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Paper 1: Overview

About this review

In 2007, the Nuffield Foundation commissioned a
team from the University of Oxford to review the
available research literature on how children learn
mathematics. The resulting review is presented in a
series of eight papers:

Paper |: Overview

Paper 2: Understanding extensive quantities and
whole numbers

Paper 3: Understanding rational numbers and
intensive quantities

Paper 4: Understanding relations and their graphical
representation

Paper 5: Understanding space and its representation
in mathematics

Paper 6: Algebraic reasoning

Paper 7: Modelling, problem-solving and integrating
concepts

Paper 8: Methodological appendix

Papers 2 to 5 focus mainly on mathematics relevant
to primary schools (pupils to age | | years), while
papers 6 and 7 consider aspects of mathematics

in secondary schools.

Paper | includes a summary of the review, which
has been published separately as Introduction and
summary of findings.

Summaries of papers |-7 have been published
together as Summary papers.

All publications are available to download from
our website, www.nuffieldfoundation.org

Contents

Summary of findings
Overview

References 36

About the authors

Terezinha Nunes is Professor of Educational
Studies at the University of Oxford.
Peter Bryant is Senior Research Fellow in the

Department of Education, University of Oxford.

Anne Watson is Professor of Mathematics
Education at the University of Oxford.

About the Nuffield Foundation
The Nuffield Foundation is an endowed
charitable trust established in 1943 by William
Morris (Lord Nuffield), the founder of Morris
Motors, with the aim of advancing social well
being. We fund research and practical
experiment and the development of capacity
to undertake them; working across education,
science, social science and social policy. VWhile
most of the Foundation’s expenditure is on
responsive grant programmes we also
undertake our own initiatives.



3 Key understandings in mathematics lear ning

Summary of findings

Aims
Our aim in the review is to present a synthesis
of research on mathematics learning by children
from the age of five to the age of sixteen years
and to identify the issues that are fundamental to
understanding children’s mathematics learning. In
doing so, we concentrated on three main questions
regarding key understandings in mathematics.
* What insights must students have in order to
understand basic mathematical concepts?
* What are the sources of these insights and how
does informal mathematics knowledge
relate to school learning of mathematics?
* What understandings must students have in
order to build new mathematical ideas using
basic concepts!

Theoretical framework

While writing the review, we concluded that there
are two distinct types of theory about how children
learn mathematics.

Explanatory theories set out to explain how
children’s mathematical thinking and knowledge
change. These theories are based on empirical
research on children’s solutions to mathematical
problems as well as on experimental and longitudinal
studies. Successful theories of this sort should
provide insight into the causes of children’s
mathematical development and worthwhile

suggestions about teaching and learning mathematics.

Pragmatic theories set out to investigate what children
ought to learn and understand and also identify
obstacles to learning in formal educational settings.

Pragmatic theories are usually not tested for their
consistency with empirical evidence, nor examined
for the parsimony of their explanations vis-a-vis other
existing theories; instead they are assessed in m ultiple
contexts for their descriptive power; their credibility
and their effectiveness in practice.

Our starting point in the review is that children need
to learn about quantities and the relations between
them and about mathematical symbols and their
meanings. These meanings are based on sets of
relations. Mathematics teaching should aim to ensure
that students’ understanding of quantities, relations
and symbols go together.

Conclusions

This theoretical approach underlies the six main
sections of the review. We now summarise the main
conclusions of each of these sections.

Whole numbers
* Whole numbers represent both quantities and
relations between quantities, such as differences
and ratio. Primary school children must establish
clear connections between numbers, quantities
and relations.

Children’s initial understanding of quantitative
relations is largely based on correspondence.
One-to-one correspondence underlies their
understanding of cardinality, and one-to-many
correspondence gives them their first insights
into multiplicative relations. Children should be
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encouraged to think of number in terms of these
relations.

Children start school with varying levels of
ability in using different action schemes to solve
arithmetic problems in the context of stories.
They do not need to know arithmetic facts to
solve these problems: they count in different
ways depending on whether the problems they
are solving involve the ideas of addition,
subtraction, multiplication or division.

Individual differences in the use of action
schemes to solve problems predict children’s
progress in learning mathematics in school.

Interventions that help children learn to use their
action schemes to solve problems lead to better
learning of mathematics in school.

It is more difficult for children to use numbers to
represent relations than to represent quantities.

Implications for the classroom

Teaching should make it possible for children to:
connect their knowledge of counting with their
knowledge of quantities

understand additive composition and one-to-
many correspondence

understand the inverse relation between addition
and subtraction

solve problems that involve these key
understandings

develop their multiplicative understanding
alongside additive reasoning.

Implications for further research
Long-term longitudinal and intervention studies

with large samples are needed to support curriculum
development and policy changes aimed at
implementing these objectives. There is also a

need for studies designed to promote children’s
competence in solving problems about relations.

Fractions
* Fractions are used in primary school to represent
quantities that cannot be represented by a single
whole number: As with whole numbers, children
need to make connections between quantities
and their representations in fractions in order to
be able to use fractions meaningfully.

* Two types of quantities that are taught in
primary school must be represented by fractions.
The first involves measurement: if you want to
represent a quantity by means of a number
and the quantity is smaller than the unit of
measurement, you need a fraction; for example,
a half cup or a quarter inch. The second involves
division: if the dividend is smaller than the divisor,
the result of the division is represented by a
fraction; for example, three chocolates shared
among four children.

Children use different schemes of action in these
two different situations. In division situations, they
use correspondences between the units in the
numerator and the units in the denominator. In
measurement situations, they use partitioning.

Children are more successful in under standing
equivalence of fractions and in ordering fractions
by magnitude in situations that involve division
than in measurement situations.

It is crucial for children’s understanding of fractions
that they learn about fractions in both types of
situation: most do not spontaneously transfer what
they learned in one situation to the other.

When a fraction is used to represent a quantity,
children need to learn to think about how the
numerator and the denominator relate to the
value represented by the fraction. They must think
about direct and inverse relations: the larger the
numerator, the larger the quantity, but the larger
the denominator, the smaller the quantity.

Like whole numbers, fractions can be used to
represent quantities and relations between
quantities, but they are rarely used to represent
relations in primary school. Older students often
find it difficult to use fractions to represent relations.

Implications for the classroom
Teaching should make it possible for children to:

* use their understanding of quantities in division
situations to understand equivalence and order
of fractions

» make links between different types of reasoning
in division and measurement situations

» make links between understanding fractional
quantities and procedures

* learn to use fractions to represent relations
between quantities, as well as quantities.
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Implications for further research

Evidence from experimental studies with larger
samples and long-term interventions in the classroom
are needed to establish how division situations relate
to learning fractions. Investigations on how links
between situations can be built are needed to support
curriculum development and classroom teaching.

There is also a need for longitudinal studies designed
to clarify whether separation between procedures
and meaning in fractions has consequences for
further mathematics learning.

Given the importance of understanding and
representing relations numerically, studies that
investigate under what circumstances primary school
students can use fractions to represent relations
between quantities, such as in propor tional
reasoning, are urgently needed.

Relations and their mathematical
representation

¢ Children have greater difficulty in understanding
relations than in understanding quantities. This
is true in the context of both additive and
multiplicative reasoning problems.

Primary and secondary school students often
apply additive procedures to solve multiplicative
problems and multiplicative procedures to solve
additive problems.

Teaching designed to help students become aware
of relations in the context of additive reasoning
problems can lead to significant improvement.

The use of diagrams, tables and graphs to
represent relations in multiplicative reasoning
problems facilitates children’s thinking about the
nature of the relations between quantities.

Excellent curriculum development work has
been carried out to design programmes that
help students develop awareness of their implicit
knowledge of multiplicative relations. This work
has not been systematically assessed so far.

An alternative view is that students’ implicit
knowledge should not be the starting point for
students to learn about proportional relations;
teaching should focus on formalisations rather
than informal knowledge and only later seek to
connect mathematical formalisations with applied

situations. This alternative approach has also not
been systematically assessed yet.

* There is no research that compares the results
of these diametrically opposed ideas.

Implications for the classroom
Teaching should make it possible for children to:
« distinguish between quantities and relations
* become explicitly aware of the different types
of relations in different situations
* use different mathematical representations to
focus on the relevant relations in specific problems
* relate informal knowledge and formal learning.

Implications for further research

Evidence from experimental and long-term
longitudinal studies is needed on which approaches

to making students aware of relations in problem
situations improve problem solving. A study comparing
the alternative approaches — starting from informal
knowledge versus starting from formalisations —
would make a significant contribution to the literature.

Space and its mathematical
representation

¢ Children come to school with a great deal of
informal and often implicit knowledge about
spatial relations. One challenge in mathematical
education is how best to harness this knowledge
in lessons about space.

This pre-school knowledge of space is mainly
relational. For example, children use a stable
background to remember the position and
orientation of objects and lines.

Measuring length and area poses par ticular
problems for children, even though they are

able to understand the underlying logic of
measurement. Their difficulties concern iteration of
standard units and the need to apply multiplicative
reasoning to the measurement of area.

From an early age children are able to
extrapolate imaginary straight lines, which allows
them to learn how to use Cartesian co-ordinates
to plot specific positions in space with little
difficulty. However, they need help from teachers
on how to use co-ordinates to work out the
relation between different positions.
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* Learning how to represent angle mathematically
is a hard task for young children, even though
angles are an important part of their everyday
life. Initially children are more aware of angle in
the context of movement (turns) than in other
contexts. They need help from to teachers to be
able to relate angles across different contexts.

An important aspect of learning about geometry
is to recognise the relation betw een transformed
shapes (rotation, reflection, enlargement). This can
be difficult, since children’s preschool experiences
lead them to recognise the same shapes as
equivalent across such transformations, rather than
to be aware of the nature of the transformation.

Another aspect of the understanding of shape

is the fact that one shape can be tr ansformed
into another by addition and subtraction of its
subcomponents. For example, a parallelogram
can be transformed into a rectangle of the same
base and height by the addition and subtraction
of equivalent triangles. Research demonstrates a
danger that children learn these transformations
as procedures without understanding their
conceptual basis.

Implications for the classroom
Teaching should make it possible for children to:

* build on spatial relational knowledge from
outside school
relate their knowledge of relations and
correspondence to the conceptual basis of
measurement
iterate with standard and non-standard units
understand the difference between
measurements which are/are not multiplicative
relate co-ordinates to extrapolating imaginary
straight lines
distinguish between scale enlargements and area
enlargements.

Implications for further research

There is a serious need for longitudinal research
on the possible connections between children’s
pre-school spatial abilities and how well they learn
about geometry at school.

Psychological research is needed on: children’s ability
to make and understand transformations and the
additive relations in compound shapes; the exact
cause of children’s difficulties with iteration; how

transitive inference, inversion and one-to-one
correspondence relate to problems with geometry,
such as measurement of length and area.

There is a need for intervention studies on methods
of teaching children to work out the relation
between different positions, using co-ordinates.

Algebra

* Algebra is the way we express generalisations
about numbers, quantities, relations and functions.
For this reason, good understanding of connections
between numbers, quantities and relations is
related to success in using algebra. In particular,
understanding that addition and subtraction are
inverses, and so are multiplication and division,
helps students understand expressions and solve
equations.

To understand algebraic symbolisation, students
have to (a) understand the underlying operations
and (b) become fluent with the notational r ules.
These two kinds of learning, the meaning and the
symbol, seem to be most successful when
students know what is being expressed and have
time to become fluent at using the notation.

Students have to learn to recognise the different
nature and roles of letters as: unknowns,
variables, constants and parameters, and also the
meanings of equality and equivalence . These
meanings are not always distinct in algebra and
do not relate unambiguously to arithmetical
understandings.

Students often get confused, misapply, or
misremember rules for transforming expressions
and solving equations. They often try to apply
arithmetical meanings inappropriately to
algebraic expressions. This is associated with
over-emphasis on notational manipulation, or

on ‘generalised arithmetic’, in which they may
try to get concise answers.

Implications for the classroom
Teaching should make it possible for children to:
* read numerical and algebraic expressions
relationally, rather than as instructions to calculate
(as in substitution)
* describe generalisations based on properties
(arithmetical rules, logical relations, structures)
as well as inductive reasoning from sequences
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use symbolism to represent relations

understand that letters and ‘="have a range of
meanings

use hands-on ICT to relate representations

use algebra purposefully in multiple experiences
over time

explore and use algebraic manipulation software.

Implications for further research

We need to know how explicit work on
understanding relations between quantities enables
students to move successfully between arithmetical
to algebraic thinking.

Research on how expressing generality enables
students to use algebra is mainly in small-scale
teaching interventions, and the problems of large-
scale implementation are not so well reported. We
do not know the longer-term comparative effects of
different teaching approaches to early algebra on
students’ later use of algebraic notation and thinking.

There is little research on higher algebr a, except

for teaching experiments involving functions. How
learners synthesise their knowledge of elementary
algebra to understand polynomial functions, their
factorisation and roots, simultaneous equations,
inequalities and other algebraic objects beyond
elementary expressions and equations is not known.

There is some research about the use of symbolic
manipulators but more needs to be learned about
the kinds of algebraic expertise that develops
through their use.

Modelling, solving problems and
learning new concepts in secondary
mathematics

Students have to be fluent in under standing methods
and confident about using them to know why and
when to apply them, but such application does not
automatically follow the learning of procedures. Students
have to understand the situation as well as to be able to
call on a familiar reper toire of facts, ideas and methods.

Students have to know some elementary

concepts well enough to apply them and combine
them to form new concepts in secondary
mathematics. For example, knowing a range of
functions and/or their representations seems to be
necessary to understand the modelling process, and
is certainly necessary to engage in modelling.

Understanding relations is necessary to solve
equations meaningfully.

Students have to learn when and how to use
informal, experiential reasoning and when to

use formal, conventional, mathematical reasoning.
Without special attention to meanings, many
students tend to apply visual reasoning, or be
triggered by verbal cues, rather than analyse
situations to identify variables and relations.

In many mathematical situations in secondary
mathematics, students have to look for relations
between numbers, and variables, and relations
between relations, and properties of objects, and
know how to represent them.

Implications for the classroom
Teaching should make it possible for children to:

* learn new abstract understandings, which is
neither achieved through learning procedures,
nor through problem-solving activities, without
further intervention
use their obvious reactions to perceptions and
build on them, or understand conflicts with them
adapt to new meanings and develop from earlier
methods and conceptualizations over time
understand the meaning of new concepts ‘know
about’, 'know how to’, and ‘know how to use’
control switching between, and comparing,
representations of functions in order to
understand them
use spreadsheets, graphing tools, and other
software to support application and authentic
use of mathematics.

Implications for further research

Existing research suggests that where contextual and
exploratory mathematics, integrated through the
curriculum, do lead to further conceptual learning it is
related to conceptual learning being a rigorous focus
for curriculum and textbook design, and in teacher
preparation, or in specifically designed projects based
around such aims. There is therefore an urgent need for
research to identify the key conceptual understandings
for success in secondary mathematics. There is no
evidence to convince us that the new U K. curricula will
necessarily lead to better conceptual understanding of
mathematics, either at the elementary level which is
necessary to learn higher mathematics, or at higher
levels which provide the confidence and foundation
for further mathematical study.
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We need to understand the ways in which students
learn new ideas in mathematics that depend on
combinations of earlier concepts, in secondary
school contexts, and the characteristics of
mathematics teaching at higher secondary level
which contribute both to successful conceptual
learning and application of mathematics.

Common themes

We reviewed different areas of mathematical activity,
and noted that many of them involve common
themes, which are fundamental to learning
mathematics: number; logical reasoning, reflection on
knowledge and tools, understanding symbol systems
and mathematical modes of enquiry.

Number

Number is not a unitary idea, which children

learn in a linear fashion. Number develops in
complementary strands, sometimes with
discontinuities and changes of meaning. Emphasis on
procedures and manipulation with numbers, rather
than on understanding the underlying relations and
mathematical meanings, can lead to over-reliance
and misapplication of methods in arithmetic, algebra,
and problem-solving. For example, if children form
the idea that quantities are only equal if they are
represented by the same number, a principle that
they could deduce from learning to count, they will
have difficulty understanding the equivalence of
fractions. Learning to count and to understand
quantities are separate strands of development.
Teaching can play a major role in helping children
co-ordinate these two forms of knowledge without
making counting the only procedure that can be
used to think about quantities.

Successful learning of mathematics includes
understanding that number describes quantity; being
able to make and use distinctions between different,
but related, meanings of number; being able to use
relations and meanings to inform application and
calculation; being able to use number relations to
move away from images of quantity and use
number as a structured, abstract, concept.

Logical reasoning
The evidence demonstrates beyond doubt that
children must rely on logic to learn mathematics and

that many of their difficulties are due to failures to
make the correct logical move that would have led
them to the correct solution. Four different aspects
of logic have a crucial role in learning about
mathematics.

The logic of correspondence (one-to-one and one-to-
many correspondence) The extension of the use of
one-to-one correspondence from sharing to working
out the numerical equivalence or non-equivalence of
two or more spatial arrays is a vastly important step
in early mathematical learning. Teaching multiplication
in terms of one-to-many correspondence is more
effective than teaching children about multiplication
as repeated addition.

The logic of inversion Longitudinal evidence shows that
understanding the inverse relation between addition
and subtraction is a strong predictor of children’s
mathematical progress. A flexible understanding of
inversion is an essential element in children’s
geometrical reasoning as well. The concept of
inversion needs a great deal more prominence

than it has now in the school curriculum.

The logic of class inclusion and additive composition
Class inclusion is the basis of the under standing of
ordinal number and the number system. Children’s
ability to use this form of inclusion in learning about
number and in solving mathematical problems is at
first rather weak, and needs some support.

The logic of transitivity All ordered series, including
number, and also forms of measurement involve
transitivity (@ > cifa>bandb>ca=cifa=>b
and b = ¢). Learning how to use transitive relations
in numerical measurements (for example, of area) is
difficult. One reason is

that children often do not grasp the importance of
iteration (repeated units of measurement).

The results of longitudinal research (although there is
not an exhaustive body of such work) support the
idea that children’s logic plays a critical part in their
mathematical learning.

Reflection on knowledge and tools
Children need to re-conceptualise their intuitive
models about the world in order to access the
mathematical models that have been developed in
the discipline. Some of the intuitive models used by
children lead them to appropriate mathematical
problem solving, and yet they may not know why
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they succeeded. Implicit models can interfere with
problem solving when students rely on assumptions
that lead them astray.

The fact that students use intuitive models

when learning mathematics, whether the teacher
recognises the models or not, is a reason for
helping them to develop an awareness of their
models. Students can explore their intuitive models
and extend them to concepts that are less intuitiv e,
more abstract. This pragmatic theory has been
shown to have an impact in practice.

Understanding symbol systems

Systems of symbols are human inventions and

thus are cultural tools that have to be taught.
Mathematical symbols are human-made tools that
improve our ability to control and adapt to the
environment. Each system makes specific cognitive
demands on the learner, who has to understand the
systems of representation and relations that are
being represented; for example place-value notation
is based on additive composition, functions depict
covariance. Students can behave as if they
understand how the symbols work while they do
not understand them completely: they can learn
routines for symbol manipulation that remain
disconnected from meaning. This is true of rational
numbers, for example.

Students acquire informal knowledge in their
everyday lives, which can be used to give meaning
to mathematical symbols learned in the classroom.
Curriculum development work that takes this
knowledge into account is not as widespread as one
would expect given discoveries from past research.

Mathematical modes of enquiry
Some important mathematical modes of enquiry
arise in the topics covered in this synthesis.

Comparison helps us make new distinctions and create
new objects and relations Comparisons are related to
making distinctions, sorting and classifying; students
need to learn to make these distinctions based on
mathematical relations and properties, rather than
perceptual similarities.

Reasoning about properties and relations rather than
perceptions Throughout mathematics, students have
to learn to interpret representations before they
think about how to respond. They need to think

about the relations between different objects in the
systems and schemes that are being represented.

Making and using representations Conventional
number symbols, algebraic syntax, coordinate
geometry, and graphing methods, all afford
manipulations which might otherwise be impossible.
Coordinating different representations to explore and
extend meaning is a fundamental mathematical skill.

Action and reflection-on-action In mathematics,
actions may be physical manipulation, or symbolic
rearrangement, or our observations of a dynamic
image, or use of a tool. In all these contexts, we
observe what changes and what stays the same as
a result of actions, and make inferences about the
connections between action and effect.

Direct and inverse relations It is important in all
aspects of mathematics to be able to construct and
use inverse reasoning. As well as enabling more
understanding of relations between quantities, this
also establishes the importance of reverse chains of
reasoning throughout mathematical problem-solving,
algebraic and geometrical reasoning.

Informal and formal reasoning At first young children
bring everyday understandings into school and
mathematics can allow them to formalise these and
make them more precise. Mathematics also provides
formal tools, which do not describe everyday
experience, but enable students to solve problems
in mathematics and in the world which would be
unnoticed without a mathematical perspective.

