subtraction are the relevant
operations. Relational calculation refers to the
operations of thought that the child must carry out in
order to handle the relations involved in the problem.
For example, in the problem ‘Bertrand played a game
of marbles and lost 7 marbles. After the game he had
3 marbles left. How many marbles did he have before
the game?’, the relational calculation is the realisation
that the solution requires using the inverse of
subtraction to go from the final state to the initial
state and the numerical calculation would be 7 + 3. 

Vergnaud proposes that children perform these
relational calculations in an implicit manner: to use his
expression, they rely on ‘theorems in action’. The
children may say that they ‘just know’ that they have
to add when they solve the problem, and may be
unable to say that the reason for this is that addition
is the inverse of subtraction. Vergnaud reports
approximately twice as many correct responses by
French pre-school children (aged about five years) to
a problem that involves no relational calculation
(about 50% correct in the problem: Pierre had 6
marbles. He played a game and lost 4; how many did
he have after the game?) than to the problem above
(about 26% correct responses), where we are told
how many marbles Bertrand lost and asked how
many he had before the game.

Vergnaud also distinguished three types of
meanings that can be represented by natural
numbers: quantities (which he calls measures),
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transformations and relations. This distinction has 
an effect on the types of problems that can be
created starting from the simple classification in
three types (change, combine and compare) and
their level of difficulty. 

First, consider the two problems below, the first
about combining a quantity and a transformation and
the second about combining two transformations.

• Pierre had 6 marbles. He played one game and 
lost 4 marbles. How many marbles did he have
after the game?

• Paul played two games of marbles. He won 6 in 
the first game and lost 4 in the second game. 
What happened, counting the two games together?

French children, who were between pre-school and
their fourth year in school, consistently performed
better on the first than on the second type of
problem, even though the same arithmetic calculation
(6-4) is required in both problems. By the second year
in school, when the children are about seven years old,
they achieve about 80% correct responses in the first
problem, and they only achieve a comparable level of
success two years later in the second problem. So,
combining transformations is more difficult than
combining a quantity and a transformation.

Brown (1981) confirmed these results with English
students in the age range 11 to 16. In her task,
students are shown a sign-post that indicates that
Grange is 29 miles to the west and Barton is 58
miles to the east; they are asked how do they work
out how far they need to drive to go from Grange
to Barton. There were eight choices of operations
connecting these two numbers for the students to
indicate the correct one. The rate of correct
responses to this problem was 73%, which contrasts
with 95% correct responses when the problem
referred to a union of sets (a combine problem).

The children found problems even more difficult
when they needed to de-combine transformations
than when they had to combine them. Here is an
example of a problem with which they needed to
de-combine two transformations, because the story
provides the result of combining operations and the
question that must be answered is about the state 
of affairs before the combination took place.

• Bruno played two games of marbles. He played the
first and the second game. In the second game he

lost 7 marbles. His final result, with the two games
together, was that he had won 3 marbles. What
happened in the first game?

This de-combination of transformations was still very
difficult for French children in the fourth year in
school (age about nine years): they attained less than
50% correct responses.

Vergnaud’s hypothesis is that when children combine
transformations, rather than quantities, they have to
go beyond natural numbers: they are now operating
in the domain of whole numbers. Natural numbers
are counting numbers. You can certainly count the
number of marbles that Pierre had before he started
the game, count and take away the marbles that he
lost in the second game, and say how many he had
left at the end. In the case of Paul’s problem, if you
count the marbles that he won in the first game, you
need to count them as ‘one more, two more, three
more etc.’: you are actually not counting marbles but
the relation between the number that he now has to
the number he had to begin with. So if the starting
point in a problem that involves transformations is
not known, the transformations are now relations. Of
course, children who do solve the problem about
Paul’s marbles may not be fully aware of the
difference between a transformation and a relation,
and may succeed exactly because they overlook this
difference. This point is discussed in Paper 4, when we
consider in detail how children think about relations.

Finally, problems where children are asked to quantify
relations are usually difficult as well:

• Peter has 8 marbles. John has 3 marbles. How many
more marbles does Peter have than John?