Epilogue

We have made recommendations about teaching and
learning, and hope to have made the reasoning behind
these recommendations clear to educationalists (in
the extended review). We have also recognised that
there are weaknesses in research and gaps in current
knowledge, some of which can be easily solved by
research enabled by significant contributions of past
research. Other gaps may not be so easily solved, and
we have described some pragmatic theories that are
or can be used by teachers when they plan their
teaching. Classroom research stemming from the
exploration of these theories can provide new
insights for further research in the future, alongside
longitudinal studies which focus on learning
mathematics from a psychological perspective.
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Overview

Aims

Our aim in this review is to present a synthesis of

research on key aspects of mathematics learning by

children from the age of 5 to the age of 16 years:
these are the ages that comprise compulsory
education in the United Kingdom In preparing the
review, we have considered the results of a lar ge
body of research carried out by psychologists and by
mathematics educators over approximately the last

six decades. Our aim has been to develop a

theoretical analysis of these results in order to attain

a big picture of how children learn, and sometimes

fail to learn, mathematics and how they could learn it

better. Our main target is not to provide an answer
to any specific question, but to identify issues that

are fundamental to understanding children’s

mathematics learning. In our view theories of
mathematics learning should deal with three main
questions regarding key understandings in
mathematics:

* What insights must students have in order to
understand basic mathematical concepts?

* What are the sources of these insights and how
does informal mathematics knowledge relate to
school learning of mathematics?

* What understandings must students have in order
to build new mathematical ideas using basic
concepts?

Theoretical analysis played a major role in this
synthesis. Many theoretical ideas were already
available in the literature and we sought to examine
them critically for coherence and for consistency
with the empirical evidence. Cooper (1998) suggests
that there may be occasions when new theoretical
schemes must be developed to provide an
overarching understanding of the higher-order
relations in the research domain; this was certainly

true of some of our theoretical anal ysis of the
evidence that we read for this review.

The answers to our questions should allow us to
trace students’ learning trajectories. Confrey (2008)
defined a learning trajectory as ‘a researcher-
conjectured, empirically-supported description of
the ordered network of experiences a student
encounters through instruction (i.e. activities, tasks,
tools, forms of interaction and methods of
evaluation), in order to move from informal ideas,
through successive refinements of representation,
articulation, and reflection, towards increasingly
complex concepts over time. If students’ learning
trajectories towards understanding specific concepts
are generally understood, teachers will be much
better placed to promote their advancement.

Finally, one of our aims has been to identify a set

of research questions that stem from our current
knowledge about children’s mathematics learning and
methods that can provide relevant evidence about
important, outstanding issues.

Scope of the review

As we reviewed existing research and existing
theories about mathematics learning, it soon became
clear to us that there are tw o types of theories
about how children learn mathematics. The first are
explanatory theories. These theories seek to explain
how children's thinking and knowledge change.
Explanatory theories are based on empirical
research on the strategies that children adopt in
solving mathematical problems, on the difficulties
and misconceptions that affect their solutions to
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such problems, and on their successes and their
explanations of their own solutions. They also draw
on quantitative methods to describe age or school
grade levels when certain forms of knowledge are
attained and to make inferences about the nature of
relationships observed during learning (for example,
to help understand the relation between informal
knowledge and school learning of mathematics).

We have called the second type of theory pragmatic.
A pragmatic theory is rather like a road map for
teachers: its aims are to set out what children m ust
learn and understand, usually in a clear sequence,
about particular topics and to identify obstacles to
learning in formal educational settings and other
issues which teachers should keep in mind when
designing teaching. Pragmatic theories are usually
not tested for their consistency with empirical
evidence, nor examined for the parsimony of their
explanations vis-a-vis other existing theories; instead
they are assessed in multiple contexts for their
descriptive power, their credibility and their
effectiveness in practice.

Explanatory theories are of great importance in
moving forward our understanding of phenomena
and have proven helpful, for example, in the domain
of literacy teaching and learning. However, with some
aspects of mathematics, which tend to be those that
older children have to learn about, there simply is
not enough explanatory knowledge yet to guide
teachers in many aspects of their mathematics
teaching, but students must still be taught even when
we do not know much about how they think or
how their knowledge changes over time through
learning. Mathematics educators have developed
pragmatic theories to fill this gap and to take
account of the interplay of learning theory with
social and cultural aspects of educational contexts.
Pragmatic theories are designed to guide teachers in
domains where there are no satisfactory explanatory
theories, and where explanatory theory does not
provide enough information to design complex
classroom teaching. We have included both types of
theory in our review. We believe that both types are
necessary in mathematics education but that they
should not be confused with each other.

We decided to concentrate in our review on issues
that are specific to mathematics learning. We
recognise the significance of general pedagogical
theories that stress, for example, the importance

of giving learners an active role in developing their
thinking and conceptual understanding, the notion of

didactic transposition, the theory of situations, social
theories regarding the importance of conflict and
cooperation, the role of the teacher, the role and use
of language, peer collaboration and argumentation in
the classroom. These are important ideas but they
apply to other domains of learning as well, and we
decided not to provide an analysis of such theories
but to mention them only in the context of specific
issues about mathematical learning.

Another decision that we made about the scope of
the synthesis was about how to deal with cultural
differences in teaching and learning mathematics. The
focus of the review is on mathematics learning by UK.
students during compulsory education. We recognise
that there are many differences between learners in
different parts of the world; so, we decided to include
mostly research about learners who can be
considered as reasonably similar to U K. students, i.e.
those living in Western cuftures with a relatively high
standard of living and plenty of oppor tunities to
attend school. Thus the description of students who
participated in the studies is not presented in detall
and will often be indicated only in terms of the
country where the research was carried out. In order
to offer readers a notion of the time in students’ lives
when they might succeed or show difficulties with
specific problems, we used age levels or school grade
levels as references. These ages and years of schooling
are not to be generalised to very different
circumstances where, for example, children might be
growing up in cultures with different number systems
or largely without school participation. Occasional
reference to research with other groups is used b ut
this was purposefully limited, and it was included only
when it was felt that the studies could shed light on a
specific issue.

We also decided to concentrate on key
understandings that offer the foundation for
mathematics learning rather than on the different
technologies used in mathematics. Wartofsky (1979)
conceives technology as any human made tool that
improves our ability to control and adapt to the
environment. Mathematics uses many such tools.
Some representational tools, such as counting and
written numbers, are part of traditional mathematics
learning in primary school. They improve our abilities
in amazing ways: for example, counting allows us to
represent precisely quantities which we could not
discriminate perceptually and written numbers in the
Hindu-Arabic system create the possibility of column
arithmetic, which is not easily implemented with oral
number when quantities are large or even with
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written Roman numerals. We have argued elsewhere
(Nunes, 2002) that systems of signs enhance,
structure and empower their users but learners
must still construct meanings that allow them to
use these systems. Our choice in this review was
to consider how learners construct meanings
rather than explore in depth the enab ling role of
mathematical representations. We discuss in much
greater detail how they learn to use whole and
rational numbers meaningfully than how they
calculate with these numbers. Similarly, we discuss
how they might learn the meaning and power of
algebraic representation rather than how they
might become fluent with algebraic manipulation.
Psychological theories (Luria, 1973;Vygotsky, 1981)
emphasise the empowering role of culturally
developed systems of signs in human reasoning b ut
stress that learners’ construction of meanings for
these signs undergoes a long development process
in order for the signs to be truly empowering.
Similarly, mathematics educators stress that
technology is aimed not to replace, but to enhance
mathematical reasoning (Noss and Hoyles, 1992).

Our reason for not focusing on technologies in this
synthesis is that there are so many technological
resources used today for doing mathematics that

it is not possible to consider even those used or
potentially useful in primary school in the required
detail in this synthesis. We recognise this gap and
strongly suggest that at least some of these issues
be taken up for a synthesis at a later point, as some
important comparative work already exists in the
domain of column arithmetic (e.g. Anghileri,
Beishuizen and Putten, 2002; Treffers, 1987) and
the use of calculators (e.g. Ruthven, 2008).

We wish to emphasise, therefore, that this review is
not an exhaustive one. It considers a part of today's
knowledge in mathematics education. There are
other, more specific aspects of the subject which,
usually for reasons of space, we decided to by-pass.
We shall explain the reasons for these choices as
we go along.

Methods of the review

We obtained the material for the synthesis through
a systematic search of peer review ed journals, edited
volumes and refereed conference proceedings.' We
selected the papers that we read by first screening
the abstracts: our main criteria for selecting articles
to read were that they should be on a relevant topic

and that they should report either the results of
empirical research or theoretical schemes for
understanding mathematics learning or both. We
also consulted several books in order to read
researchers’ syntheses of their own empirical work
and to access earlier well-established reviews of
relevant research; we chose books that provide
useful frameworks for research and theories in
mathematics learning.

We hope that this review will become the object
of discussion within the community of researchers,
teachers and policy makers. We recognise that it

is only one step towards making sense of the vast
research on how students’ thinking and knowledge
of mathematics develops, and that other steps
must follow, including a thorough evaluation of
this contribution.

Teaching and learning
mathematics: What is the
nature of this task?

Learning mathematics is in some ways similar

(but of course not identical) to language learning: in
mathematics as well as in language it is necessary to
learn symbols and their meaning, and to know how
to combine them meaningfully.

Learning meanings for symbols is often more difficult
than one might think. Think of learning the meaning
of the word ‘brother’. If Megan said to her four-year-
old friend Sally “That's my brother’ and pointed to
her brother, Sally might learn to say correctly and
appropriately That's Megan's brother’ but she would
not necessarily know the meaning of ‘brother’.
‘Brother of " is a phrase that is based on a set of
relationships, and in order to understand its meaning
we need to understand this set of relationships,
which includes ‘mother of " and ‘father of . It is in this
way that learning mathematics is very like learning a
language: we need to learn mathematical symbols
and their meanings, and the meaning of these
symbols is based on sets of relations.

In the same way that Megan might point to her
brother, Megan could count a set of pens and sa y:
‘There are 15 pens here’. Sally could learn to count
and say ‘15 pens’ (or dogs, or stars). But ‘15" in
mathematics does not just refer to the result of
counting a set: it also means that this set is
equivalent to all other sets with |5 objects, has
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fewer objects than any set with |6 or more, and

has more objects than any set with |4 or fewer.
Learning about numbers involves more than
understanding the operations that are carried out to
determine the word that represents the quantity. In
the context of learning mathematics, we would like
students to know, without having to count, that some
operations do and others do not change a quantity.
For example, we would like them to understand that
there would only be more pens if we added some
to the set, and fewer if we subtracted some from
the set, and that there would still be |5 pens if we
added and then subtracted

(or vice versa) the same number of pens to and
from the original set.

The basic numerical concepts that we want students
to learn in primary school have these two sides

to them: on the one hand, there are quantities,
operations on guantities and relations betw een
quantities, and on the other hand there are symbols,
operations on symbols and relations between
symbols. Mathematics teaching should aim to ensure
that students’ understanding of quantities, relations
and symbols go together. Anything we do with the
symbols has to be consistent with their under lying
mathematical meaning as well as logically consistent
and we are not free to play with meaning in
mathematics in quite the same ways we might play
with words.

This necessary connection is often neglected in
theories about mathematics learning and in teaching
practices. Theories that appear to be contradictory
have often focused either on students’ understanding
of quantities or on their under standing of symbols
and their manipulations. Similarly, teaching is often
designed with one or the other of these two kinds
of understanding in sight, and the result is that there
are different ways of teaching that have different
strengths and weaknesses.

Language learners eventually reach a time when they
can learn the meaning of new words simply by
definitions and connections with other words. Think of
words like ‘gene’ and ‘theory’: we learn their meanings
from descriptions provided by means of other words
and from the way they are used in the language.
Mathematics beyond primary school often works
similarly: new mathematical meanings are learned by
using previously learned mathematical meanings and
ways of combining these. There are also other ways in
which mathematics and language learning are similar;
perhaps the most important of these other similarities

is that we can use language to represent a large
variety of meanings, and mathematics has a similar
power. But, of course, mathematics learning differs
from language learning: mathematics contains its own
distinct concepts and modes of enquiry which
determine the way that mathematics is used. This
specificity of mathematical concepts is reflected in the
themes that we chose to analyse in our synthesis.

The framework for this review

As we start our review, there is a general point to
be made about the theoretical position that w e have
reached from our review of research on children’s
mathematics. On the whole, the teaching of the
various aspects of mathematics proceeds in a clear
sequence, and with a certain amount of separation
in the teaching of different aspects. Children are
taught first about the number sequence and then
about written numbers and arithmetical operations
using written numbers. The teaching of the four
arithmetical operations is done separately. At school
children learn about addition and subtraction
separately and before they learn about multiplication
and division, which also tend to be taught quite
separately from each other. Lessons about arithmetic
start years before lessons about proportions and the
use of mathematical models.

This order of events in teaching has had a clear
effect on research and theories about mathematical
learning. For example, it is a commonplace that
research on multiplication and division is most often
(though there are exceptions; see Paper 4) carried
out with children who are older than those who
participate in research on addition and subtraction.
Consequently, in most theories additive reasoning is
hypothesised (or assumed) to precede m ultiplicative
reasoning. Until recently there have been very few
studies of children’s understanding of the connection
between the different arithmetical operations
because they are assumed to be learned relatively
independently of each other.

Our review of the relevant research has led us to

us to a different position. The evidence quite clearly
suggests that there is no such sequence, at any rate
in the onset of children’s understanding of some of
these different aspects of mathematics. Much of this
learning begins, as our review will show, in informal
circumstances and before children go to school. Even
after they begin to learn about mathematics formally,
there are clear signs that they can embar k on



14 Paper 1: Overview

genuinely multiplicative reasoning, for example, at a
time when the instruction they receive is all about
addition and subtraction. Similar observations can be
made about learning algebra; there are studies that
show that quite young children are capable of
expressing mathematical generalities in algebraic
terms, but these are rare: the majority of studies
focus on the ways in which learners fail to do so

at the usual age at which this is taught.

Sequences do exist in children’s learning, but these
tend not to be about different arithmetic operations
(e.g. not about addition before multiplication). Instead,
they take the form of children’s understanding of new
quantitative relations as a result of w orking with and
manipulating relations that have been familiar for
some time. An example, which we describe in detall
in Paper 2, is about the inverse relation between
addition and subtraction.Young children easily
understand that if you add some new items to a set
of items and then subtract exactly the same items,
the number of items in the set is the same as it was
initially (inversion of identity), but it takes some time
for them to extend their knowledge of this relation
enough to understand that the number of items in
the set will also remain the same if you add some
new items and then subtract an equal number items
from the set, which are not the same ones you had
added (inversion of quantity: a + b - b = a). Causal
sequences of this kind play an important part in the
conclusions that we reach in this review.

Through our review, we identified some key
understandings which we think children must achieve
to be successful learners of mathematics and which
became the main topics for the review. In the
paragraphs that follow, we present the arguments
that led us to choose the six main topics.
Subseqguently, each topic is summarised under a
separate heading. The research on which these
summaries are based is analysed in Papers 2 to 7.

The main points that are discussed here , before we
turn to the summaries, guided the choice of papers
in the review.

Quantity and number

The first point is that there is a distinction to be
made between quantity and number and that
children must make connections as well as
distinctions between quantity and number in order
to succeed in learning mathematics.

Thompson (1993) suggested that ‘a person
constitutes a quantity by conceiving of a quality
of an object in such a way that he or she
understands the possibility of measuring it.
Quantities, when measured, have numerical value,
but we need not measure them or know their
measures to reason about them.You can think

of your height, another person’s height, and the
amount by which one of you is taller than the
other without having to know the actual values'
(pp. 165—166). Children experience and learn
about quantities and the relations between them
quite independently of learning to count. Similarly,
they can learn to count quite independently from
understanding quantities and relations between
them. It is crucial for children to learn to make
both connections and distinctions between
number and quantity. There are different theories
in psychology regarding how children connect
quantity and number; these are discussed in
Paper 2.

The review also showed that there are two
different types of quantities that primary school
children have to understand and that these are
connected to different types of numbers. In
everyday life, as well as in primary school, children
learn about quantities that can be counted. Some
are discrete and each item can be counted as a
natural unit; other quantities are continuous and we
use measurement systems, count the conventional
units that are part of the system, and attribute
numbers to these quantities. These quantities
which are measured by the successive addition of
items are termed extensive quantities. They are
represented by whole numbers and give children
their first insights into number.

In everyday life children also learn about quantities
that cannot be counted like this. One reason why
the guantity might not be countable in this way is
that it may be smaller than the unit; for example, if
you share three chocolate bars among four people,
you cannot count how many chocolate bars each
one receives. Before being taught about fractions,
some primary school students are aware that you
cannot say that each person would be given one
chocolate bar, because they realise that each
person’s portion would be smaller than one: these
children conclude that they do not know a number
to say how much chocolate each person will
receive (Nunes and Bryant, 2008). Quantities

that are smaller than the unit are represented by
fractions, or more generally by rational numbers.
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Rational numbers are also used to represent
quantities which we do not measure directly

but only through a relation between two other
measures. For example, if we want to say something
about the concentration of orange squash in a glass,
we have to say something about the ratio of
concentrate used to water. This type of quantity,
measurable by ratio, is termed intensive quantity
and is often represented by rational numbers.

In Papers 2 and 3 we discuss how children make
connections between whole and rational numbers
and the different types of quantities that they
represent.

Relations

Our second general point is about relations.
Numbers are used to represent quantities as w ell

as relations; this is why children must establish a
connection between quantity and number but also
distinguish between them. Measures are numbers
that are connected to a quantity. Expressions such

as 20 books, 3 centimetres, 4 kilos, and /2 a
chocolate are measures. Relations, like quantities,

do not have to be quantified. For example, we can
simply say that two quantities are equivalent or
different. This is a qualitative statement about the
relation between two quantities. But we can quantify
relations and we use numbers to do so: for example,
when we compare two measures, we are quantifying
a relation. If there are 20 children in a class and 17
books, we can say that there are 3 more children
than books. The number 3 quantifies the relation. We
can say 3 more children than books or 3 books
fewer than children; the meaning does not change
when the wording changes because the number 3
does not refer to children or to books, but to the
relation between the two measures.

A major use of mathematics is to quantify relations
and manipulate these representations to expand
our understanding of a situation. We came to the
conclusion from our review that under standing
relations between quantities is at the root of
understanding mathematical models. Thompson
(1993) suggested that ‘Quantitative reasoning is the
analysis of a situation into a quantitative structure —
a network of quantities and quantitative
relationships... A prominent characteristic of
reasoning quantitatively is that numbers and numeric
relationships are of secondary importance, and do
not enter into the primary analysis of a situation.

What is important is relationships among quantities’
(p. 165). Elsewhere, Thompson (1994) emphasised
that ‘a quantitative operation is non-numerical; it has
to do with the comprehension (italics in the original)
of a situation.’ (p. 187). So relations, like quantities,
are different from numbers but we use numbers to
quantify them.

Paper 4 of this synthesis discusses the quantification
of relations in mathematics, with a focus on the sorts
of relations that are part of learning mathematics in
primary school.

The coordination of basic concepts
and the development of higher order
concepts

Students in secondary school have the dual task of
refining what they have learned in primary school
and understanding new concepts, which are based
on reflections about and combinations of previous
concepts. The challenge for students in secondary
school is to learn to take a different perspective with
respect to their mathematics knowledge and, at the
same time, to learn about the power of this new
perspective. Students can understand much about
using mathematical representations (numbers,
diagrams, graphs) for quantities and relations and
how this helps them solve problems. Students

who have gone this far understand the role of
mathematics in representing and helping us
understand phenomena, and even generalising
beyond what we know. But they may not have
understood a distinct and crucial aspect of the
importance of mathematics: that, above and beyond
helping represent and explore what you know, it can
be used to discover what you do not know. In this
review, we consider two related themes of this
second side of mathematics: algebraic reasoning and
modelling. Papers 6 and 7 summarise the research
on these topics.

In the rest of this opening paper w e shall summarise
our main conclusions from our review. In other
words, Papers 2 to 7 contain our detailed reviews
of research on mathematics learning; each of the

six subsequent sections about a central topic in
mathematics learning is a summary of Papers 2 to 7.
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Key understandings in
mathematics: A summary
of the topics reviewed

Understanding extensive quantities
and whole numbers

Natural numbers are a way of representing
quantities that can be counted. When children learn
numbers, they must find out not just about the
counting sequence and how to count, but also about
how the numbers in the counting system represent
quantities and relations between them. We found a
great deal of evidence that children are aware of
quantities such as the size of objects or the amount
of items in groups of objects long before they learn
to count or understand anything about the number
system.This is quite clear in their ability to
discriminate objects by size and sets by

number when these discriminations can be

made perceptually.

Our review also showed that children learn to count
with surprisingly little difficulty. Counting is an activity
organised by principles such as the order invariance
of number labels, one-to-one correspondence
between items and counting labels, and the use of
the last label to say how many items are in the set.
There is no evidence of children being taught these
principles systematically before they go to school

and yet most children starting school at the age of
five years are already able to respect these principles
when counting and identify other people’s errors
when they violate counting principles.

However, research on children’s numerical
understanding has consistently shown that at first
they make very little connection between the
number words that they learn and their existing
knowledge about quantities such as size and

the amounts of items. Our review showed that
Thompson's (1993) theoretical distinction between
quantities and number is hugely relevant to
understanding children’s mathematics. For example,
many four-year-old children understand how to share
objects equally between two or more people, on a
one-for-A, one-for-B basis, but have some difficulty

in understanding that the number of items in two
equally shared sets must be the same, i.e. that if
there are six sweets in one set, there must be six

in the other set as well. To make the connection
between number words and quantities, children have
to grasp two aspects of number, which are cardinal

number and ordinal number. By cardinal number,we
mean that two sets with the same number of items
in them are equal in amount. The term ordinal
number refers to the fact that numbers are arranged
in an ordered series of increasing magnitude:
successive numbers in the counting sequence are
greater than the preceding number by |.Thus, 2 is

a greater quantity than | and 3 than 2 and it f ollows
that 3 must also greater than |.

There are three different theories about how
children come to co-ordinate their knowledge
of quantities with their knowledge of counting.

The first is Piaget's theory, which maintains that this
development is based on children’s schemas of
action and the coordination of the schemas with
each other. Three schemas of action are relevant

to natural number: adding, taking away, and setting
objects in correspondence. Children must also
understand how these schemas relate to each other.
They must, for example, understand that a quantity
increases by addition, decreases by subtraction, and
that if you add and take away the same amount to
an original quantity, that quantity stays the same.They
must also understand the additive composition of
number, which involves the coordination of one-to-
one correspondence with addition and subtraction:
if the elements of two sets are placed in
correspondence but one has more elements than
the other, the larger set is the sum of the smaller set
plus the number of elements for which there is no
corresponding item in the smaller set. Research has
shown that this insight is not attained by young
children, who think that adding elements to the
smaller set will make it larger than the larger set
without considering the number added.

A second view, in the form of a nativist theory,

has been suggested by Gelman and Butterworth
(Gelman & Butterworth, 2005). They propose that
from birth children have access to an innate, inexact
but powerful ‘analog’ system, whose magnitude
increases directly with the number of objects in an
array, and they attach the number words to the
properties occasioning these magnitudes. According
to this view both the system for knowing about
quantities and the principles of counting are innate
and are naturally coordinated.

A third theoretical alternative, proposed by Carey
(2004), starts from a standpoint in agreement with
Gelman'’s theory with respect to the innate analog
system and counting principles. However, Carey does
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not think that these systems are coordinated
naturally: they become so through a ‘parallel
individuation’ system, which allows very young
children to make precise discriminations between
sets of one and two objects, and a little later,
between two and three objects. During the same
period, these children also learn number words and,
through their recognition of |, 2 and 3 as distinct
quantities, they manage to associate the right count
words (‘one’, ‘two’ and ‘three’) with the right
quantities. This association between parallel
individuation and the count list eventually leads to
what Carey (2004) calls ‘bootstrapping”: the children
lift themselves up by their own intellectual
bootstraps by inducing a rule that the next count
word in the counting system is exactly one more
than the previous one.They do so, some time
between the age of three — and five years and,
therefore, before they go to school.

One important point to note about these three
theories is that they use different definitions of
cardinal number, and therefore different criteria for
assessing whether children understand cardinality

or not. Piaget’s criterion is the one that we have
mentioned already and which we ourselves think to
be right: it is the understanding that two or more
sets are equal in quantity when the number of items
in them is the same (and vice-versa). Gelman’s and
Carey's less demanding criterion for understanding
cardinality is the knowledge that the last count word
for the set represents the set’s quantity: if | count
‘one, two, three' items and realise that means that
that there are three in the set, | understand cardinal
number: In our view, this second view of cardinality is
inadequate for two reasons: first, it is actually based
on the position of the count word and is thus more
related to ordinal than cardinal number; second, it
does not include any consideration of the fact that
cardinal number involves inferences regarding the
equivalence of sets. Piaget's definition of cardinal and
ordinal number is much more stringent and it has
not been disputed by mathematics educators. He
was sceptical of the idea that children w ould
understand cardinal and ordinal number concepts
simply from learning how to count and the evidence
we reviewed definitely shows that learning about
quantities and numbers develop independently of
each other in young children.

This conclusion has important educational
implications. Schools must not be satisfied with
teaching children how to count: they must ensure
that children learn not only to count but also to

establish connections between counting and their
understanding of quantities.

Piaget's studies concentrated on children’s ability

to reason logically about quantitative relations. He
argued that children must understand the inverse
relation between addition and subtraction and also
additive composition (which he termed class-
inclusion and was later investigated under the label
of part-whole relations) in order to truly understand
number. The best way to test this sort of causal
hypothesis is through a combination of longitudinal
and intervention studies. Longitudinal studies with
the appropriate controls can suggest that A is
causally related to B if it is a specific predictor of B
at a later time. Intervention studies can test these
causal ideas: if children are successfully taught A and,
as a consequence, their learning of B improves, it

is safe to conclude that the natural, longitudinal
connection between A and B is also a causal one .

It had been difficult in the past to use this
combination of methods in the analysis of children’s
mathematics learning for a variety of reasons. First,
researchers were not clear on what sorts of logical
reasoning were vital to learning mathematics. There
are now clearer hypothesis about this: the inverse
relation between addition and subtraction and
additive composition of number appear as key
concepts in the work of different researchers.
Second, outcome measures of mathematics learning
were difficult to find. The current availability of
standardised assessments, either developed for
research or by policy makers for monitoring the
performance of educational systems, makes both
longitudinal and intervention studies possible, as
these can be seen as valid outcome measures. Our
own research has shown that researcher designed
and government designed standardised assessments
are highly correlated and, when used as outcome
measures in longitudinal and inter vention studies,
lead to convergent conclusions. Finally, in order to
carry out intervention studies, it is necessary to
develop ways of teaching children the key concepts
on which mathematics learning is grounded.
Fortunately, there are currently successful
interventions that can be used for further research
1o test the effect that learning about these key
concepts has on children’s mathematics learning.

Our review identified two longitudinal studies that
show that children’s understanding of logical aspects
of number is vital for their mathematics learning.
One was carried out in the United Kingdom and
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showed that children’s understanding of the inverse
relation between addition and subtraction and of
additive composition at the beginning of school

are specific predictors of their results in National
Curriculum maths tests (a government designed
and administered measure of children’s mathematics
learning) about 14 months later, after controlling for
their general cognitive ability, their knowledge of
number at school entry, and their working memory.

The second study, carried out in Germany, showed
that a measure of children’s understanding of the
inverse relation between addition and subtraction
when they were eight years old was a predictor

of their performance in an algebra test when they
were in university; controlling for the children'’s
performance in an intelligence test given at age eight
had no effect on the strength of the connection
between their understanding of the inverse relation
and their performance in the algebra measure.

Our review also showed that it is possible to
improve children’s understanding of these logical
aspects of number knowledge. Children who were
weak in this understanding at the beginning of school
and improved this understanding through a short
intervention performed significantly better than a
control group that did not receive this teaching.
Together, these studies allow us to conclude that it is
crucial for children to coordinate their understanding
of these logical aspects of quantities with their
learning of numbers in order to make good progress
in mathematics learning,

Our final step in this summary of research on whole
numbers considered how children use additive
reasoning to solve word problems. Additive
reasoning is the logical analysis of problems that
involve addition and subtraction, and of course the
key concepts of additive composition and the
inverse relation between addition and subtraction
play an essential role in this reasoning. The chief tool
used to investigate additive reasoning is the word
problem. In word problems a scene is set, usually in
one or two sentences, and then a question is posed.
We will give three examples.

A Bob has three marbles and Bill has four: how
many marbles do they have aftogether? Combine
problem.

B Wendy had four pictures on her wall and her
parents gave her three more: how many does she
have now! Change problem.

C Tom has seven books: Jane has five: how many
more books does Tom have than Jane? Compare
problem.

The main interest of these problems is that, although
they all involve very simple and similar additions and
subtractions, there are vast differences in the level of
their difficulty. When the three kinds of problem are
given in the form that we have just illustrated, the
Compare problems are very much harder than the
Combine and Change problems. This is not because
it is too difficult for the children to subtract 5 from 7,
which is how to solve this particular Compare
problem, but because they find it hard to work out
what to do so solve the problem. Compare
problems require reasoning about relations betw een
quantities, which children find a lot more difficult
than reasoning about quantities.

Thus the difficulty of these problems rests on how
well children manage to work out the arithmetical
relations that they involve. This conclusion is
supported by the fact that the relatively easy
problems become a great deal more difficult if the
mathematical relations are less transparent. For
example, the usually easy Change problem is a lot
harder if the result is given and the children have to
work out the starting point. For example, Wendy
had some pictures on her wall b ut then took 3 of
them down: now she has 4 pictures left on the wall:
how many were there in the first place? The reason
that children find this problem a relatively hard one
is that the story is about subtraction, but the solution
is an addition. Pupils therefore have to call on their
understanding of the inverse relation between
adding and subtracting to solve this problem.

One way of analysing children’s reactions to word
problems is with the framework devised by
Vergnaud, who argued that these problems involve
quantities, transformations and relations. A Change
problem, for example, involves the initial quantity and
a transformation (the addition or subtraction) which
leads to a new quantity, while Compare problems
involve two quantities and the relation between
them. On the whole, problems that involve relations
are harder than those involving transformations, but
other factors, such as the story being about addition
and the solution being a subtraction or vice versa
also have an effect.

The main impact of research on word problems has
been to reinforce the idea with which we began this
section. This idea is that in teaching children
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arithmetic we must make a clear distinction
between numerical analysis and the children’s
understanding of quantitative relations. VWWe must
remember that there is a great deal more to
arithmetical learning than knowing how to carry
out numerical procedures. The children have to
understand the quantitative relations in the
problems that they are asked to solve and how
to analyse these relations with numbers.

Understanding rational numbers and
intensive quantities

Rational numbers, like whole numbers, can be used
to represent quantities. There are some quantities
that cannot be represented by a whole number, and
to represent these quantities, we must use rational
numbers. Quantities that are represented by whole
numbers are formed by addition and subtraction: as
argued in the previous section, as we add elements
1o a set and count them (or conventional units, in
the case of continuous quantities), we find out what
number will be used to represent these quantities.
Quantities that cannot be represented by whole
numbers are measured not by addition but by
division: if we cut one chocolate, for example, in
equal parts, and want to have a number to represent
the parts, we cannot use a whole number.

We cannot use whole numbers when the quantity

that we want to represent numerically:

* is smaller than the unit used for counting,
irrespective of whether this is a natural unit
(e.g. we have less than one banana) or a
conventional unit (e.g. a fish weighs less than a kilo)

* involves a ratio between two other quantities (e.g.
the concentration of orange juice in a jar can be
described by the ratio of orange concentrate to
water; the probability of an event can be described
by the ratio between the number of favourable
cases to the total number of cases). These
quantities are called intensive quantities.

We have concluded from our review that there are
serious problems in teaching children about fractions
and that intensive quantities are not explicitly
considered in the curriculum.

Children learn about quantities that are smaller
than the unit through division. Two types of action
schemes are used by children in division situations:
partitioning, which involves dividing a whole into
equal parts, and correspondence situations, where

two quantities are involved, a quantity to be shared
and a number of recipients of the shares.

Partitioning is the scheme of action most often used
in primary schools in the United Kingdom to
introduce the concept of fractions. Research shows
that children have quite a few problems to solve
when they partition continuous quantities: for
example, they need to anticipate the connection
between number of cuts and number of parts, and
some children find themselves with an even number
of parts (e.g. 6) when they wanted to have an odd
number (e.g. 5) because they start out by
partitioning the whole in half. Children also find it
very difficult to understand the equivalence between
fractions when the parts they are asked to compare
do not look the same. For example, if they are
shown two identical rectangles, each cut in half but in
different ways (e.g. horizontally and diagonally), many
9- and |0-year-olds might say that the fractions are
not equivalent; in some studies, almost half of the
children in these age levels did not recognize the
equivalence of two halves that looked rather
different due to being the result of diff erent cuts.
Also, if students are asked to paint 2/3 of a figure
divided into 9 parts, many | |- to |2-year-olds may
be unable to do so, even though they can paint 2/3
of a figure divided into 3 parts;in a study in the
United Kingdom, about 40% of the students did not
successfully paint 2/3 of figures that had been divided
into 6 or 9 sections.

Different studies that we reviewed showed that
students who learn about fractions through the
engagement of the partitioning schema in division
tend to reply on perception rather than on the
logic of division when solving problems: they are
much more successful with items that can be
solved perceptually than with those that cannot.
There is a clear lesson here for education: number
understanding should be based on logic, not on
perception alone, and teaching should be designed
to guide children to think about the logic of
rational numbers.

The research that we reviewed shows that the
partitioning scheme develops over a long period of
time. This has led some researchers to develop ways
to avoid asking the children to par tition quantities by
providing them with pre-divided shapes or with
computer tools that do the partitioning for the
children. The use of these resources has positive
effects, but these positive effects seem to be
obtained only after large amounts of instruction.
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In some studies, the students had difficulties with the
idea of improper fractions even after prolonged
instruction. For example, one student argued with
the researcher during instruction that you cannot
have eight sevenths if you divided a whole into
seven parts.

In contrast to the difficulties that children have with
partitioning, children as young as five or six years in
age are quite good at using cor respondences in
division, and do so without having to carry out the
actual partitioning. Some children seem to
understand even before receiving any instruction
on fractions that, for example, two chocolates shared
among four children and four chocolates shared
among eight children will give the children in the
two groups equivalent shares of chocolate; they
demonstrate this equivalence in action by showing
that in both cases there is one chocolate to be
shared by two children.

Children’s understanding of quantities smaller than
one is often ahead of their kno wledge of fractional
representations when they solve problems using
the correspondence scheme. This is true of
understanding equivalence and even more so of
understanding order. Most children at the age of
eight or so realise that dividing | chocolate among
three children will give bigger pieces than dividing
one chocolate among four children. This insight
that they have about quantities is not necessarily
connected with their understanding of ordering
fractions by magnitude: the same children might say
that /3 is less than /4 because three is less than
four. So we find in the domain of rational numbers
the same distinction found in the domain of whole
numbers between what children know about
quantities and what they know about the numbers
used to represent guantities.

Research shows that it is possible to help children
connect their understanding of quantities with their
understanding of fractions and thus make progress
in rational number knowledge. Schools could make
use of children’s informal knowledge of fractional
quantities and work with problems about situations,
without requiring them to use formal
representations, to help them consolidate this
reasoning and prepare them for formalization.

Reflecting about these two schemes of action

and drawing insights from them places children in
different paths for understanding rational number.
When children use the correspondence scheme,

they can achieve some insight into the equivalence
of fractions by thinking that, if there are twice as
many things to be shared and twice as many
recipients, then each one's share is the same. This
involves thinking about a direct relation betw een
the quantities. The partitioning scheme leads to
understanding equivalence in a different way: if a
whole is cut into twice as many parts, the size of
each part will be halved. This involves thinking about
an inverse relation between the quantities in the
problem. Research consistently shows that children
understand direct relations better than inverse
relations and this may also be true of rational
number knowledge.

The arguments children use when stating that
fractional quantities resulting from sharing are or are
not equivalent have been described in one study in
the United Kingdom. These arguments include the
use of correspondences (e.g. sharing four chocolates
among eight children can be shown by a diagram to
be equivalent to sharing two chocolates among four
children because each chocolate is shared among
two children), scalar arguments (twice the number of
children and twice the number of chocolates means
that they all get the same), and an understanding of
the inverse relation between the number of parts
and the size of the parts (i.e. twice the number of
pieces means that each piece is halved in size). It
would be important to investigate whether
increasing teachers’ awareness of children’s own
arguments would help teachers guide children’s
learning in this domain of numbers more effectively.

Some researchers have argued that a better starting
point for teaching children about fractions is the use
of situations where children can use cor respondence
reasoning than the use of situations where the
scheme of partitioning is the relevant one. Our
review of children’s understanding of the equivalence
and order of fractions supports this claim. However,
there are no intervention studies comparing the
outcomes of these two ways of introducing children
to the use of fractions, and intervention studies
would be crucial to solve this issue: one thing is
children’s informal knowledge but the outcomes of
its formalization through instruction might be quite
another There is now considerably more information
regarding children’s informal strategies to allow for
new teaching programmes to be designed and
assessed. There is also considerable work on
curriculum development in the domain of teaching
fractions in primary school. Research that compares
the different forms of teaching (based on par titioning
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or based on correspondences) and the introduction
of different representations (decimal or ordinary)

is now much more feasible than in the past.
Intervention research, which could be carried out
in the classroom, is urgently needed. The available
evidence suggests that testing this hypothesis
appropriately could result in more successful
teaching and learning of rational numbers.

In the United Kingdom ordinary fractions continue
to play an important role in primary school
instruction whereas in some countries greater
attention is given to decimal representation than to
ordinary fractions in primary school. Two reasons are
proposed to justify the teaching of decimals bef ore
ordinary fractions . First, decimals are common in
metric measurement systems and thus their
understanding is critical for learning other topics,
such as measurement, in mathematics and science.
Second, decimals should be easier than ordinary
fractions to understand because decimals can be
taught as an extension of place value representation;
operations with decimals should also be easier and
taught as extensions of place value representation.

It is certainly true that decimals are used in
measurement and thus learning decimals is necessary
but ordinary fractions often appear in algebraic
expressions; so it is not clear a priori whether one
form of representation is more useful than the other
for learning other aspects of mathematics. However,
the second argument, that decimals are easier than
ordinary fractions, is not supported in surveys of
students’ performance: students find it difficult to
make judgements of equivalence and order as m uch
with decimals as with ordinary fractions. Students
aged 9 to || years have limited success when
comparing decimals written with different numbers
of digits after the decimal point (e.g. 0.5 and 0.36):
the rate of correct responses varied between 36%
and 52% in the three different countries that
participated in the study, even though all the children
have been taught about decimals.

Some researchers (e.g. Nunes, 1997;Tall, 1992;
Vergnaud, 1997) argue that different representations
shed light on the same concepts from different
perspectives. This would suggest that a way to
strengthen students’ learning of rational numbers is
to help them connect both representations. Case
studies of students who received instruction that
aimed at helping students connect the tw o forms of
representation show encouraging results. However,
the investigation did not include the appropriate

controls and so it does not allow for establishing
firmer conclusions.

Students can learn procedures for comparing, adding
and subtracting fractions without connecting these
procedures with their understanding of equivalence
and order of fractional quantities, independently of
whether they are taught with ordinary or decimal
fractions representation. This is not a desired
outcome of instruction, but seems to be a quite
common one. Research that focuses on the use of
children’s informal knowledge suggests that it is
possible to help students make connections between
their informal knowledge and their learning of
procedures but the evidence is limited and the
consequences of this teaching have not been
investigated systematically.

Research has also shown that students do not
spontaneously connect their knowledge of fractions
developed with extensive quantities smaller than the
unit with their understanding of intensive quantities.
Students who succeed in understanding that two
chocolates divided among four children and four
chocolates divided among 8 children vield the same
size share do not necessarily understand that a paint
mixture made with two litres of white and two of
blue paint will be the same shade as one made with
four litres of white and four of blue paint.

Researchers have for some time distinguished
between different situations where fractions are
used and argued that connections that seem
obvious to an adult are not necessarily obvious
to children. There is now evidence that this is so.
There is a clear educational implication of this
result: if teaching children about fractions in the
domain of extensive quantities smaller than the
unit does not spontaneously transfer to their
understanding of intensive quantities, a complete
fractions curriculum should include intensive
quantities in the programme.

Finally, this review opens the way for a fresh research
agenda in the teaching and learning of fractions. The
source for the new research questions is the finding
that children achieve insights into relations between
fractional quantities before knowing how to
represent them. It is possible to envisage a research
agenda that would not focus on children’s
misconceptions about fractions, but on children’s
possibilities of success when teaching star ts from
thinking about quantities rather than from learning
fractional representations.
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Understanding relations and their
graphical representation

Children form concepts about quantities from their
everyday experiences and can use their schemas of
action with diverse representations of the quantities
(iconic, numerical) to solve problems. They often
develop sufficient awareness of quantities to discuss
their equivalence and order as well as how quantities
are changed by operations. It is significantly more
difficult for them to become aware of the relations
between quantities and operate on relations.

The difficulty of understanding relations is clear both
with additive and multiplicative relations between
quantities. Children aged about eight to ten y ears
can easily say, for example, how many marbles a boy
will have in the end if he started a game with six
marbles, won five in the first game, lost three in the
second game, and won two in the third game.
However; if they are not told how many marbles the
boy had at the start and are asked how many more
or fewer marbles this boy will have after playing the
three games, they find this second problem
considerable harder, particularly if the first game
involves a loss.

Even if the children are taught how to represent
relations and recognise that winning five in the first
game does not mean having five marbles, they often
interpret the results of operations on relations as if
they were quantities. Children find both additive and
multiplicative relations significantly more difficult than
understanding quantities.

There is little evidence that the design of
mathematics curricula has so far taken into account
the importance of helping students become aware
of the difference between quantities and relations.
Some researchers have carried out experimental
teaching studies which suggest that it is possible to
promote students’ awareness of additive relations
as different from quantities; this was not an easy
task but the instruction seemed to have positive
results (but note that there were no control
groups). Further research must be carried out to
analyse how this knowledge affects mathematics
learning: longitudinal and intervention studies
would be crucial to clarify this. If positive results
are found, there will be imperative policy
implications.

The first teaching that children receive in school
about multiplicative relations is about proportions.
Initial studies on students’ understanding of

proportions previously led to the conclusion that
students’ problems with proportional reasoning
stemmed from their difficulties with multiplicative
reasoning. However, there is presently much
evidence to show that, from a relatively early age
(about five to six years in the United Kingdom),
many children (our estimate is about tw o-thirds)
already have informal knowledge that allows them
to solve multiplicative reasoning problems.

Multiplicative reasoning problems are defined by the
fact that they involve two (or more) measures
linked by a fixed ratio. Students’ informal knowledge
of multiplicative reasoning stems from the schema
of one-to-many correspondence, which they use
both in multiplication and division problems. When
the product is unknown, children set the elements
in the two measures in correspondence (e.g. one
sweet costs 4p) and figure out the product (how
much five sweets will cost) by counting or adding.
When the correspondence is unknown (e.g. if you
pay 20p for five sweets, how much does each
sweet cost), the children share out the elements
(20p shared in five groups) to find what the
correspondence is.