The question in this problem is neither about a
quantity (i.e. John’s or Peter’s marbles) nor about a
transformation (no-one lost or got more marbles): it
is about the relation between the two quantities.
Although most pre-school children can say that Peter
has more marbles, the majority cannot quantify the
relation (or the difference) between the two. The
best known experiments that demonstrate this
difficulty were carried out by Hudson (1983) in the
United States. In a series of three experiments, he
showed the children some pictures and asked them
two types of question:

• Here are some birds and some worms. How many
more birds than worms?
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• Here are some birds and some worms. The birds
are racing to get a worm. How many birds won’t
get worms?

The first question asks the children to quantify the
relation between the two sets, of worms and birds;
the second question asks the children to imagine that
the sets were matched and quantify the set that has
no matching elements. The children in the first year of
school (mean age seven years) attained 64% correct
responses to the first question and 100% to the
second question; in nursery school (mean age four
years nine months) and kindergarten (mean age 6
years 3 months), the rate of correct responses was,
respectively, 17% and 25% to the first question and
83% and 96% to the second question. 

It is, of course, difficult to be completely certain that
the second question is easier because the children
are asked a question about quantity whereas the first
question is about a relation. The reason for this
ambiguity is that two things have to change at the
same time for the story to be different: in order to
change the target of the question, so that it is either 
a quantity or a relation, the language used in the
problem also varies: in the first problem, the word
‘more’ is used, and in the second it is not.

Hudson included in one of his experiments a pre-
test of children’s understanding of the word ‘more’
(e.g. Are there more red chips or more white
chips?’) and found that they could answer this
question appropriately. He concluded that it was the
linguistic difficulty of the ‘How many more…?’
question that made the problem difficult, not simply
the difficulty of the word ‘more’. We are not
convinced by his conclusion and think that more
research about children’s understanding of how to
quantify relations is required. Stern (2005), on the
other hand, suggests that both explanations are
relevant: the linguistic form is more difficult and
quantifying relations is also more difficult than using
numbers to describe quantities.

In the domain of directed numbers (i.e. positive 
and negative numbers), it is relatively easier to study
the difference between attributing numbers to
quantities and to relations without asking the ‘how
many more’ question. Unfortunately, studies with
larger sample, which would allow for a quantitative
comparison in the level of difficulty of these
problems, are scarce. However, some indication 
that quantifying relations is more difficult for
students is available in the literature.

Vergnaud (1982) pointed out that relationships
between people could be used to create problems
that do not contain the question ‘how many more’.
Among others, he suggested the following example.

• Peter owes 8 marbles to Henry but Henry owes
6 marbles to Peter. What do they have to do to
get even? 

According to his analysis, this problem involves a
composition of relations.

Marthe (1979) compared the performance of French
students in the age range 11 to 15 years in two
problems involving such composition of relations 
with their performance in two problems involving 
a change situation (i.e. quantity, transformation,
quantity). In order to control for problem format, all
four problems had the structure a + x = b, in which x
shows the place of the unknown. The problems used
large numbers so that students had to go through
the relational calculation in order to determine the
numerical calculation (with small numbers, it is
possible to work in an intuitive manner, sometimes
starting from a hypothetical amount and adjusting the
starting point later to make it fit). An example of a
problem type using a composition of relations is
shown below.

• Mr Dupont owes 684 francs to Mr. Henry. But Mr
Henry also owes money to Mr Dupont. Taking
everything into account, Mr Dupont must give back
327 francs to Mr Henry. What amount did Mr
Henry owe to Mr Dupont?

Marthe did find that problems about relations were
quite a bit more difficult than those about quantities
and transformations; there was a difference of 20%
between the rates of correct responses for the
younger children and 10% for the older children.
However, the most important effect in these
problems seemed to be whether the students had
to deal with numbers that had the same or different
signs: problems with same signs were consistently
easier than those with different signs.

In summary, different researchers have argued that it
is one thing to learn to use numbers to represent
quantities and a quite different one to use numbers
to quantify relations. Relations are more abstract and
more challenging for students. Thompson (1993)
hypothesises that learning to quantify and think
about numbers as measures of relations is a crucial
step that students must take in order to understand
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algebra. We are completely sympathetic to this
hypothesis, but we think that the available evidence
is a bit thin. 

More than two decades ago, Dickson, Brown and
Gibson (1984) reviewed research on additive reasoning
and problem solving, and pointed out how difficult it is
to come to firm conclusions when no single study has
covered the variety of problems that any theoretical
model would aim to compare. We have to piece the
evidence together from diverse studies, and of course
samples vary across different locations and cohorts. In
the last decade research on additive reasoning has
received less attention in research on mathematics
education than before. Unfortunately, this has left some
questions with answers that are, at best, based on single
studies with limited numbers of students. It is time to
use a new synthesis to re-visit these questions and 
seek for unambiguous answers within a single research
programme.