This informal knowledge is currently ignored in

UK. schools, probably due to the theory that
multiplication is essentially repeated addition and
division is repeated subtraction. However, the
connections between addition and multiplication on
the one hand, and subtraction and division on the
other hand, are procedural and not conceptual.

So students’ informal knowledge of multiplicative
reasoning could be developed in school from an
earlier age.

Even after being taught other methods to solve
proportions problems in school, students continue
to use one-to-many correspondences reasoning to
solve proportions problems; these solutions have
been called building up methods. For example, if a
recipe for four people is to be adapted to serve six
people, students figure out that six people is the
same as four people plus two people; so they figure
out what half the ingredients will be and add this to
the quantity required for four people. Building up
methods have been documented in many different
countries and also among people with low levels of
schooling. A careful analysis of the reasoning in
building-up methods suggests that the students focus
on the quantities as they solve these problems, and
find it difficult to focus on the relations between
the quantities.
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Research carried out independently in different
countries has shown that students sometimes use
additive reasoning about relations when the
appropriate model is a multiplicative one. Some
recent research has shown that students also use
multiplicative reasoning in situations where the
appropriate model is additive. These results suggest
that children use additive and multiplicative models
implicitly and do not make conscious decisions
regarding which model is appropriate in a specific
situation. We concluded from our review that
students’ problems with proportional reasoning
stems from their difficulties in becoming explicitly
aware of relations between quantities. Greater
awareness of the models implicit in their solutions
would help them distinguish between situations that
involve different types of relations: additive,
proportional or quadratic, for example.

The educational implication from these findings

is that schools should take up the task of helping
students become more aware of the models that
they use implicitly and of ways of testing their
appropriateness to particular situations. The
differences between additive and multiplicative
situations rests on the relations between quantities;
so it is likely that the critical move here is to help
students become aware of the relations between
quantities implicit in the procedure they use to
solve problems.

Two radically different approaches to teaching
proportions and linear functions in schools can be
identified in the literature. These constitute pragmatic
theories, which can guide teachers, but have as yet
not been tested systematically. The first, described as
functional and human in focus, is based on the
notion that students’ schemas of action should be
the starting point for this teaching. Through
instruction, they should become progressively more
aware of the relations between quantities that can
be identified in such problems. Diagrams, tables and
graphs are seen as tools that could help students
understand the models of situations that they are
using and make them into models for other
situations later.

The second, described in the literature as algebraic,
proposes that there should be a sharp separation
between students’ intuitive knowledge, in which
physical and mathematical knowledge are
intertwined, and mathematical knowledge. Students
should be led to formalisations early on in
instruction and re-establish the connections between

mathematical structures and physical knowledge

at a later point. Representations using ordinary and
decimal fractions and the number line are seen as
the tools that can allow students to abstract early

on from the physical situations. Students should learn
early on to represent equivalences betw een ordinary
fractions (e.g. 2/4 = 4/8), a representation that would
provide insight into proportions, and also
equivalences between ordinary and decimal fractions
(2/4 = 0.5), which would provide insight into the
ordering and equivalence of fractions marked on

the number line.

Each of these approaches makes assumptions about
the significance of students’ informal knowledge at
the start of the teaching programme. The functional
approach assumes that students’ informal knowledge
can be formalised through instruction and that this
will be beneficial to learning. The algebraic approach
assumes that students’ informal knowledge is an
obstacle to students’ mathematics learning. There is
evidence from a combination of longitudinal and
intervention methods, albeit with younger children,
that shows that students’ knowledge of informal
multiplicative reasoning is a causal and positiv e factor
in mathematics learning. Children who scored higher
in multiplicative reasoning problems at the start of
their first year in school performed significantly
better in the government designed and school
administered mathematics achievement test than
those whose scores were lower. This longitudinal
relationship remained significant after the appropriate
controls were taken into account. The intervention
study provides results that are less clear because the
children were taught not only about multiplicative
reasoning but also about other concepts considered
key to mathematics learning. Nevertheless, children
who were at risk for mathematics learning and
received teaching that included multiplicative
reasoning, along with two other concepts, showed
average achievement in the standardised
mathematics achievement tests whereas the

control group remained in the bottom 20% of the
distribution, as predicted by their assessment at the
start of school. So, in terms of the assumptions
regarding the role of informal knowledge, the
functional approach seems to have the edge over
the algebraic approach.

These two approaches to instruction also differ in
respect to what students need to know to benefit
from teaching and what they learn during the course
of instruction. Within the functional approach, the
tools used in teaching are diagrams, tables, and
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graphs so it is clear that students need to lear n to
read graphs in order to be able to use them as tools
for thinking about relations between quantities and
functions. Research has shown that students have
ideas about how to read graphs before instruction
and these ideas should be taken into account when
graphs are used in the classroom. It is possible to
teach students to read graphs and to use them in
order to think about relations in the course of
instruction about proportions, but much more
research is needed to show how students’ thinking
changes if they do learn to use graphs to analyse the
type of relation relevant in specific situations. Within
the algebraic approach, it is assumed that students
understand the equivalence of fractions without
reference to situations. Our review of students’
understanding of fractions, summarised in the
previous section, shows that this is not trivial so

it is necessary to show that students can, in the
course of this teaching, learn both about fraction
equivalence and proportional relations.

There is no evidence to show how either of these
approaches to teaching works in promoting
students’ progress nor that one of them is more
successful than the other. Research that can clarify
this issue is urgently needed and could have a major
impact in promoting better learning by UK.
students. This is particularly important in view of
findings from the international comparisons that
show that UK students do relatively well in additive
reasoning items but comparatively poorly in
multiplicative reasoning items.

Understanding space and its
representation in mathematics

When children begin to be taught about geometry,
they already know a great deal about space, shape,
size, distance and orientation, which are the basic
subject matter of geometry. They are also quite
capable of drawing logical inferences about spatial
matters. In fact, their spatial knowledge is so
impressive and so sophisticated that one might
expect geometry to be an easy subject for them.
Why should they have any difficulty at all with
geometry if the subject just involves learning how
to express this spatial knowledge mathematically?

However, many children do find geometry hard and
some children continue to make basic mistakes right
through their time at school. There are two main
reasons for these well-documented difficulties. One

reason is that many of the spatial relations that
children must think about and learn to analyse
mathematically in geometry classes are different from
the spatial relations that they learn about in their
pre-school years. The second is that geometry makes
great demands on children’s spatial imagination. In
order to measure length or area or angle , for
example, we have to imagine spaces divided into
equal units and this turns out to be quite hard for
children to learn to do systematically.

Nevertheless, pre-school children’s spatial knowledge
and spatial experiences are undoubtedly relevant to
the geometry that they must learn about later, and it
is important for teachers and researchers alike to
recognise this. From a very early age children are
able to distinguish and remember different shapes,
including basic geometrical shapes. Children are able
to co-ordinate visual information about size and
distance to recognise objects by their actual size,
and also to co-ordinate visual shape and or ientation
information to recognise objects by their actual
shapes. In social situations, children quite easily work
out what someone else is looking at by extrapolating
that person’s line of sight often across quite large
distances, which is an impressive feat of spatial
imagination. Finally, they are highly sensitive not just
to the orientation of lines and of objects in their
environments, but also to the relation between
orientations: for example, young children can,
sometimes at least, recognise when a line in the
foreground is parallel to a stable background feature.

These impressive spatial achievements must help
children in their efforts to understand the geometry
that they are taught about at school, but there is little
direct research on the links between children’s
existing informal knowledge about space and the
progress that they make when they are eventually
taught about geometry. This is a worrying gap,
because research of this sort would help teachers

to make an effective connection between what their
pupils know already and what they have to learn in
their initial geometry classes. It would also give us a
better understanding of the obstacles that children
encounter when they are first taught about geometry.

Some of these obstacles are immediately apparent
when children learn about measurement, first of
length and then of area. In order to learn how to
measure length, children must grasp the underlying
logic of measurement and also the role of iterated
(i.e. repeated) measurement units, e.g. the unit of |
cm repeated on a ruler: Using a ruler also involves an
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active form of one-to-one correspondence, since
the child must imagine and impose on the line being
measured the same units that are explicit and
obvious on the ruler. Research suggests that children
do have a reasonable understanding of the
underlying logic of measurement by the time that
they begin to learn about geometry, but that many
have a great deal of difficulty in grasping how to
imagine one-to-one correspondence between the
iterated units on the ruler and imagined equivalent
units on the line that they are measuring. One
common mistake is to set the | cm rather than

the O cm point at one end of the line . The evidence
suggests that many children apply a poorly
understood procedure when they measure length
and are not thinking, as they should, of one-to-one
correspondence between the units on the ruler and
the length being measured. There is no doubt that
teachers should think about how to promote
children’s reflection on measurement procedures.
Nunes, Light and Mason (1993), for example,
showed that using a broken ruler was one way

to promote this.

Measurement of area presents additional problems.
One is that area is often calculated from lengths,
rather than measured. So, although the measurement
is in one kind of unit, e.g. centimetres, the final
calculation is in another, e.g. square centimetres. This
is what Vergnaud calls a ‘product of measures’
calculation. Another potential problem is that most
calculations of area are multiplicative: with rectangles
and parallelograms, one has to multiply the figure's
base by height, and with triangles one must calculate
base by height and then halve it. There is evidence
that many children attempt to calculate area by
adding parts of the perimeter, rather than by
multiplying. One consequence of the multiplicative
nature of area calculations is that doub ling a figure's
dimensions more than doubles its area. Think of a
rectangle with a base of 10 cm and a height of 4 cm,
its area is 40 cm 2 if you enlarge the figure by
doubling its base and height (20 cm x 8 cm), you
quadruple its area (160 cm 2).This set of relations

is hard for pupils, and for many adults too, to
understand.

The measurement of area also raises the question
of relations between shapes. For example the proof
that the same base by height rule for measuring
rectangles applies to parallelograms as well rests

on the demonstration that a rectangle can be
transformed into a parallelogram with the same
height and base without changing its area. In turn

the rule for finding the area of triangles, A = )2
(base x height), is justified by the fact every triangle
can be transformed into a parallelogram with the
same base and height by doubling that triangle. Thus,
rules for measuring area rest heavily on the relations
between geometric shapes. Although Wertheimer
did some ingenious studies on how children were
able to use of the relations betw een shapes to help
them measure the area of some of these shapes,
very little research has been done since then on
their understanding of this centrally important
aspect of geometry.

In contrast, there is a great deal of research on
children’s understanding of angles. This research
shows that children have very little understanding
of angles before they are taught about geometry.
The knowledge that they do have tends to be
quite disconnected because children often fail to
see the connection between angles in dissimilar
contexts, like the steepness of a slope and how
much a person has to turn at a corner. There is
evidence that children begin to connect what they
know about angles as they grow older: they
acquire, in the end, a fairly abstract understanding
of angle. There is also evidence, mostly from
studies with the programming language Logo, that
children learn about angle relatively well in the
context of movement.

Children’s initial uncertainties with angles contrast
sharply to the relative ease with which they adopt
the Cartesian framework for plotting positions in

any two-dimensional space. This framework requires
them to be able to extrapolate imaginary pairs of
straight lines, one of which is perpendicular to the
vertical axis and the other to the hor izontal axis, and
then to work out where these imaginary lines will
meet, in order to plot specific positions in space.

At first sight this might seem an extraordinarily
sophisticated achievement, but research suggests

that it presents no intellectual obstacle at all to most
children. Their success in extrapolating imaginary
straight lines and working out their meeting point may
stem for their early experiences in social interactions
of extrapolating such lines when working out what
other people are looking at, but we need longitudinal
research to establish whether this is so. Some further
research suggests that, altthough children can usually
work out specific spatial positions on the basis of
Cartesian co-ordinates, they often find it hard to use
these co-ordinates to work out the relation between
two or more different positions in space.
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We also need research on another possib le
connection between children’s early informal spatial
knowledge and how well they learn about geometry
later on. We know that very young children tell
shapes apart, even abstract geometric shapes,
extremely well, but it is also clear that when children
begin to learn about geometry they often find it
hard to decompose complicated shapes into several
simpler component shapes. This is a worrying
difficulty because the decomposition of shapes plays
an important part in learning about measurement of
area and also of angles. More research is needed on
how children learn that particular shapes can be
broken down into other component shapes.

Overall, research suggests that the relation between
the informal knowledge that children build up before
they go to school and the progress that they mak e
at school in geometry is a crucial one.Yet, it is a
relation on which there is very little research indeed
and there are few theories about this possible link as
well. The theoretical frameworks that do exist tend
to be pragmatic ones. For example, the Institute
Freudenthal group assume a strong link betw een
children’s preschool spatial knowledge and the
progress that they make in learning about geometry
later on, and argue that improving children’s early
understanding of space will have a beneficial effect
on their learning about geometry.Yet, there is no
good empirical evidence for either of these two
important claims.

Algebraic reasoning

Research on learning algebra has considered a range
of new ideas that have to be understood in school
mathematics: the use and meaning of letters and
expressions to represent numbers and variables;
operations and their properties; relations, functions,
equations and inequalities; manipulation and
transformation of symbolic statements. Young
children are capable of understanding the use of a
letter to take the place of an unknown number, and
are also able to construct statements about
comparisons between unknown quantities, but
algebra is much more than the substitution of letters
for numbers and numbers for letters. Letters are
used in mathematics in varying ways. They are used
as labels for objects that have no numerical value,
such as vertices of shapes or for objects that do
have numerical value, such as lengths of sides of
shapes. They denote fixed constants such as g, e or T
and also non-numerical constants such as | and they

represent unknowns and variables. Distinguishing
between these meanings is usually not taught
explicitly, and this lack of instruction might cause
children some difficulty: g, for example, can indicate
grams, acceleration due to gravity, an unknown in an
equation, or a variable in an expression.

Within common algebraic usage, Kiichemann (1981)
identified six different ways adolescents used letters
in the Chelsea diagnostic test instrument (Hart et al,,
1984). Letters could be evaluated in some way,
ignored, used as shorthand for objects or treated as
objects used as a specific unknown, as a generalised
number, or as a variable. These interpretations
appear to be task-dependent, so learners had
developed a sense of what sorts of question were
treated in what kinds of ways, i.e. generalising
(sometimes idiosyncratically) about question-types
through familiarity and prior experience.

The early experiences students have in algebra are
therefore very important, and if algebra is presented
as ‘arithmetic with letters' there are many possible
confusions. Algebraic statements are about
relationships between variables, constructed using
operations; they cannot be calculated to find an
answer until numbers are substituted, and the same
relationship can often be represented in many
different ways. The concept of equivalent
expressions is at the heart of algebraic manipulation,
simplification, and expansion, but this is not always
apparent to students. Students who do not
understand this try to act on algebraic expressions
and equations in ways which have worked in
arithmetical contexts, such as trial-and-error, or
trying to calculate when they see the equals sign,

or rely on learnt rules such as ' BODMAS’ which

can be misapplied.

Students’ prior experience of equations is often
associated with finding hidden numbers using
arithmetical facts, such as ‘what number, times by 4,
gives 247 being expressed as 4p = 24. An algebraic
approach depends on understanding operations or
functions and their inverses, so that addition and
subtraction are understood as a pair, and
multiplication and division are understood as a pair.
This was discussed in an ear lier section. Later on,
roots, exponents and logarithms also need to be
seen as related along with other functions and their
inverses. Algebraic understanding also depends on
understanding an equation as equating two
expressions, and solving them as finding out for
what values of the variable they are equal. New
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technologies such as graph-plotters and spreadsheets
have made multiple representations available and
there is substantial evidence that students who have
these tools available over time develop a stronger
understanding of the meaning of expressions, and
equations, and their solutions, than equivalent
students who have used only formal pencil-and-
paper techniques.

Students have to learn that whereas the
mathematical objects they have understood in
primary school can often be modelled with

material objects they now have to deal with objects
that cannot always be easily related to their
understanding of the material world, or to their out-
of-school language use.The use of concrete models
such as rods of ‘unknown’ related lengths, tiles of
‘unknown’ related areas, equations seen as balances,
and other diagrammatical methods can provide
bridges between students’ past experience and
abstract relationships and can enable them to make
the shift to seeing relations rather than number as
the main focus of mathematics. All these metaphors
have limitations and eventually, particularly with the
introduction of negative numbers, the metaphors
they provide break down. Indeed it was this
realisation that led to the invention of

algebraic notation.

Students have many perceptions and cognitive
tendencies that can be harnessed to help them learn
algebra. They naturally try to relate what they are
offered to what they already know.While this can

be a problem if students refer to computational
arithmetic, or alphabetic meaning of letters

(e.g.a = apples), it can also be useful if they refer to
their understanding of relations between quantities
and operations and inverses. For example, when
students devise their own methods for mental
calculation they often use relations betw een numbers
and the concepts of distributivity and associativity.

Students naturally try to generalise when they see
repeated behaviour, and this ability has been used
successfully in approaches to algebra that focus on
expressing generalities which emerge in
mathematical exploration. When learners need to
express generality, the use of letters to do so makes
sense to them, although they still have to learn the
precise syntax of their use in order to comm unicate
unambiguously. Students also respond to the visual
impact of mathematics, and make inferences based
on layout, graphical interpretation and patterns in
text; their own mathematical jottings can be

structured in ways that relate to underlying
mathematical structure. Algebraic relationships
represented by graphs, spreadsheets and
diagrammatic forms are often easier to understand
than when they are expressed in symbols. For
example, students who use function machines are
more likely to understand the order of operations
in inverse functions.

The difficulties learners have with algebra in

secondary school are nearly all due to their inability
1o shift from earlier understandings of arithmetic to
the new possibilities afforded by algebraic notation.

* They make intuitive assumptions and apply
pragmatic reasoning to a symbol system they do
not yet understand.

* They need to grasp the idea that an algebraic
expression is a statement about relationships
between numbers and operations.

* They may confuse equality with equivalence and try
to get answers rather than transform expressions.

* They get confused between using a letter to stand
for something they know, and using it to stand for
something they do not know, and using it to stand
for a variable.

* They may not have a purpose for using algebra,
such as expressing a generality or relationship, so
cannot see the meaning of what they are doing.

New technologies offer immense possibilities for
imbuing algebraic tasks with meaning, and for
generating a need for algebraic expression.

The research synthesis sets these obser vations out
in detail and focuses on detailed aspects of algebraic
activity that manifest themselves in school
mathematics. It also formulates recommendations
for practice and research.

Modelling, problem-solving and
integrating concepts

Older students’ mathematical learning involves
situations in which it is not immediately apparent
what mathematics needs to be done or applied,
nor how this new situation relates to previous
knowledge. Learning mathematics includes learning
when and how to adapt symbols and meanings to
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apply them in unfamiliar situations and also
knowing when and how to adapt situations and
representations so that familiar tools can be
brought to bear on them. Students need to learn
how to analyse complex situations in a variety of
representations, identify variables and relationships,
represent these and develop predictions or
conclusions from working with representations

of variables and relationships. These might be
presented graphically, symbolically, diagrammatically
or numerically.

In secondary mathematics, students possess not only
intuitive knowledge from outside mathematics and
outside school, but also a range of quasi-intuitive
understandings within mathematics, derived from
earlier teaching and generalisations, metaphors,
images and strategies that have served them well in
the past. In Tall and Vinner's pragmatic theory, (1981)
these are called ‘concept images’, which are a ragbag
of personal conceptual, quasi-conceptual, perceptual
and other associations that relate to the language of
the concept and are loosely connected by the
language and observable artefacts associated with
the concept. The difference between students’
concept images and conventional definitions causes
problems when they come to learn new concepts
that combine different earlier concepts. They have
to expand elementary meanings to understand new
abstract concepts, and sometimes these concepts
do not fit with the images and models that students
know. For example, rules for combining quantities do
not easily extend to negative numbers; multiplication
as repeated addition does not easily extend to
multiplying decimals.

There is little research and theoretical exploration
regarding how combinations of concepts are
understood by students in general. For example,

it would be helpful to know if students who
understand the use of letters, ratio, angle, functions,
and geometrical facts well have the same difficulties
in learning early trigonometry as those whose
understanding is more tenuous. Similarly, it would
be helpful to know if students whose algebraic
manipulation skills are fluent understand quadratic
functions more easily, or differently, from students
who do not have this, but do understand
transformation of graphs.

There is research about how students learn to use
and apply their knowledge of functions, particularly
in the context of modelling and prob lem-solving.
Students not only have to learn to think about

relationships (beyond linear relationships with which
they are already familiar), but they also need to think
about relations between relations. Our analysis

(see Paper 4) suggested that curricula presently do
not consider the important task of helping students
become aware of the distinctions between quantities
and relations; this task is left to the students
themselves. It is possible that helping students make
this distinction at an earlier age could have a positive
impact on their later learning of algebra.

In the absence of specific instructions, students tend
to repeat patterns of learning that have enabled
them to succeed in other situations o ver time.
Students tend to start on new problems with
qualitative judgements based on a particular context,
or the visual appearance of symbolic representations,
then tend to use additive reasoning, then form
relationships by pattern recognition or repeated
addition, and then shift to proportional and relational
thinking if necessary. The tendency to use addition as
a first resort persists as an obstacle into secondary
mathematics. Students also tend to check their
arithmetic if answers conflict rather than adapting
their reasoning by seeing if answers make sense or
not, or by analysing what sorts of relations are
important in the problem. Pedagogic intervention
over time is needed to enable learners to look for
underlying structure and, where multiple
representations are available (graphs, data, formulae,
spreadsheets), students can, over time, develop new
habits that focus on covariation of variables.
However, they need knowledge and experience of a
range of functions to draw on. Students are unlikely
to detect an exponential relationship unless they
have seen one before, but they can describe changes
between nearby values in additive terms. A shift to
describing changes in multiplicative terms does not
happen naturally.

We hoped to find evidence about how students
learn to use mathematics to solve problems when it
is not immediately clear what mathematics they
should be using. Some evidence in elementary
situations has been described in an earlier section,
but at secondary level there is only evidence of
successful strategies, and not about how students
come to have these strategies. In modelling and
some other problem-solving situations successful
students know how to identify variables and how to
form an image of simultaneous variation. Successful
students know how to hold one variable still while
the change in another is obser ved. They are also able
to draw on a repertoire of known function-types to
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say more about how the changes in variables

are related. It is more common to find secondary
students treating each situation as ad hoc and

using trial-and-adjustment methods which are
arithmetically-based. Pedagogic intervention over
time is needed to enable them to shift towards
seeing relationships, and relations between relations,
algebraically and using a range of representational
tools to help them do so.

The tendencies described above are specific
instances of a more general issue. ‘Outside’
experiential knowledge is seldom appropriate as

a source for meaning in higher mathematics, and
students need to learn how to distinguish between
situations where earlier and ‘outside’ understandings
are, and are not, going to be helpful. For example, is
it helpful to use your ‘outside’ knowledge about
cooking when solving a ratio problem about the size
of cakes! In abstract mathematics the same is true:
the word ‘similar’ means something rather vague

in everyday speech, but has specific meaning in
mathematics. Even within mathematics there are
ambiguities. We have to understand, for example,
that -40 is greater in magnitude than -4, but a
smaller number.

All students generalise inductively from the examples
they are given. Research evidence of secondary
mathematics reveals many typical problems that
arise because of generalising irrelevant features

of examples, or over-generalising the domain of
applicability of a method, but we found little
systematic research to show instances where the
ability to generalise contributes positively to learning
difficult concepts, except to generate a need to learn
the syntax of algebra.

Finally, we found considerable evidence that
students do, given appropriate experiences over
time, change the ways in which they approach
unfamiliar mathematical situations and new
concepts. We only found anecdotal evidence that
these new ways to view situations are extended
outside the mathematics classroom. There is
considerable evidence from long-term curriculum
studies that the procedures students have to learn
in secondary mathematics are learnt more easily if
they relate to less formal explorations they have
already undertaken. There is evidence that
discussion, verbalisation, and explicitness about
learning can help students make these changes.

Five common themes across
the topics reviewed

In our view, a set of coherent themes cuts across the
rich, and at first sight heterogeneous, topics around
which we have organised our outline. These themes
rise naturally from the material that we have
mentioned, and they do not include recent attempts
to link brain studies with mathematical education. In
our view, knowledge of brain functions is not yet
sophisticated enough to account for assigning meaning,
forming mathematical relationships or manipulating
symbols, which we have concluded are the significant
topics in studies of mathematical lear ning.

In this section, we summarise five themes that
emerged as significant across the research on the
different topics, summarised in the previous sections.

Number

Number is not a unitary idea that develops
conceptually in a linear fashion. In learning, and in
mathematical meaning, understanding of number
develops in complementary strands, sometimes with
discontinuities and changes of meaning. Emphasis on
calculation and manipulation with numbers rather
than on understanding the underlying relations and
mathematical meanings can lead to overreliance and
misapplication of methods.

Most children start school with everyday
understandings that can contribute to their early
learning of number. They understand ‘more’ and ‘less’
without knowing actual quantities, and can compare
discrete and continuous quantities of familiar objects.
Whole number is the tool which enables them to be
precise about comparisons and relations between
quantities, once they understand cardinality.

Learning to count and understanding quantities are
separate strands of development which have to be
experienced alongside each other. This allows
comparisons and combinations to be made that are
expressed as relations. Counting on its own does not
provide for these. Counting on its own also means
that the shift from discrete to contin uous number is
a conceptual discontinuity rather than an extension
of meaning.

Rational numbers (we have used ‘fraction’ and
‘rational number’ interchangeably in order to focus
on their meaning for learners, rather than on their
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mathematical definitions) arise naturally for children
from understanding division in sharing situations,
rather than from partitioning wholes. Understanding
rational numbers as a way of comparing quantities is
fundamental to the development of multiplicative
and proportional reasoning, and to applications in
geometry, science, and everyday life. This is not the
same as saying that children should do arithmetic
with rational numbers. The decimal representation
does not afford this connection (afthough it is
relatively easy to do additive arithmetic with decimal
fractions, as long as the same number of digits
appears after the decimal point).

The connection between number and quantity
becomes less obvious in higher mathematics, e.g. on
the co-ordinate plane the numbers indicate scaled
lengths from the axes, but are more usefully
understood as values of the variables in a function.
Students also have to extend the meaning of
number to include negative numbers, infinitesimals,
irrationals, and possibly complex numbers. Number
has to be abstracted from images of quantity and
used as a set of related, continuous, values which
cannot all be expressed or depicted precisely.
Students also have to be able to handle number-like
entities in the form of algebraic terms, expressions
and functions. In these contexts, the idea of number
as a systematically related set (and subsets) is central
to manipulation and transformation; they behave like
numbers in relations, but are not defined quantities
that can be enumerated. Ordinality of number also
has a place in mathematics, in the domain of
functions that generate sequences, and also in
several statistical techniques.

Successful learning of mathematics includes
understanding that number describes quantity; being
able to make and use distinctions between different,
but related, meanings of number; being able to use
relations and meanings to inform application and
calculation; being able to use number relations to
move away from images of quantity and use n umber
as a structured, abstract, concept.

Logical reasoning plays a crucial
part in every branch of mathematical
learning

The importance of logic in children’s understanding
and learning of mathematics is a central theme in our
review. This idea is not a new one, since it was also
the main claim that Piaget made about children’s

understanding of mathematics. However, Piaget’s
theory has fallen out of favour in recent years, and
many leading researchers on mathematics learning
either ignore or actively dismiss his and his colleagues’
contribution to the subject. So, our conclusion about
the importance of logic may seem a surprising one
but, in our view, it is absolutely inescapable. We
conclude that the evidence demonstrates beyond
doubt that children rely on logic in learning
mathematics and that many of their difficulties in
solving mathematical problems are due to failures on
their part to make the correct logical move which
would have led them to the correct solution.

We have reviewed evidence that four different
aspects of logic have a crucial role in learning about
mathematics. Within each of these aspects we have
been able to identify definite changes over time in
children’s understanding and use of the logic in
question. The four aspects follow.

The logic of correspondence (one-to-one
and one-to-many correspondence)

Children must understand one-to-one
correspondence in order to learn about cardinal
number. Initially they are much more adept at
applying this kind of correspondence when they
share than when they compare spatial arrays of
items. The extension of the use of one-to-one
correspondence from sharing to working out the
numerical equivalence or non-equivalence of two or
more spatial arrays is a vastly important step in early
mathematical learning.

One—to-many correspondence, which itself is an
extension of children’s existing knowledge of one-to-
one correspondences, plays an essential, but until
recently largely ignored, part in children’s learning
about multiplication. Researchers and teachers have
failed to consider that one-to-many correspondence
is a possible basis for children’s initial multiplicative
reasoning because of a wide-spread assumption that
this reasoning is based on children’s additive
knowledge. However, recent evidence on how to
introduce children to multiplication shows that
teaching them multiplication in terms of one-to-many
correspondence is more effective than teaching them
about multiplication as repeated addition.

The logic of inversion

The subject of inversion was also neglected until
fairly recently, but it is now clear that understanding
that the addition and subtraction of the same
quantity leaves the quantity of a set unchanged is of
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great importance in children’s additive reasoning.
Longitudinal evidence also shows that this
understanding is a strong predictor of children’s
mathematical progress. Experimental research
demonstrates that a flexible understanding of
inversion is an essential element in children’s
geometrical reasoning as well. It is highly likely that
children’s learning about the inverse relation
between multiplication and division is an equally
important a part of mathematical learning, but the
right research still has to be done on this question.
Despite this gap, there is a clear case for giving the
concept of inversion a great deal more prominence
than it has now in the school curriculum.

The logic of class inclusion and additive
composition

Numbers consist of other numbers. One cannot
understand what 6 means unless one also kno ws
that sets of 6 are composed of 5 + | items, or 4 +
2 items etc. The logic that allows children to work
out that every number is a set of combination of
other numbers is known as class inclusion. This form
of inclusion, which is also referred to as additive
composition of number; is the basis of the
understanding of ordinal number: every number

in the number series is the same as the one that
precedes it plus one. It is also the basis for learning
about the decade structure: the number 4321
consists of four thousands, three hundreds two tens
and one unit, and this can only be properly
understood by a child who has thoroughly grasped
the additive composition of number. This form of
understanding also allows children to compare
numbers (7 is 4 more than 3) and thus to
understand numbers as a way of expressing
relations as well as quantities. The evidence clearly
shows that children’s ability to use this form of
inclusion in learning about number and in solving
mathematical problems is at first rather weak, and
needs some support.

The logic of transitivity

All ordered series, including number; and also forms
of measurement involve transitivity (a > cifa > b
and b >ca=cifa=bandb = c). Empirical
evidence shows that children as young as 5-years
of age do to some extent grasp this set of relations,
at any rate with continuous quantities like length.
However, learning how to use transitive relations

in numerical measurements (for example, of area) is
an intricate and to some extent a difficult business.
Research, including Piaget’s initial research on
measurement, shows that one powerful reason

for children finding it difficult to apply transitive
reasoning to measurement successfully is that they
often do not grasp the importance of iteration
(repeated units of measurement). These difficulties
persist through primary school.

One of the reasons why Piaget’s ideas about the
importance of logic in children’s mathematical
understanding have been ignored recently is
probably the nature of evidence that he off ered for
them. Although Piaget’'s main idea was a positive
one (children’s logical abilities determine their
learning about mathematics), his empirical evidence
for this idea was mainly negative: it was about
children’s difficulties with the four aspects of logic
that we have just discussed. A constant theme in
our review is that this is not the best way to test

a causal theory about mathematical learning. We
advocate instead a combination of longitudinal
research with intervention studies. The results of this
kind of research do strongly support the idea that
children’s logic plays a critical part in their
mathematical learning.

Children should be encouraged to
reflect on their implicit models and
the nature of the mathematical tools

Children need to re-conceptualise their intuitive
models about the world in order to access the
mathematical models that have been developed in
the discipline. Some of the intuitive models used by
children lead them to appropriate mathematical
problem solving, and yet they may not know why
they succeeded. This was exemplified by students’
use of one-to-many correspondence in the solution
of proportions problems: this schema of action leads
1o success but students may not be aware of the
invariance of the ratio between the variables when
the scheme is used to solve problems. Increasing
students’ awareness of this invariant should improve
their mathematical understanding of proportions.

Another example of implicit models that lead to
success is the use of distributivity in oral calculation
of multiplication and division. Students who know
that they can, instead of multiplying a number by 15,
multiply it by 10 and then add half of this to the
product, can be credited with implicit kno wledge of
distributivity. It is possible that they would benefit
later on, when learning algebra, from the awareness
of their use of distribitivity in this context. This
understanding of distributivity developed in a
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context where they could justify it could be used
for later learning.

Other implicit models may lead students astray.
Fischbein, Deri, Nello and Marino (1985) and

Greer (1988) have shown that some implicit models
interfere with students’ problem solving. If, for
example, they make the implicit assumption that in

a division the dividend must always be larger than
the divisor, they might shift the numbers around in
implementing the division operation when the
dividend is actually smaller than the divisor. So, when
students have developed implicit models that lead
them astray, they would also benefit from greater
awareness of these implicit models.

The simple fact that students do use intuitive models
when they are learning mathematics, whether the
teacher recognises the models or not, is a reason for
wanting to help students develop an awareness of
the models they use. Instruction could and should
play a crucial role in this process.

Finally, reflecting on implicit models can help students
understand mathematics better and also link
mathematics with reality and with other disciplines
that they learn in school. Freudenthal (1971) argued
that it would be difficult for teachers of other
disciplines to tie the bonds of mathematics to reality
if these have been cut by the mathematics teacher.
In order to tie these bonds, mathematics lessons can
explore models that students use intuitively and
extend these models to scientific concepts that have
been shown to be challenging for students. One of
the examples explored in a mathematics lesson
designed by Treffers (1991) focuses on the
mathematics behind the concept of density. He tells
students the number of bicycles owned by people
in United Kingdom and in the Nether lands. He also
tells them the population of these tw o countries.
He then asks them in which country there are more
bicycles. On the basis of their intuitive knowledge,
students can easily engage in a discussion that leads
to the concept of density: the number of bicycles
should be considered in relation to the n umber

of people. A similar discussion might help students
understand the idea of population density and of
density in physics, a concept that has been shown to
be very difficult for students. The discussion of how
one should decide which country has more bicycles
draws on students’ intuitive models; the concept of
density in physics extends this model. Streefland and
Van den Heuvel-Panhuizen (see Paper 4) suggested
that a model of a situation that is under stood

intuitively can become a model for other situations,
which might not be so accessible to intuition.
Students’ reflection about the mathematics
encapsulated in one concept is termed by Treffers
horizontal mathematising; looking across concepts
and thinking about the mathematics tools themselv es
leads to vertical mathematising, i.e. a re-construction
of the mathematical ideas at a higher lev el of
abstraction. This pragmatic theory about how
students’ implicit models develop can be easily put
to test and could have an impact on mathematics as
well as science education.

Mathematical learning depends on
children understanding systems of
symbols

One of the most powerful contributions of recent
research on mathematical learning has come from
work on the relation of logic, which is universal, to
mathematical symbols and systems of symbols, which
are human inventions, and thus are cultural tools that
have to be taught. This distinction plays a role in all
branches of mathematical learning and has serious
implications for teaching mathematics.

Children encounter mathematical symbols
throughout their lives, outside school as well as in
the classroom. They first encounter them in learning
to count. Counting systems with a base provide
children with a powerful way of representing
numbers. These systems require the cognitive skills
involved in generative learning. As it is impossible to
memorise a very long sequence of words in a fixed
order, counting systems with a base solv e this
problem: we learn only a few symbols (the labels for
units, decades, hundred, thousand, million etc.) by
memory and generate the other ones in a rule-
based manner. The same is true for the Hindu-Arabic
place value system for writing numbers: when we
understand how it works, we do not need to
memorise how each number is written.

Mathematical symbols are technologies in the sense
that they are human-made tools that impro ve our
ability to control and adapt to the environment. Each
of these systems makes specific cognitive demands
from the learner. In order to understand place-value
representation, for example, students” must
understand additive composition. If students have
explicit knowledge of additive composition and how
it works in place-value representation, they are
better placed to learn column arithmetic, which
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should then enable students to calculate with very
large numbers; this task is very taxing without
written numbers. So the costs of learning to use
these tools are worth paying: the tools enable
students to do more than they can do without the
tools. However, research shows that students should
be helped to make connections between symbols
and meanings: they can behave as if they under stand
how the symbols work while they do not
understand them completely: they can learn routines
for symbol manipulation that remain disconnected
from meaning.

This is also true of rational numbers. Children

can learn to use written fractions by counting the
number of parts into which a whole was cut and
writing this below a dash, and counting the number
of parts painted and writing this above the dash.
However, these symbols can remain disconnected
from their logical thinking about division. These
disconnections between symbols and meaning are
not restricted to writing fractions: they are also
observed when students learn to add and subtract
fractions and also later when students learn
algebraic symbols.

Plotting variables in the Cartesian plane is another
use of symbol systems that can empo wer students:
they can, for example, more easily analyse change
by looking at graphs than they can by intuitive
comparisons. Here, again, research has shown how
reading graphs also depends on the inter pretations
that students assign to this system of symbols.

A recurrent theme in the review of research across
the different topics was that the disconnection
between symbols and meanings seems to explain
many of the difficulties faced by primary school
students in learning mathematics. The inevitable
educational implication is that teaching aims should
include promoting connections between symbols
and meaning when symbols are introduced and used
in the classroom.

This point is, of course, not new, but it is well
worth reinforcing and, in particular, it is well worth
remembering in the light of current findings. The
history of mathematics education includes the
development of pedagogical resources that were
developed to help students attribute meaning to
mathematical symbols. But some of these resources,
like Dienes’ blocks and Cuisinaire’s rods, are only
encountered by students in the classroom; the
point we are making here is that students acquire

informal knowledge in their everyday lives, which
can be used to give meaning to mathematical
symbols learned in the classroom. Research in
mathematics education over the last five decades
or so has helped describe the situations in which
these meanings are learned and the way in which
they are structured. Curriculum development work
that takes this knowledge into account has already
started (a major example is the research by
members of the Freudenthal Institute) but it is
not as widespread as one would expect given the
discoveries from past research.

Children need to learn modes of enquiry
associated with mathematics

We identify some important mathematical modes
of enquiry that arise in the topics covered in this
synthesis.

Comparison helps us make new
distinctions and create new objects

and relations

A cycle of creating and naming new objects through
acting on simple objects pervades mathematics, and
the new objects can then be related and compared
to create higher-level objects. Making additive and
multiplicative comparisons is an aspect of
understanding relations between quantities and
arithmetic. These comparisons are manifested precisely
as difference and ratio. Thus difference and ratio arise
as two new mathematical ideas, which become new
mathematical objects of study and can be represented
and manipulated. Comparisons are related to making
distinctions, sorting and classifying based on
perceptions, and students need to learn to make
these distinctions based on mathematical relations
and properties, rather than perceptual similarities.

Reasoning about properties and relations
rather than perceptions

Many of the problems in mathematics that students
find hard occur when immediate perceptions lead to
misapplication of learnt methods or informal
reasoning. Throughout mathematics, students have to
learn to interpret representations before they think
about how to respond. They need to think about the
relations between different objects in the systems
and schemes that are being represented.

Making and using representations
Conventional number symbols, algebraic syntax,
coordinate geometry, and graphing methods, all afford
manipulations that might otherwise be impossible.
Coordinating different representations to explore and
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extend meaning is a fundamental mathematical skill
that is implicit in the use of the n umber line to
represent quantities, for example, the use of graphs to
express functions. Equivalent representations, such as
for number; algebraic relationships and functions, can
provide new insights through comparison and
isomorphic analogical reasoning.

Action and reflection-on-action

Learning takes place when we reflect on the effects
of actions. In mathematics, actions may be physical
manipulation, or symbolic rearrangement, or our
observations of a dynamic image, or use of a tool.

In all these contexts, we observe what changes and
what stays the same as a result of actions, and make
inferences about the connections between action and
effect. In early mathematics such reflection is usually
embedded in children’s classroom activity, such as
when using manipulatives to model changes in
quantity. In later mathematics changes and invariance
may be less obvious, particularly when change is
implicit (as in a situation to be modelled) or useful
variation is hard to identify (as in a quadr atic function).

Direct and inverse relations

Direct and inverse relations are discussed in several
of our papers. While it may sometimes be easier to
reason in a direct manner that accords with action, it
is important in all aspects of mathematics to be ab le
to construct and use inverse reasoning. Addition

and subtraction must be understood as a pair; and
multiplication and division as a pair, rather than as a
set of four binary operations. As well as enabling
more understanding of relations between quantities,
this also establishes the importance of reverse chains
of reasoning throughout mathematical problem-
solving, algebraic and geometrical reasoning. For
example, using reverse reasoning makes it more
likely that students will learn the dualism embedded
in Cartesian representations; that all points on the
graph fulfil the function, and the function generates
all points on the graph.

Informal and formal reasoning

At first young children bring everyday understandings
into school, and mathematics can allow them to
formalise these and make them more precise. On the
other hand, intuitions about continuity, approximation,
dynamic actions and three-dimensional space might
be over-ridden by early school mathematics — yet are
needed later on. Mathematics also provides formal
tools which do not describe everyday outside
experience, but enable students to solve problems in
mathematics and in the world which would be

unnoticed without a mathematical perspective. In
the area of word problems and realistic problems
learning when and how to apply informal and formal
reasoning is important. Later on, counter-intuitive
ideas have to take the place of early beliefs, such as
‘multiplication makes things bigger' and students have
to be wary of informal, visual and immediate
responses to mathematical stimuli.

A recurring issue in the papers is that students find
it hard to coordinate attention on local and global
changes. For example, young children confuse
quantifying ‘relations between relations’ with the
original quantities; older children who cannot identify
covariation of functions might be able to talk about
separate variation of variables; students readily see
term-to-term patterns in sequences rather than the
generating function; changes in areas are confused
with changes in length.

Epilogue

Our aim has been to write a review that summarises
our findings from the detailed analysis of a large
amount of research. We sought to make it possible
for educators and policy makers to take a fresh look
at mathematics teaching and learning, starting from
the results of research on key understandings, rather
than from previous traditions in the organisation of
the curriculum. We found it necessary to organise
our review around ideas that are already core ideas
in the curriculum, such as whole and rational
number,; algebra and problem solving, but also to
focus on ideas that might not be identified so easily
in the current curriculum organisation, such as
students’ understanding of relations between
quantities and their understanding of space.