Summary

1 In word problems children are told a brief story
which ends in an arithmetical question. These
problems are widely used in school textbooks 
and also as a research tool.

2 There are three main kinds of word problem:
Combine, Change and Compare.

3 Vergnaud argued that the crucial elements in 
these problems were Quantities (measures),
Transformations and Relations. On the whole,
problems that involve Relations are harder than
those involving Transformations.

4 However, other factors also affect the level of
difficulty in word problems. Any change in sign is
often hard for children to handle: when the story
is about an addition but the solution is to subtract,
as in missing addend problems, children often fail
to use the inverse operation.

5 Overall the extreme variability in the level of
difficulty of different problems, even when these
demand exactly the same mathematical solution
(the same simple additions or subtractions)
confirms the view that there is a great deal more
to arithmetical learning than knowing how to carry
out particular operations.

6 Research on word problems supports a different
approach, which is that arithmetical learning

depends on children making a coherent
connection between quantitative relations and 
the appropriate numerical analysis.

Overall conclusions and
educational implications
• Learning about quantities and numbers are two

different matters: children can understand relations
between quantities and not know how to make
inferences about the numbers that are used to
represent the quantities; they might also learn to
count without making a connection between
counting and what it implies for the relations
between quantities.

• Some ideas about quantities are essential for
understanding number: equivalence between
quantities, their order of magnitude, and the part-
whole relations implicit in determining the number
of elements in a set.

• These core ideas, in turn, require that children
come to understand yet other logical principles:
transitive relations in equivalence and order,
which operations change quantities and which do
not, and the inverse relation between addition
and subtraction. These notions are central to
understanding numbers and how they represent
quantities; children who have a good grasp of
them learn mathematics better in school.
Children who have difficulties with these ideas
and do not receive support to come to grips
with them are at risk for difficulties in learning
mathematics, but these difficulties can be
prevented to a large extent if they receive
appropriate instruction.

• There is no question that word problems give us a
valuable insight into children’s reasoning about
addition and subtraction. They demonstrate that
there is a great deal more to understanding these
operations than just learning how to add and
subtract. Children’s solutions do depend on their
ability to reason about the relations between
quantities in a logical manner. There is no doubt
about these conclusions, even if there is need for
further research to pin down some of the details.

• Learning to count and to use numbers to
represent quantities is an important element in
this developmental process. Children can more
easily reason about the relation between
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addition, subtraction, and number when they
know how to represent quantities by counting.
But this is not a one-way relation: it is by adding,
subtracting, and understanding the inverse
relation between these operations that children
understand additive composition and learn to
solve additive reasoning problems.

• The major implication from this review is that
schools should take very seriously the need to
include in the curriculum instruction that promotes
reflection about relations between quantities,
operations, and the quantification of relations.

• These reflections should not be seen as
appropriate only for very young children: when
natural numbers start to be used to represent
relations, directed numbers become a new 
domain of activity for children to re-construct 
their understanding of additive relations. The
construction of a solid understanding of additive
relations is not completed in the first years of
primary school: some problems are still difficult for
students at the age of 15.

Endnotes

1 Gelman and Butterworth (2005) make a similar distinction
between numerosity and the representation of number: ‘we
need to distinguish possession of the concept of numerosity
itself (knowing that any set has a numerosity that can be
determined by enumeration) from the possession of
rerepresentations (in language) of particular numerosities’ 
(pp. 6). However, we adopt here the term ‘quantities’ because 
it has an established definition and use in the context of
children’s learning of mathematics.

2 It is noted here that evidence from cases studies of acquired
dyscalculia (a cognitive disorder affecting the ability to solve
mathematics problems observed in patients after neurological
damage) is consistent with the idea that understanding
quantities and number knowledge can be dissociated:
calculation may be impaired and conservation of quantities 
may be intact in some patients whereas in others calculation 
is intact and conceptual knowledge impaired (Mittmair-Delazer,
Sailer and Benke, 1995). Dissociations between arithmetic skills
and the meaning of numbers were extensively described by
McCloskey (1992) in a detailed review of cases of acquired
dyscalculia.
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