We have tried to make cogent and convincing
recommendations about teaching and learning,

and to make the reasoning behind these
recommendations clear to educationalists. VWe

have also recognised that there are w eaknesses in
research and gaps in current knowledge, some of
which can be easily solved by research enabled by
significant contributions of past research. Other gaps
may not be so easily solved, and we have described
some pragmatic theories that are, or can be, used by
teachers when they design instruction. Classroom
research, stemming from the exploration of these
pragmatic theories, can provide new insights for
further research in the future.
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Endnotes

I Details of the search process is provided in Appendix |. This
contains the list of data bases and jour nals consulted and the
total number of papers read although not all of these can be
cited in the six papers that comprise this review.
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Summary of paper 2:
Understanding
whole numbers

Headlines

* Whole numbers are used in primary school to
represent quantities and relations. It is crucial for
children’s success in learning mathematics in
primary school to establish clear connections
between numbers, quantities and relations.

* Using different schemes of action, such as setting
objects in correspondence, children can judge
whether two quantities are equivalent, and if they are
not, make judgements about their order of magnitude.
These insights are used in understanding the number
system beyond simply producing a string of number
words in a fixed order: It takes children some time to
make links between their understanding of quantities
and their knowledge of number:

Children start school with varying levels of

ability in using different action schemes to solve
arithmetic problems in the context of stories. They
do not need to know arithmetic facts to solve
these problems: they count in different ways
depending on whether the problems they are
solving involve the ideas of addition, subtraction,
multiplication or division.

Individual differences in the use of action schemes
to solve problems predict children’s progress in
learning mathematics in school.

Interventions that help children learn to use their
action schemes to solve problems lead to better
learning of mathematics in school.

It is considerably more difficult for children to use
numbers to represent relations than to represent
quantities. Understanding relations is crucial for their
further development in mathematics in school.

In children’s everyday lives and before they start
school, they have experiences of manipulating and
comparing quantities. For example, even at age four,
many children can share sweets fairly between two
recipients by using correspondences: they share giving
one-for-you, one-for-me, until there are no sweets left.
They do sometimes make mistakes but they know
that, when the sharing is done fairly, the two people
will have the same amount of sweets at the end. Even
younger children know some things about quantities:
they know that if you add sweets to a group of
sweets, there will be more sweets there, and if you
take some away, there will be fewer. However, they
might not know that if you add a certain number and
take away the same number, there will be just as many
sweets as there were before.

At the same time that young children are developing
these ideas about quantities, they are often learning
to count. They learn to say the sequence of number
words in the right order; they know that each object
that they are counting must be counted once and
only once, and that it does not matter if you count a
row of sweets from left to right or from right to left,
you should get to the same number.

Four-year-olds are thus amazing learners of
mathematics. But they lack one thing which is crucially
important: they do not at first make connections
between their understanding of quantities and their
knowledge of numbers. So if

you ask a four-year-old, who just shared some sweets
fairly between two dolls, to count the sweets that
one doll has and then tell you, without counting, how
many sweets the other doll has, the majority (about
60%) will tell you that they do not know. Knowing
that the dolls have the same quantity is not sufficient
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to know that if one has 8 sweets, the other one has
8 sweets also, i.e. has the same number.

Quantities and numbers are not the same thing. We
can use numbers as measures of quantities, but we
can think about quantities without actually having a
measure for them. Until children can understand the
connections between numbers and quantities, they
cannot use their knowledge of quantities to support
their understanding of numbers and vice versa.
Because the connections between quantities and
numbers are many and varied, learning about these
connections could take three to four years in
primary school.

An important link that children must make between
number and quantity is the link between the order
of number words in the counting sequence and the
magnitude of the quantity represented. How do
children come to understand that the any number
in the counting sequence is equal to the preceding
number plus |7

Different explanations have been proposed in the
literature. One is that they simply see that magnitude
increases as they count. But this explanation does
not work well: our perception of magnitude is
approximate and knowing that any number is equal
1o its predecessor plus | is a very precise piece of
knowledge. A second explanation is that children
use perception, language and inferences together to
reach this understanding. Young children discriminate
well, for example, one puppet from two puppets and
two puppets from three puppets. Because they
know these differences precisely, they put these

two pieces of information together, and learn that
two is one more than one, and three is one more
than two. They then make the inference that all
numbers in the counting sequence are equal to the
predecessor plus one. But this sort of generalisation
could not be stretched into helping children
understand that any number is also equal to the
last-but-one in the sequence plus 2. This process of
putting together perception with language and then
generalising is an explanation for only the n + | idea;
it would be much better if we could have a more
general explanation of how children understand

the connection between quantities and the

number sequence.

The third explanation for how children connect

heir knowledge of quantities with the magnitude of
numbers in the counting sequence is that children’s
schemes of action play the most important part in this

development. The actions of adding and taking away
help them understand part—whole relations.VWhen
they can link their understanding of part—whole
relations with counting, they will understand many
things about relations between numbers. A critical
change in young children’s behaviour when they add
two sets is from ‘count all' to ‘count on’. If they know
that they have 5 sweets, and you add 4 to the 5, they
could either start from | and count all the sweets
(count all) or they could point to the 5, and count on
from there.'Count on’is a sign that the children have
linked their knowledge of part—whole relations with
the counting sequence: they have understood the
additive composition number. This explanation works
for the relation between a number and its immediate
predecessor and any of its predecessors. It is
supported by much research that shows that counting
on is a sign of abstraction in part-whole relations,
which opens the way for children to solve many other
problems: they can add a quantity to an invisible set,
count coins of different denominations to form a single
total, and are ready to learn to use place value to
represent numbers in writing.

Adding and subtracting elements to sets also give
children the opportunity to understand the inverse
relation between addition and subtraction. This insight
is not gained in an all-or-nothing fashion: children first
apply it only to quantities and later on to number also.
The majority of five-year-olds realises that if you add 3
sweets 1o a set of sweets and then take the same
sweets away, the number of sweets in the set remains
the same. However, many of these children will not
realise that if you add 3 sweets to the set and then
take 3 other sweets away, the number of sweets is still
the same.They see that adding and taking away the
same quantity leaves the original quantity the same but
this does not immediately mean to them that adding
and taking away the same number also leaves the
original number the same. Research shows that the
step from understanding the inverse relation between
addition and subtraction of quantities is a useful start if
one wants to teach children about the inverse relation
between addition and subtraction of number.

Adding, taking away and understanding part-whole
relations form one part of the story of what
children know about quantities and numbers in the
early years of primary school. They relate to how
additive reasoning develops.The other part of the
story is surprising to many people: children also
know quite a lot about multiplicative reasoning
when they start school.
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Children use two different schemes of action to solve
multiplication and division problems before they are
taught about these operations in school: they use
one-to-many correspondence and sharing. If five-

and six-year-olds are shown, for example, four little
houses in a row, told that they should imagine that in
each live three dogs, and asked how many dogs live
in the street, the majority can say the correct number.
Many children will point three times to each house
and count in this way until they complete the
counting at the fourth house.They are not
multiplying: they are solving the problem using one-
to-many correspondence. Children can also share
objects to recipients and answer problems about
division. They do not know the arithmetic operations,
but they can use their reasoning to count in different
ways and solve the problem. So children manipulate
quantities using multiplicative reasoning and solve
problems before they learn about multiplication and
division in school.

If children are assessed in their understanding of the
inverse relation between addition and subtraction,
of additive composition, and of one-to-many
correspondence in their first year of school, this
provides us with a good way of anticipating whether
they will have difficulties in learning mathematics in
school. Children who do well in these assessments
go on to attain better results in mathematics
assessments in school. Those who do not do well can
improve their prospects through early intervention.
Children who received specific instruction on these
relations between quantities and how to use them to
solve problems did significantly better than a similar
group who did not receive such instruction.

Finally, many studies have used story problems to
investigate which uses of additive reasoning are
easier and which are more difficult for children of
primary school age. Two sorts of difficulties have
been identified.

The first relates to the need to understand that
addition and subtraction are the inverse of each
other. One story that requires this understanding is:
Ali had some Chinese stamps in his collection and his
grandfather gave him 2; now he has 8; how many
stamps did he have before his grandfather gave him
the 2 stamps? This problem exemplifies a situation in
which a quantity increases (the grandfather gave him
2 stamps) but, because the information about the
original number in his collection is missing, the
problem is not solved by an addition but rather by
a subtraction.The problem would also be an inverse

problem if Ali had some Chinese stamps in his
collection and gave 2 to his grandfather; leaving his
collection with 6. In this second problem, there is a
decrease in the quantity but the problem has to be
solved by an increase in the number, in order to get
us back to Alli's collection before he gave 2 stamps
away. There is no controversy in the literature: inverse
problems are more difficult than direct problems,
irrespective of whether the arithmetic operation that
is used to solve it is addition or subtraction.

The second difficulty depends on whether the
numbers in the problem are all about quantities or
whether there is a need to consider a relation
between quantities. In the two problems about Ali's
stamps, all the numbers refer to quantities. An example
of a problem involving relations would be: In Ali's class
there are 8 boys and 6 girls; how many more boys
than girls in Ali's class? (Or how many fewer girls than
boys in Ali's class?). The number 2 here refers neither
to the number of boys nor to the number of girls: it
refers to the relation (the difference) between number
of boys and girls. A difference is not a quantity: it is a
relation. Problems that involve relations are more
difficult than those that involve quantities. It should not
be surprising that relations are more difficult to deal
with in numerical contexts than quantities: the majority,
if not all, the experiences that children have with
counting have to do with finding a number to
represent a quantity, because we count things and not
relations between things.We can re-phrase problems
that involve relations so that all the numbers refer to
quantities. For example, we could say that the boys
and girls need to find a partner for a dance; how many
boys won't be able to find a girl to dance with? There
are no relations in this latter problem, all the numbers
refer to quantities. This type of problem is significantly
easier. So it is difficult for children to use numbers to
represent relations. This could be one step that
teachers in primary school want to help their children
take, because it is a difficuftt move for every child.
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Recommendations

Research about mathematical
learning

Recommendations for teaching
and research

Children's pre-school knowledge of
quantities and counting develops
separately.

Teaching Teachers should be aware of the importance
of helping children make connections between their
understanding of quantities and their knowledge of counting.

When children start school, they can solve
many different problems using schemes of
action in coordination with counting,
including multiplication and division
problems.

Teaching The linear view of development, according to
which understanding addition precedes multiplication, is not
supported by research. Teachers should be aware of children’s
mathematical reasoning, including their ability to solve
multiplication and division problems, and use their abilities

for further learning.

Three logical-mathematical reasoning
principles have been identified in research,
which seem to be causally related to
children’s later attainment in mathematics
in primary school. Individual differences in
knowledge of these principles predict later
achievement and interventions reduce
learning difficulties.

Teaching A greater emphasis should be given

in the curriculum to promoting children’s understanding of the
inverse relation between addition and subtraction, additive
composition, and one-to-many correspondence. This would help
children who start school at risk for difficutties in learning
mathematics to make good progress in the first years.
Research Long-term longitudinal and intervention studies
with large samples are needed before curriculum and policy
changes can be proposed. The move from the laboratory to
the classroom must be based on research that identifies
potential difficulties in scaling up successful inter ventions.

Children’s ability to solve word problems
shows that two types of problem cause
difficulties for children: those that involve
the inverse relation between addition and
subtraction and those that involve thinking
about relations.

Teaching Systematic use of problems involving these
difficulties followed by discussions in the classroom would give
children more opportunities for making progress in using
mathematics in contexts with which they have difficulty.
Research There is a need for intervention studies designed
to promote children’s competence in solving problems about
relations. Brief experimental interventions have paved the way
for classroom-based research but large-scale studies are
needed.
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Understanding extensive
quantities and whole

numbers

Counting and reasoning

At school, children’s formal learning about
mathematics begins with natural numbers (1,2,
17,103 ...525...). Numbers are symbols for
quantities: they make it possible for the child to
specify single values precisely and also to work
out the relations between different quantities. By
counting, the child can tell you that there are 20
books in the pile on the teacher's desk (a single
quantity), and eventually should be able to work
out that there is | book for every child in the class
if there are 20 children there, or that there are 5
more books than children (a relation between two
quantities) if there are |5 children in the class.

Quantities and numbers are not the same. Thompson
(1993) suggested that ‘a person constitutes a quantity
by conceiving of a quality of an object in such a way
that he or she understands the possibility of measuring
it. Quantities, when measured, have numerical value,
but we need not measure them or know their
measures to reason about them.You can think of your
height, another person's height, and the amount by
which one of you is taller than the other without
having to know the actual values' (pp. | 65—166).'

Children experience and learn about quantities and
the relations between them quite independently of
learning to count. Similarly, they can learn to count
quite independently from understanding quantities
and relations between them.We shall argue in this
section that the most important task for a child who
is learning about natural numbers is to connect these
numbers to a good understanding of quantities and
relations. The connection should work at two levels.

First, children must realise that their knowledge of
quantities and numbers should agree with one

another. If Sean has |5 books and Patrick 17,
Patrick has more books than Sean. Unless children
understand that numbers are a precise way of
expressing quantities, the number system will have
no meaning for them.

Second, they must realise eventually that the number
system enhances their knowledge of quantities in an
increasingly powerful way. They may not be able to
look at a pile of books and tell without counting that
the one with |7 has more books than the one with
I5;indeed, the thickness of books varies and the pile
of 15 books could well be taller than the pile with 7.
By counting they can know which pile has more
books. When they know how to count, we can also
add and subtract numbers, and work out the exact
relations between them. If we understand lots of
things about quantities, e.g. how to create equivalent
quantities and how their equivalence is changed, but
we don't have numbers to represent them, we
cannot add and subtract.

In this section, therefore, we will focus on the
connections that children make, and sometimes fail
to make, between their growing knowledge about
quantities and the number system. In many ways this
is an unusual thing to do. Most existing accounts of
how children learn about number are more
restricted. Either they leave out the number system
altogether and concentrate instead on children’s
ability to reason about quantities, or they are strictly
confined to how well children count sets of objects.

Piaget's theory (Piaget, 1952) is an example of the
first kind of theory. His view that children have to be
able to reason logically about quantity in order to
understand number and the number system is
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almost certainly right, but it left out the possibility
that learning to count eventually transforms this
reasoning in children by making it more powerful
and more precise.

In the opposite corner, Gelman's influential theory
(Gelman and Gallistel, 1978), which focuses on how
children count single sets of objects and has little to
say about children’s quantitative reasoning, has the
serious disadvantage that it by-passes children’s
reasoning about relations between quantities. In the
end, numbers are only important because they allow
us to represent quantities and make sense of
quantitative relations.

The first part of this section is an account of

how children connect numbers with quantity. We
will start this account with a detailed list of the
connections that they need to make.We argue that
children need to make three types of connections
between number words and quantities in order to
make the most of what they learn when they begin
to count: they need to understand cardinality; they
need to understand ordinal numbers, and they need
to understand the relation between cardinality and
addition and subtraction. The second part of this
section is an account of how children learn to use
numbers to solve problems.We argue that numbers
are used to represent quantities but that children
must also learn to use them to represent
transformations and relations, and that the different
meanings that numbers can have affect how easily
children solve problems.

Giving meaning to numbers

Young children’s dissociation of
quantities and numbers

Children may know that two quantities are the same
and still not make the inference that the number of
objects in one is the same as the number of objects
in the other. Conversely, they may know how to
count and yet not make use of counting when asked
1o create two equal sets.VWe review here briefly
research within two different traditions, inspired by
Piaget's and Gelman'’s theories, that shows that young
children do not necessarily make a connection
between what they know about quantities and

what they know about counting.

Equivalence of sets in one-to-one
correspondence and its connection to
number words

Numbers have both cardinal and ordinal properties.
Two sets have the same cardinal value when the
items in one set are in one-to-one correspondence
with those in the other There are as many eggcups in
a box of six egg-cups as there are eggs in a carton of
six eggs, and if there are six people at the breakfast
table each will have one of those eggs on its own
eggcup to eat. Thus, the eggcups, eggs and people are
all in one-to-one correspondence since there is one
egg and eggcup for each one person, which means
that each of these three sets has the same number.

We shall deal with the ordinal properties of number
in a later section. At the moment, all that we need to
say is that numbers are arranged in an ordered series.

To return to cardinality, Piaget argued quite
reasonably that no one can understand the meaning
of ‘six’ unless he or she also understands the
number's cardinal properties, and by this he meant
understanding not only that any set of six contains
the same number of items as any other set of six but
also that that the items in a set of six are in one-to-
one correspondence with any other set of six items.
So, if we are to pursue the approach of studying the
links between children's quantitative reasoning and
how they learn about natural numbers, we need to
find out how well children understand the principle
that sets which are in one-to-one correspondence
with each other are equal in quantity, and also how
clearly they apply what they understand about one-
to-one correspondence to actual numbers like ‘six’.

Piaget based his claim that young children have a very
poor understanding of one-to-one correspondence
on the mistakes that they make when they are shown
one set of items (e.g. a row of eggs) and are asked to
form another set (e.g. of eggcups) of the same
number: Four- and five-year-olds often match the new
set with the old one on irrelevant criteria such as
two rows’ lengths and make no effort to put the
rows into one-to-one correspondence. Their ability
to establish one-to-one correspondence between
sets grows over time: it cannot be taken

for granted.

However, even when children do establish a one-to-
one correspondence between two sets, they do not
necessarily infer that counting the elements in one set
tells them how many elements there are in the other
set. Piaget (1952) established this in an experiment in
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which he proposed to buy sweets from the children,
using a one-to-one exchange between pence and
sweets. For each sweet that the child gave to Piaget,
he gave the child a penny. As they exchanged pence
and sweets, the child was asked to count how many
pence he/she had. Piaget ensured that he stopped this
exchange procedure without going over the child’s
counting range. When he stopped the exchange, he
asked the child how many pence the child had. The
children were able to answer this without difficulty as
they had been counting their coins. He then asked the
child how many sweets he had. Piaget reports that
some children were unable to make the inference
that the number of sweets Piaget had was the same
as the number of pence that the child himself/herself
had. Unfortunately, Piaget gave no detailed description
of how the ability to make this inference related to
the children’s age.

More recent research, which offers quantitative
information, shows that many four-year-olds who do
understand one-to-one correspondence well enough
1o share fairly do not make the inference that
equivalent sets have the same number of elements.
Frydman and Bryant (1988) asked four-year-old
children to share a set of ‘chocolates’ to two
recipients. At this age, children often share things
between themselves, and they typically do so on a
one-for-A, one-for-B, one-for-A, one-for-B basis. In this
study, the children established the correspondence
themselves; this contrasts with Piaget's study, where
Piaget controlled the exchange of sweets and pence.
When the child had done the sharing, the
experimenters counted out the number of items that
had been given to one recipient, which was six.
Having done this, they asked the child how many
chocolates had been given to the other recipient.

None of the children immediately made the
inference that there were the same number of
chocolates in one set as in the other, and therefore
that there were also six items in the second set.
Instead, every single child began to count the second
set. In each case, the experimenter then interrupted
the child's counting, and asked him or her if there was
any other way of working out the number of items in
the second recipient’s share. Only 40% of the group
of four-year-olds made the correct inference that the
second recipient had also been given six chocolates.
The failure of more than half of the children is an
interesting one. The particular pre-school children
who made it knew that the two recipients’ shares
were equal, and they also knew the number of items
in one of the shares.Yet, they did not connect what

they knew about the relative quantities to the
number symbols. Other children, however, did make
this connection, which we think is the first significant
step in understanding cardinality. Whether all children
will have made this connection by the time that they
start learning about numbers and arithmetic at
school depends on many factors: for example, the
age they start school and their previous experiences
with number are related to whether they have taken
this important step by then (e.g. socio-economic
status related to maths ability at school entry: see
Ginsburg, Klein, and Starkey, 1998; Jordan,
Huttenlocher, and Levine, 1992; Secada, 1992).

Counting and understanding relations
between quantities
Piaget's theory of how children develop an
understanding of cardinality was confronted by an
alternative theory, by Gelman's nativist view of
children’s counting and its connection to cardinal
number knowledge (Gelman and Gallistel, 1978).
Gelman claimed that children are born with a
genuine understanding of natural number; and that
this makes it possible for them to learn and use the
basic principles of counting as soon as they begin to
learn the names for numbers. She outlined five basic
counting principles. Anyone counting a set of objects
should understand that:
* you should count every object once and only once
(one-to-one correspondence principle)
* the order in which you count the actual objects
(from left-to right, from right to left or from the
middle outwards) makes no difference (order
irrelevance principle)
you should produce the number words in a
constant order when counting: you cannot count
|-2-3 at one time and |-3-2 at another (fixed
order principle)
whether the objects in a set are all identical to each
other or all quite different has no effect on their
number (the abstraction principle)
the last number that you count is the number of
items in the set (cardinal principle).

Each of these principles is justified in the sense that
anyone who does not respect them will end up
counting incorrectly. A child who produces count
words in different orders at different times is bound
to make incorrect judgements about the number of
items in a set. So will anyone who does not obey the
one-to-one principle.

Gelman's original observations of children counting
sets of objects, and the results of some subsequent
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experiments in which children had to spot errors in
other protagonists’ counting (e.g. Gelman and Meck,
1983), all supported her idea that children obey and
apparently understand all five of these principles
with small sets of items long before they go to
school. The young children’s success in counting
smaller sets allowed her to dismiss their more
frequent mistakes with large sets of items as
executive errors rather than failures in
understanding. She agued that the children knew
the principles of counting and therefore of number,
but lacked some of the skills needed to carry them
out. This view became known as the ‘principles-
before-skills hypothesis'.

These observations of Gelman’s provoked a great
deal of useful further research on children’s counting,
most of which has confirmed her original results,
though with some modifications. For example, five-
year-old children do generally count objects in a one-
to-one fashion (one number word for each object)
but not all of the time (Fuson, 1988). They tend either
to miss objects or count some more than once in
disorganised arrays. It is now clear that gestures play
an important part in helping children keep track
during counting (Albilali and DiRusso, 1999) but
sometimes they point at some of the objects in a
target set without counting them.

Many of the criticisms of Gelman'’s hypothesis
were against her claims that children understand
cardinality. Ironically, even critics of Gelman (e.g.
Carey, 2004; LeCorre and Carey, 2007)) have in
their own research accepted her all too limited
definition of understanding cardinality (that it is the
realisation that the last number counted represents
the number of objects). However, several
researchers have criticised her empirical test of
cardinality. Gelman had argued that children, who
count a set of objects and emphasise the last
number (‘one-two-three-FOUR") or repeat it
(‘one-two-three-four- there are four'), understand
that this last number represents the quantity of the
counted set. However, Fuson (Fuson, and Hall,
1983; Fuson, Richards and Briars, 1982) and
Sophian (Sophian, Wood, and Vong, 1995) both
made the reasonable argument that emphasising or
repeating the last number could just be part of an
ill-understood procedure.

Although Gelman'’s five principles cover some
essential aspects of counting, they leave others
out. The five principles, and the tools that Gelman
devised to study children’s understanding of these

principles, only apply to what someone must know
and do in order to count a single set of objects.
They tell us nothing about children's understanding
of numerical relations between sets. Piaget's
research on number; on the other hand, was almost
entirely concerned with comparisons between
different quantities, and this has the confusing
consequence that when Gelman and Piaget used
the same terms, they gave them quite different
meanings. For Piaget, understanding cardinality

was about grasping that all and only equivalent
sets are equal in number: for Gelman it meant
understanding that the last number counted
represents the number of items in a single set.
When Piaget studied one-to-one correspondence,
he looked at children’s comparisons between two
quantities (eggs and egg cups, for example):
Gelman’s concern with one-to-one
correspondence was about children assigning

one count word to each item in a set.

Since two sets are equal in quantity if they contain
the same number of items and unequal if they do
not, one way to compare two sets quantitatively is
to count each of them and to compare the two
numbers. Another, for much the same reason, is to
use one-to-one correspondence: if the sets are in
correspondence they are equal; if not, they are
unequal. This prompts a question: how soon and how
well do children realise that counting sets is a valid
way, and sometimes the only feasible valid way, of
comparing them quantitatively? Another way of
putting the same question is to ask: how soon and
how well do children realise that numbers are a
measure by which they can compare the quantities
of two or more different sets.

Most of the research on this topic suggests that it
takes children some time to realise that they can, and
often should, count to compare. Certainly many pre-
school children seem not to have grasped the
connection between counting and comparing even if
they have been able to count for more than one year.

One source of evidence comes from the work by
Sophian (1988), who asked children to judge whether
someone else (a puppet) was counting the right way
when asked to do two things. The puppet was faced
with two sets of objects, and was asked in some trials
to say whether the two sets were equal or not and in
others to work out how many items there were on
the table altogether. Sometimes the puppet did the
right thing, which was to count the two sets
separately when comparing them and to count all the
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items together when working out the grand total.

At other times he got it wrong, e.g. counted all the
objects as one set when asked to compare the two
sets. The main result of Sophian’s study was that the
pre-school children found it very hard to make this
judgement. Most 3-year-olds judged counting each set
was the right way to count in both tasks while 4-year-
olds judged counting both sets together was the right
way to count in both tasks. Neither age group could
identify the right way to count reliably.

A second type of study shows that even at school
age many children seem not to understand fully
the significance of numbers when they make
quantitative comparisons. There is, for example, the
striking demonstration by Pierre Gréco (1962),a
colleague of Piaget's, that children will count two
rows of counters, one of which is more spread out
and longer than the other, and correctly say that
they both have the same number (this one has six,
and so does the other) but then will go on to say
that there are more counters in the longer row
than in the other A child who makes this mistake
understands cardinality in Gelman’s sense (i.e.is
able to say how many items in the set) but does
not know what the word ‘six’ means in Piaget's
sense. Barbara Sarnecka and Susan Gelman (2004)
recently replicated this observation. They report
that children three- and four-year-olds know that if
a set had five objects and you add some to it, it no
longer has five objects; however they did not know
that equal sets must have the same number word.

Another source of evidence is the observation,
repeated in many studies, that children, who can
count quite well, nevertheless fail to count the
items in two sets that they have been asked to
compare numerically (Cowan, 1987; Cowan and
Daniels, 1989; Michie, 1984; Saxe, Guberman and
Gearhart, 1987); instead they rely on perceptual
cues, like length, which of course are unreliable.
Children who understand the cardinality of
number should understand that they can make the
comparison only by counting or using one-to-one
correspondence, and yet at the age of five and six
years most of them do neither, even when, as in the
Cowan and Daniels study, the one-to-one cues are
emphasised by lines drawn between items in the
two sets that the children were asked to compare.

Finally, the criterion for the cardinality principle has
itself been criticised as insufficient to show that
children understand cardinality. The criticism is both
theoretical and also based on empirical results. From

a theoretical standpoint, Vergnaud (2008) pointed
out that Gelman'’s cardinality criterion should actually
be viewed as showing that children have some
understanding of ordinal, not of cardinal, number:
Gelman’s criterion is indeed based on the position of
the number word in the counting sequence, because
the children use the last number word to represent
the set.Vergnaud argues that ordinal numbers cannot
be added whereas cardinal numbers can. He predicts
that children whose knowledge of cardinal number is
restricted to Gelman's cardinality principle will not be
able to continue counting to answer how many
objects are in a set if you add some objects to the
set that they have just counted: they will need to
count again from one. Research by Siegler and
Robinson (1982) and Starkey and Gelman (1982)
produced results in line with this prediction: 3-year-
olds do not spontaneously count to solve addition
problems after counting the first set. Ginsburg, Klein
and Starkey (1998) also interpreted such results as
indicative of an insufficient development of the
concept of cardinality in young children.We return
to the definition of cardinality later on, after we have
discussed alternative explanations to Gelman's theory
of an innate counting principle as the basis for
learning about cardinality.

Three further studies will be used here to illustrate
that some children who are able to use Gelman's
cardinality principle do not seem to have a full grasp
of when this principle should be applied; so meeting
the criterion for the cardinality principle does not
mean understanding cardinality.

Fuson (1988) showed that three-year-old children who
seem to understand the cardinality principle continue
to use the last number word in the counting sequence
to say how many items are in a set even if the counting
started from two, rather than from one. Counting in
this unusual way should at least lead the children to
reject the last word as the cardinal for the set.

Using a similar experimental manoeuvre, Freeman,
Antonuccia and Lewis (2000) assessed three- and
five-year-olds' rejection of the last word after counting
if there had been a mistake in counting. The children
participated in a few different tasks, one of which was
a task where a puppet counted an array with either

3 or 5 items, but the puppet miscounted, either by
counting an item twice or by skipping an item.The
children were asked whether the puppet had counted
right, and if they said that the puppet had not, they
were asked: How many does the puppet think there
are! How many are there really? All children had
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shown that they could count 5 items accurately (2

of 22 could count accurately to 6, another 4 could

do so to 7,and the remaining 18 could count items
accurately to 10). However, their competence in
counting was no assurance that they realised that the
puppet's answer was wrong after miscounting: only
about one third of the children were able to say that
the answer was not right after they had detected the
error. The children’s rejection of the puppet's wrong
answer increased with age: 82% of the five-year-olds
correctly rejected the puppet’s answer in all three
trials when a mistake had been made. However, the
majority of the children could not say what the
cardinal for the set was without recounting: the
majority counted the set again in order to answer the
question ‘how many are there really? They neither said
immediately the next number when the puppet had
skipped one nor used the previous number when the
puppet double-counted an item. So, quite a few of the
younger children passed Gelman's cardinality principle
but did not necessarily see that the cardinality
principle should not be applied when the counting
principles are violated. Most of the older children, who
rejected the use of the cardinality principle, did not
use it to deduce what the correct cardinal should be;
instead, all they demonstrated was that they could
replace the wrong routine with the correct one, and
then they could say what the number really was.
Understanding that the next number is the cardinal
for the set if the puppet skipped one item, without
having to count again, would have demonstrated that
the children have a relatively good grasp of cardinality.
Freeman and his colleagues reported that only about
one third of the children who detected the puppet’s
error were able to say what the correct number of
items was without recounting. In the subsequent
section we return to the importance of knowing what
the next number is for the concept of cardinality.

The third study we consider here was by Bermejo,
Morales and deOsuna (2004), who argued that if
children really understand cardinality, and not just the
Gelman'’s cardinality principle, they should do better
than just re-implement the counting in a correct way.
For example, they should be able to know how many
objects are in a set even if the counting sequence is
implemented backwards. If you count a set by saying
‘three, two, one’, and you reach the last item when you
say ‘one’, you know that there are three objects in the
set. If you count backwards from three and the label
‘one’ does not coincide with the last object, you know
that the set does not have three objects. Just like
starting to count from two, counting backwards is
another way of separating out Gelman's cardinality

principle from understanding cardinality: when you
count backwards, the first number label is the cardinal
for the set if there is a one-to-one correspondence
between number labels and objects. Bermejo and
colleagues showed that four- and six-year-old children
who can say that there are three objects in a set when
you count forward cannot necessarily say that if you
count backwards from four and the last number label is
‘two', this does not mean that there are two objects in
the set. In fact, many children did not realize that there
was a contradiction between the two answers: for
them, the set could have three objects if you count one
way and two if you count in another way. They also
showed that children who were given the opportunity
to discuss what the cardinal for the set was when the
counting was done backwards showed marked
progress in other tasks of understanding cardinality,
which included starting to count from other numbers
in the counting sequence than the number one, as in
Fuson’s task. They concluded that reflecting about the
use of counting and the different actions involved in
achieving a correct counting created opportunities for
children to understanding cardinality better:

The evidence that we have presented so far
suggests very strongly and remarkably consistently
that learning to count and understanding relations
between quantities are two different achievements.
On the whole, children can use the procedures for
counting long before they realise how counting
allows them to measure and compare different
quantities, and thus to work out the relations
between them.We think that it is only when
children establish a connection between what
they know about relations between quantities
and counting that they can be said to know the
meaning of natural numbers.?

Summary

I Natural numbers are a way of representing
particular quantities and relations between
quantities.

2 When children learn numbers, they must find out
not just about the counting sequence and how to
count, but also about how the numbers in the
counting system represent quantities and relations
between them.

3 One basic aspect of this representation is the
cardinality of number: all sets with the same
number have the same quantity of items in them.
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4 Another way of expressing cardinality is to say
that all sets with the number are in one-to-one
correspondence with each other.

5 There is evidence that young children’s first
successful experiences with one-to-one
correspondence come through sharing; however,
even if they succeed in sharing fairly and know the
number of items in one set, many do not make the
inference that the number of items in the other
set is the same.

6 Because of its cardinal properties, number is a
measure: one can compare the quantity of items
in two different sets by counting each set.

7 Several studies have shown that many children as
old as six years are reluctant to count, although
they know how to count, when asked to compare
sets. They resort to perceptual comparisons
instead.

8 This evidence suggests that learning about
quantities and learning about numbers develop
independently of each other in young children. But
in order to understand natural numbers, children
must establish connections between quantities and
numbers. Thus schools must ensure that children
learn not only to count but also learn to establish
connections between counting and their
understanding of quantities.

Current theories about the origin of
children’s understanding of the
meaning of cardinal number

We have seen that Piaget's theory defines children’s
understanding of number on the basis of their
understanding of relations between quantities; for
him, cardinality is not just saying how many items

are in sets but grasping that sets in one-to-one
correspondence are equivalent in number and vice-
versa. He argued that children could only be said to
understand numbers if they made a connection
between numbers and the relations between
quantities that are implied by numbers. He also
argued that this connection was established by
children as they reflected about the effect of

their actions on quantities: setting items in
correspondence, adding and taking items away are
schemes of action which form the basis for children’s
understanding of how to compare and to change
quantities. Piaget acknowledges that learning to count

can accelerate this process of reflection on actions,
and so can other forms of social interaction, because
they may help the children realise the contradictions
that they fall into when they say, for example, that
two quantities are different and yet they are labelled
by the same number. However, the process that
eventually leads to their understanding of the
meanings of natural numbers and the implications
of these representations is the child's growing
understanding of relations between quantities.

Piaget's studies of children’s understanding of the
relations between quantities involved three different
ideas that he considered central to understanding
number: understanding equivalence, order, and class-
inclusion (which refers to the idea that the whole is
the sum of the parts, or that a set with 6 items
comprises a set with 5 items plus |).The methods
used in these studies have been extensively
criticised, as has the idea that children develop
through a sequence of stages that can be easily
traced and are closely associated with age. However,
to our knowledge the core idea that children come
to understand relations between quantities by
reflecting upon the results of their actions is still a
very important hypothesis in the study of how
children learn about numbers.We do not review this
vast literature here as there are several collections of
papers that do so (see, for example, Steffe, Cobb
and Glaserfeld, 1988; Steffe and Thompson, 2000).
Later sections of this paper will revisit Piaget's theory
and discuss related research.

This is not the only theory about how children come
to understand the meaning of cardinal numbers. There
are at least two alternative theories which are widely
discussed in the literature. One is a nativist theory,
which proposes that children have from birth access
to an innate, inexact but powerful ‘analog’ system,
whose magnitude increases directly with the number
of objects in an array, and they attach the number
words to the properties occasioning these
magnitudes (Dehaene 1992; 1997; Gallistel and
Gelman, 1992; Gelman and Butterworth, 2005; Xu
and Spelke, 2000; Wynn, 1992; 1998).This gives all

of us from birth the ability to make approximate
judgements about numerical quantities and we
continue through life to use this capacity. The
discriminations that this system allows us to make are
much like our discriminations along other continua,
such as loudness, brightness and length. One feature
of all these discriminations is that the greater the
quantities (the louder, the brighter or the longer they
are) the harder they are to discriminate (known, after
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the great 19th century psycho-physicist who
meticulously studied perceptual sensitivity, as the
‘Weber function’). To quote Carey (2004):Tap out as
fast as you can without counting (you can prevent
yourself from counting by thinking 'the' with each tap)
the following numbers of taps: 4, 15,7, and 28. If you
carried this out several times, you'd find the mean
number of taps to be 4, |5,7, and 28, with the range
of variation very tight around 4 (usually 4, occasionally
3 or 5) and very great around 28 (from 14 to 40 taps,
for example). Discriminability is a function of the
absolute numerical value, as dictated by Weber's law’
(p. 63).The evidence for this analog system being an
innate one comes largely from studies of infants (Xu
and Spelke, 2000; McCrink and Wynn, 2004) and to

a certain extent studies of animals as well, and is
beyond the scope of this review. The evidence for its
importance for learning about number and arithmetic
comes from studies of developmental or acquired
dyscalculia (e.g. Butterworth, Cipolotti and
Warrington, 1996; Landerl, Bevana and Butterworth,
2004). However important this basic system may be
as a neurological basis for number processing, it is not
clear how the link between an analog and imprecise
system and a precise system based on counting can
be forged:'ninety’ does not mean ‘approximately
ninety’ any more than ‘eight’ could mean
‘approximately eight’. In fact, as reported in the
previous section, three- and four-year-olds know that
if a set has 6 items and you add one item to it, it no
longer has 5 objects: they know that 'six’ is not the
same as ‘approximately six’,

A third well-known theoretical alternative, which
starts from a standpoint in agreement with Gelman’s
theory, is Susan Carey's (2004) hypothesis about
three ways of learning about number. Carey accepts
Gelman and Gallistel's (1978) limited definition of the
cardinality principle but rejects their conclusions
about how children first come to understand this
principle. Carey argues that initially (by which she
means in the first three years of life), very young
children can represent number in three different
ways (Le Corre and Carey, 2007).The first is the
analog system, described in the previous paragraphs.
However, although Carey thinks that this system plays
a part in people’s informal experiences of quantity
throughout their lives, she does not seem to assign

it a role in children’s learning about the counting
system, or in any other part of the mathematics that
they learn about at school.

In her theory, the second of Carey’s three systems,
which she calls the ‘parallel individuation’ system, plays

the crucial part in making it possible for children to
learn how to connect number with the counting
system. This system makes it possible for infants to
recognise and represent very small numbers exactly
(not approximately like the analog system).The
system only operates for sets of |,2 and 3 objects
and even within this restricted scope there is marked
development over children’s first three years.

Initially the system allows very young children to
recognise sets of | as having a distinct quantity. The
child understands | as a quantity, though he or she
does not at first know that the word ‘one’ applies to
this quantity. Later on the child is able to discriminate
and recognise — in Carey’s words ‘to individuate'—
sets of | and 2 objects, and still later; around the age
of three- to four-years, sets of |, 2 and 3 objects as
distinct quantities. In Carey's terms young children
progress from being ‘one-knowers’ to becoming ‘two-
knowers' and then ‘three-knowers'.

During the same period, these children also learn
number words and, though their recognition of |, 2
and 3 as distinct quantities does not in any way
depend on this verbal learning, they do manage to
associate the right count words (‘one’,‘two’ and ‘three’)
with the right quantities. This association between
parallel individuation and the count list eventually leads
to what Carey (2004) calls ‘bootstrapping’: the children
lift themselves up by their own intellectual bootstraps.
They do so, some time in their fourth or fifth year, and
therefore well before they go to school.

This bootstrapping takes two forms. First, with the help
of the constant order of number words in the count
list, the children begin to learn about the ordinal
properties of numbers: 2 always comes after | in the
count list and is always more numerous than |,and 3 is
more numerous than 2 and always follows 2. Second,
since the fact that the count list that the children leamn
goes well beyond 3, they eventually infer that the
number words represent a continuum of distinct
quantities which also stretches beyond ‘three’. They also
begin to understand that the numbers above three are
harder to discriminate from each other at a glance than
sets of |,2 and 3 are, but that they can identify by
counting. In Carey's words ‘The child ascertains the
meaning of 'two' from the resources that underlie
natural language quantifiers, and from the system of
parallel individuation, whereas she comes to know the
meaning of 'five' through the bootstrapping process —
Le, that 'five' means one more than four, which is one
more than three — by integrating representations of
natural language quantifiers with the external serial
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ordered count list. Carey called this new understanding
‘enriched parallel individuation” (Carey, 2004; p. 65).

Carey’'s main evidence for parallel individuation and
enriched parallel individuation came from studies in
which she used a task, originally developed by Wynn,
called ‘Give — a number'. In this, an experimenter asks
the child to give her a certain number of objects
from a set of objects in front of them:'Could you
take two elephants out of the bowl and place them
on the table?” Children sometimes put out the
number asked for and sometimes just grab objects
apparently randomly. Using this task Carey showed
that different three-, four- and five-year-old children
can be classified quite convincingly as ‘one-"‘two-"or
‘three-knowers’ or as ‘counting-principle-knowers'.
The one-knowers do well when asked to provide
one object but not when asked the other numbers
while the two- and three-knowers can respectively
provide up to two and three objects successfully.
The ‘counting-principle-knowers’ in contrast count
quantities above three or four.

The evidence for the existence of these three
groups certainly supports Carey’s interesting idea
of a radical developmental change from ‘knowing’
some small quantities to understanding that the
number system can be extended to other numbers
in the count list. The value of her work is that it
shows developmental changes in children’s learning
about the counting system.These had been by-
passed both by Piaget and his colleagues because
their theory was about the underlying logic needed
for this learning and not about counting itself, and
also by Gelman, because her theory about counting
principles was about innate or rapidly acquired
structures and not about development. However,
Carey’s explanation of children's counting in terms
of enriched parallel individuation suffers the
limitation that we have mentioned already: it has
no proper measure of children’s understanding of
cardinality in its full sense. Just knowing that the last
number that you counted is the number of the set
is not enough.

The third way in which children learn number,
according to Carey's theory, is through a system
which she called ‘set-based quantification”: this is
heavily dependent on language and particularly on
words like ‘a’ and ‘some’ that are called ‘quantifiers’.
Thus far the implications of this third hypothesised
system for education are not fully worked out, and
we shall not discuss it further.

Carey’s theory has been subjected to much criticism
for the role that it attributes to induction or analogy
in the use of the 'next’ principle and to language.
Gelman and Butterworth (2005), for example, argue
that groups that have very restricted number
language still show understanding of larger quantities;
their number knowledge is not restricted to small
numerosities as suggested in Carey's theory. Rips,
Asmuth and Bloomfield (2006; 2008) address it
more from a theoretical standpoint and argue that
the bootstrapping hypothesis presupposes the very
knowledge of number that it attempts to explain.
They suggest that, in order to apply the ‘next
number’ principle, children would have to know
already that | is a set included in 2,2 in 3,and 3 in 4.
If they already know this, then they do not need to
use the ‘next number’ principle to learn about what
number words mean.

Which of these approaches is right! VWe do not think
that there is a simple answer. If you hold, as we do,
that understanding number is about understanding
an ordered set of symbols that represent quantitative
relations, Piaget's approach definitely has the edge.
Both Gelman’s and Carey's theory only address the
question of how children give meaning to number
words: neither entertains the idea that numbers
represent quantities and relations between quantities,
and that it is necessary for children to understand
this system of relations as well as the fact that the
word five' represents a set with 5 items in order to
learn mathematics. Their research did nothing to dent
Piaget's view that children of five years and six years
are still learning about very basic relations between
quantities, sometimes quite slowly.

sSummary

| Piaget's studies of learning about number
concentrated on children’s ability to reason
logically about quantitative relations, and bypassed
their acquisition of the counting system.

2 In contrast many current theories concentrate
on children learning to count, and omit children’s
reasoning about quantitative relations. The most
notable omission in these theories is the question
of children’s understanding of cardinality.

3 Gelman’s studies of children’s counting,
nevertheless, did establish that even very young
children systematically obey some basic counting
principles when they do count.
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Ordinal number

Numbers, as we have noted, come in a fixed order,
and this order represents a quantitative series.
Numbers are arranged in an ascending scale: 2 is
more than | and 3 more than 2 and so on. Also the
next number in the scale is always | more than the
number that precedes it. Ordinal numbers indicate
the position of a quantity in a series.

Piaget developed much the same argument about
ordinal number as about cardinal number. He claimed
that children learn to count, and therefore to
produce numbers in the right fixed order, long before
they understand that this order represents an ordinal
series. This claim about children’s difficulties with
ordinality was based on his experiments on ‘seriation’
and also on ‘transitivity'.

In his ‘seriation’ experiments, Piaget and his colleagues
(Piaget, 1952) showed children a set of sticks all
different in length and arranged in order from
smallest to largest, and then jumbled them up and
asked the child to re-order them in the same way.
However, the children were asked to do so not by
constructing the visual display all at once, which they
would be able to do perceptually and by trial-and-
error, but by giving the sticks to the experimenter
one by one, in the order that they think they should
be placed.

This is a surprisingly difficult task for young children
and, at the age range that we are considering here
(five- to six-years), children tend to form groups of
ordered sticks instead of creating a single ordered
series. Even when they do manage to put the sticks
into a proper series, they tend then to fail an
additional test, which Piaget considered to be the
acid test of ordinal understanding: this was to insert
another stick which he then gave them into its
correct place in the already created series, which was
now visible. These difficulties, which are highly reliable
and have never been refuted or explained away, are
certainly important, but they may not be true of
number. Children’s reactions to number series may
well be different precisely because of the extensive
practice that they have with producing numbers in

a fixed order.

Recently, however, Brannon (2002) made the striking
claim that even one-year-old-children understand
ordinal number relations. The most direct evidence
that Brannon offered for this claim was a study in
which she showed the infant sequences of three

cards, each of which depicted a different number of
squares. Each three-card sequence constituted either
an increasing or a decreasing series. In some
sequences the number of squares increased from
card to card e.g. 2,4, 8 and 3, 6, 12:in others the
numbers decreased e.g. |6, 8, 4.

Brannon's results suggested that | [-month-old infants
could discriminate the two kinds of sequence (after
seeing several increasing sequences they were more
interested in looking at a decreasing than at yet
another increasing sequence, and vice versa), and

she concluded that even at this young age children
have some understanding of seriation.

However, her task was a very weak test of the
understanding of ordinality. It probably shows that
children of this age are to some extent aware of the
relations ‘more’ and ‘less’, but it does not establish that
the children were acting on the relation between all
three numbers in each sequence.

The point here is that in order to understand
ordinality the child must be able to co-ordinate

a set of ‘'more’ and ‘less’ relations. This means
understanding that b is smaller than a and at the
same time larger than c in an a >b > c series. Piaget
was happy to accept that even very young children
can see quite clearly that b is smaller than a and at
another time that it is larger than ¢, but he claimed
that in order to form a series children have to
understand that intermediary quantities like b are
simultaneously larger than some values and smaller
than others. Of course, Brannon did not show
whether the young children in her study could or
could not grasp these two-way relations.

Piaget's (1921) most direct evidence for children’s
difficulties with two-way relations came from another
kind of task — the transitivity task. The relations
between quantities in any ordinal series are transitive.
IfA>Band B> C, then it follows that A > C, and
one can draw this logical conclusion without ever
directly comparing A with C.This applies to number
as well: since 8 is more than 4 and 4 more than 2, 8 is
more than 2.

Piaget claimed that children below the age of roughly
eight years are unable to make these inferences
because they find it difficult to understand that B

can be simultaneously smaller than one quantity (A)
and larger than another (C). In his experiments on
transitivity Piaget did find that children very rarely
made the indirect inference between A and C on the
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basis of being shown that A > C and B > C, but this
was not very strong evidence for his hypothesis
because he failed to check the possibility that the
children failed to make the inference because they
had forgotten the premises — a reason which has
nothing directly to do with logic or with reasoning.

Subsequent studies, in which care was taken to
check how well the children remembered the
premises at the time that they were required to
make the A > C inference (Bryant and Trabasso,
1971; Bryant and Kopytynska, 1976 ;Trabasso, 1977)
consistently showed that children of five years or
older do make the inference successfully, provided
that they remember the relevant premises correctly.
Young children’s success in these tasks throws some
doubt on Piaget’s claim that they do not understand
ordinal quantitative relations, but by and large there
is still a host of unanswered questions about
children’s grasp of ordinality. We shall return to

the issue of transitivity in the section on Space

and Geometry.

Above all we need a comprehensive set of seriation
and transitivity experiments in which the quantities
are numbers (discontinuous quantities), and not
continuous quantities like the rods of different lengths
that have been the staple diet of previous work on
these subjects.

sSummary

I The count list is arranged in order of the magnitude
of the quantities represented by the numbers. The
relations between numbers in this series are
transitive: if A > B and B> C,then A> C.

2 Piaget argued that young children find ordinal
relations, as well as cardinal relations, difficult to
understand. He attributed these difficulties to
an inability, on the part of young children, to
understand that, in an A > B > C series, B is
simultaneously smaller than A and larger than B.

3 Piaget’s evidence for this claim came from studies
of seriation and transitivity. The difficulties that
children have in the seriation experiment, in which
they have to construct an ordered series of sticks,
are surprising and very striking.

4 However, the criterion for constructing the series
in the seriation experiment (different lengths of
some sticks) cannot be applied by counting.

Therefore, seriation studies do not deal directly
with children’s understanding of natural number.
The question of the seriation of number is still
an open one.

Cardinality, additive reasoning and
extensive quantities

So far we have discussed how children give meaning
to number and how easy or difficult it is for them to
make connections between what they understand
about quantity and the numbers that they learn
when they begin to count. Now we turn to another
aspect of cardinal number; its connection with
addition and subtraction — or, more generally, with
additive reasoning. There are undeniable connections
between the concept of cardinality and additive
reasoning and we shall explore them in this section,
which is about the additive composition of number,
and in the subsequent section, which is about the
inverse relations between addition and subtraction.

Piaget (1952) included in his definition of children’s
understanding of number their realisation that a
quantity (and its numerical representation) is only
changed by addition or subtraction, not by other
operations such as spreading the elements or
bunching them together. This definition, he indicated,
is valid for the domain of extensive quantities, which
are measured by the addition of units because the
whole is the sum of the parts. If the quantity is made
of discrete elements (e.g. a set of coins), the task of
measuring it and assigning a number to it is easy: all
the children have to do is to count. If the quantity is
continuous (e.g. a ribbon), the task of measuring it is
more difficult: normally a conventional unit would be
applied to the quantity and the number that
represents the quantity is the number of iterations of
these units. Extensive quantities differ from intensive
quantities, which are measured by the ratio between
two other quantities. For example, the concentration
of a juice is measured by the ratio between amount
of concentrate and amount of water used to make
the juice. These quantities are considered in Paper 4.

His studies of children’s understanding of the
conservation of quantities have been criticised on
methodological grounds (e.g. Donaldson, 1978;
Light, Buckingham and Robbins, 1979; Samuel and
Bryant, 1984) but, so far as we know, his idea that
children must realise that extensive quantities
change either by addition or by subtraction has
not been challenged.
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Piaget (1952) also made the reasonable suggestion
that you cannot understand what five' is unless you
also know that it is composed of numbers smaller
than it. Any set of five items contains a sub-set of 4
items and another sub-set of |, or one sub-set of 3
and another of 2. A combination of or; in other
words, an addition of each of these pairs of sets
produces a set of five. This is called the additive
composition of number, which is an important aspect
of the understanding of relations between numbers.

Piaget used the idea of class-inclusion to describe this
aspect of number; others (e.g. Resnick and Ford,
1981) have called it part-whole relations. Piaget's
studies consisted in asking children about the
quantitative relations between classes, one of which
was included in the other. For example, in some tasks
children were asked to compare the number of dogs
with the number of animals in sets which included
other animals, such as cats. For an adult, there is no
need to know the actual number of dogs, cats, and
animals in such a task: there will be always more
animals than dogs because the class of dogs is
included in the class of animals. However, some
children aged four to six-years do not necessarily
think like adults: if the number of dogs is quite a bit
larger than the number of cats, the children might
answer that there are more dogs than animals.
According to Piaget, this answer which to an adult
seems entirely illogical, was the result of the children’s
difficulties with thinking of the class of dogs as
simultaneously included in the class of animals and
excluded from it for comparison purposes. Once they
mentally excluded the dogs from the set of animals,
they could no longer think of the dogs as part of the
set of animals: they would then be unable to focus on
the fact that the whole (the overall class, animals) is
always larger than one part (the included class, dogs).

Piaget and his colleagues (Piaget, 1952; Inhelder,
Sinclair and Bovet, 1974) did use a number of
conditions to try to eliminate alternative hypotheses
for children’s difficulties. For example, they asked the
children whether in the whole world there would be
more dogs or more animals. This question used the
same linguistic format but could be answered without
an understanding of the necessary relation between a
part and a whole: the children could think that there
are many types of animals in the world and therefore
there say that there are more animals than dogs.
Children are indeed more successful in answering this
question than the class-inclusion one. Another
manipulation Piaget and his colleagues used was to
ask the children to circle with a string the dogs and

the animals: this had no effect on the children’s
performance, and they continued to exclude the

dogs mentally from the class of animals. The only
manipulation that helped the children was to ask the
children to first think of the set of animals without
separating out the dogs, then replace the dogs with
visual representations that marked their inclusion in
the class of animals, while the dogs were set in a
separate class: the children were then able to create a
simultaneous representation of the dogs included in
the whole and as a separate part and answer the
question correctly. After having answered the question
in this situation, some children went on to answer it
correctly when other class-inclusion problems were
presented (for example, about flowers and roses)
without the support of the extra visual signs.

The Piagetian experiments on class-inclusion have
been criticised on many grounds: for example, it has
been argued that the question the children are asked
is an anomalous question because it uses disjunction
(dogs or animals) when something can be
simultaneously a dog and an animal (Donaldson,
1978; Markman, 1979). However, Piaget's hypothesis
that part-whole relations are an important aspect of
number understanding has not been challenged. As
discussed in the previous sections, it has been argued
(e.g. by Rips, Asmuth and Bloomfield, 2008) that it is
most unlikely that a child will understand the
ordinality of number until she has grasped the
connection between the next number and the plus-
one compositions: i.e. that a set of 5 items contains a
set of 4 items plus a set of I,and a set of 4 items is
composed of a set of 3 plus |, and so on.

For exactly the same reasons, the understanding of
additive composition of number is essential in any
comparison between two numbers. To judge the
difference, for example, between 7 and 4, something
which as we shall see is not always easy for young
children, you need to know that 7 is composed of 4
and 3, which means that 7 is 3 greater than 4.

Of course, even very young children have a great deal
of informal experience of quantities increasing or
decreasing as a result of additions and subtractions.
There is good evidence that pre-schoolers do
understand that additions increase and subtractions
decrease quantities (Brush, 1978; Cooper, 1984; Klein,
1984) but this does not mean that they realise that
the only changes that affect quantity are addition and
subtraction. It is possible that their understanding of
these changes is qualitative in the sense that it lacks
precision.We can take as an example what happens
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when young children are shown two sets that are
unequal and are arranged in one-to-one
correspondence, as in Figure 2.1, so that it is possible
for the children to see the size of the difference (say
one set has |0 objects and the other 7). The
experimenter proposes to add to the smaller set
fewer items than the difference (i.e. she proposes to
add 2 to the set with 7). Some preschoolers judge
that the set to which elements are added will become
larger than the other. Others think that it is now the
same as the other set. It is only at about six- or seven-
years that children actually take into account the
precise difference between the sets in order to know
whether they will be the same or not after the
addition of items to the smaller set (Klein, 1984;
Blevins-Knabe, Cooper; Mace and Starkey, 1987).

The basic importance of the additive composition of
number means that learning to count and learning to
add and subtract are not necessarily two successive
and separate intellectual steps, as common sense
might suggest. At first glance, it seems quite a
plausible suggestion that children must understand
number and know about the counting system in
order to do any arithmetic, like adding and
subtracting. It seems simply impossible that they
could add 6 and 4 or subtract 4 from 6 without
knowing what 6 and 4 mean. However, we have now
seen that this link between counting and arithmetic
must work in the opposite direction as well, because
it is also impossible that children could know what 6
or 4 or any other number mean, or anything about
the relations between these numbers, without also
understanding something about the additive
composition of number.

Given its obvious importance, there is remarkably little
research on children's grasp of additive composition of
number. The most relevant information, though it is
somewhat indirect, comes from the well-known
developmental change from ‘counting-all’ to ‘counting-
on'.As we have seen, five-year-old children generally
know how to count the number of items in a set
within the constraints of one-to-one counting.

However, their counting is not always economic. If, for
example, they are given a set of 7 items which they
duly count and then 6 further items are added to this
set and the children are asked about the total number
in the newly increased set, they tend to count all the
I3 items in front of them including the subset that
they counted before. Such observations have been
replicated many times (e.g. Fuson, 1983; Nunes and
Bryant, 1996, Wright, 1994) and have given origin to

a widely used analysis of children's progress in
understanding cardinality (e.g. Steffe, Cobb and von
Glaserfeld, 1988; Steffe, Thompson and Richards, 1982;
Steffe, von Glasersfeld, Richards and Cobb, 1983).This
counting of all the items is not wrong, of course, but
the repeated counting of the initial items is
unnecessary. The children could just as well and much
more efficiently have counted on from the initial set
(not'l,2,3,....13but'8,9, 10.....13).

According to Vergnaud (2008), the explanation for
children’s uneconomical behaviour is conceptual: as
referred in the previous section, he argues that their
understanding of number may be simply ordinal

(i.e. what they know is that the last number word
represents the set) and so they cannot add because
ordinal numbers cannot be added. They can, however,
count a new, larger set, and give to it the label of the
last number word used in counting.

Studies of young children’s reactions to the kind

of situation that we have just described have
consistently produced two clear results. The first is
that young children of around the age of five years
consistently count all the items. The second is that
between the ages of five and seven years, there is a
definite developmental shift from counting-all to
counting-on: as children grow older they begin to
adopt the more economic strategy of counting-on
from the previously counted subset. This new strategy
is a definite sign of children’s eventual recognition of
the additive composition of the new set: they appear
to understand that the total number of the new set
will contain the original 7 items plus the newly added
6 items. The fact that younger children stick to
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Figure 2.1:Two sets in correspondence; the difference between sets is easily seen.
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counting-all does not establish that they cannot
understand the additive composition of the new

set (as is often the case, it is a great deal easier to
establish that children do understand some principle
than that they do not). However, the developmental
change that we have just described does suggest an
improvement in children’'s understanding of additive
relations between numbers during their first two
years at school.

The study of the connections that children make, or
fail to make, between understanding number, additive
composition and additive reasoning plainly supports
the Piagetian thesis that children give meaning to
numbers by establishing relations between quantities
though their schemes of action. They do need to
understand that addition increases and subtraction
decreases the number of items in a set. This forms a
foundation for their understanding of the precise way
in which the number changes: adding | to set a
creates a number that is equal to a + [.This number
can be seen as a whole that includes the parts a and
I Instead of relying on the ‘next number' induction or
analogy, children use addition and the logic of part-
whole to understand numbers.

Summary

| In order to understand number as an ordinal
series, children have to realise that numbers are
composed of combinations of smaller numbers.

2 This realisation stems from their progressive
understanding of how addition affects number: at
first they understand that addition increases the
number of items in a set without being precise
about the extent of this increase b ut, as they co-
ordinate their knowledge of addition with their
understanding of part-whole relations, they can
also become more precise about additive
composition.

3 Young children’s tendency to count-all rather than
to count-on suggests either that they do not
understand the additive composition of number
or that their grasp of additive composition is too
weak for them to take advantage of it.

4 Their difficulties suggest that children should
be taught about additive composition, and
therefore about addition, as they learn about
the counting system.

The decade structure and additive
composition

Additive composition and the understanding of
number and counting are linked for another
important reason.The power and the effectiveness of
counting rest largely on the invention of base systems,
and these systems depend on additive composition.
The base-10 system, which is now widespread, frees
us from having to remember long strings of numbers,
as indeed any base system does. In English, once we
know the simple rules for the decimal system and
remember the number words for | to 20, for the
decades, and then for a hundred, a thousand and a
million, we can generate most of the natural numbers
that we will ever need to produce with very little
effort or difficutty. The link between understanding
additive composition and adopting a base system is
quite obvious. Base systems rest on the additive
composition of number and the decade structure is in
effect a clear reminder that fourteen’is a combination
of 10 and 4, and ‘thirty-five’ of three 10s and 5.

Additive composition is the basic concept that
underlies any counting system with a base, oral or
written. This includes of course the Hindu-Arabic
place-value system that we use to write numbers. For
example, the decimal system explicitly represents the
fact that all the numbers between 10 and a 100 must
be a combination of one or more decades and a
number less than 10: 17 is a combination of 10 and 7
and 23 a combination of two 10s and 3. The digits
express the additive composition of any number
from 10 on:e.g.in 23, 2 represents two |0s which
are added to 3, which represents three units.

Additive composition is also at the root of our ability
to count money using coins and notes of different
denominations.When we have, for example, one 10p
and five Ip coins, we can only count the 10p and the
I p coins together if we understand about additive
composition.

The data from the ‘shop task’, a test devised by Nunes
and Schliemann (1990), suggest that initially children
find it hard to combine denominations in this way. In
the shop task children are shown a set of toys in a
‘shop’, are given some (real or artificial) money and are
asked to choose a toy that they would like to buy.
Then the experimenter asks them to pay a certain
sum for their choice. Sometimes the child can pay for
this with coins of one denomination only: for example,
the experimenter charges a child |5p for a toy car and
the child has that number of pence to make the
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purchase or the charge is 30p and the child can pay
with three |0p coins. In other trials, the child can pay
only by combining denominations: the car costs 15p
and the child, having fewer |p coins than that, must
pay with the combination of a 10p and five Ip coins.
Although the values that the children are asked to pay
when they use only |0p coins are larger than those
they pay when using combinations of different values,
children can count in tens (ten, twenty, thirty etc.)
using simple correspondences between the counting
labels and the coins. This task does not require
understanding additive composition. So Nunes and
Schliemann predicted that the mixed denomination
trials would be significantly more difficult than the
other trials in the task They found that the mixed
denominations trials were indeed much harder for the
children than the single denomination trials and that
there was a marked improvement between the ages
of five and seven years in children’s performance in the
combined denomination trials. This work was originally
carried out in Brazil and the results have been
confirmed in other research in the United Kingdom
(Krebs, Squire and Bryant, 2003; Nunes et al,, 2007).

A fascinating observation in this task is that children
don't change from being unable to carry out the
additive composition to counting on from ten as they
add Ip coins to the money they are counting. The
show the same count-all behaviour that they show
when they have a set of objects and more object are
added to the set. However, as there are no visible |p
coins within the 10p, they point to the 10p ten times
as they count, or they lift up 10 fingers and say ‘ten’,
and only then go on to count ‘eleven, twelve, thirteen
etc. This repeated pointing to count invisible objects
has been documented also by Steffe and his colleagues
(e.g. Steffe, von Glasersfeld, Richards and Cobb, 1983),
who interpreted it, as we do, as a significant step in
coordinating counting with a more mature
understanding of cardinality.

In a recent training study (Nunes et al., 2007), we
encouraged children who did not succeed in the
shop-task to use the transition behaviour we had
observed, and asked them to show us ten with their
fingers; we then pointed to their fingers and the 10p
coin and asked the children to say how much there
was in each display; finally, we encouraged them to go
on and count the money. Our study showed that
some children seemed to be able to grasp the idea
of additive composition quite quickly after this
demonstration and others took some time to do

so, but all children benefited significantly from brief
training sessions using this procedure.

Since children appear to be finding out about the
additive nature of the base-10 system and at the same
time (their first two years at school) about the additive
composition of number in general, one can reasonably
ask what the connection between these two is. One
possibility is that children must gain a full understanding
of the additive composition of number before they can
understand the decade structure. Another is that
instruction about the decade structure is children’s first
entrée to additive composition. First they learn that 12
is a combination of 10 and 2 and then they extend this
knowledge to other combinations (e.g. 12 is also a
combination of 8 and 4).The results of a recent study
by Krebs, Squire and Bryant (2003), in which the same
children were given the shop task and counting
all/counting on tasks, favour the second hypothesis. All
the children who consistently counted on (the more
economic strategy) also did well on the shop task, but
there were some children who scored well in the
shop task but nevertheless tended not to count on.
However, no child scored well in the counting all/on
task but poorly in the shop task. This pattern suggests
that the cues present in the language help children
learn about the decimal system first and then extend
their new understanding of additive composition to
combinations that do not involve decades.

Summary

| The decimal system is a good example of an
invented and culturally transmitted mathematical
tool. It enhances our power to calculate and frees
us from having to remember extended sequences
of number.

2 Once we know the rules for the decade system
and the names of the different classes and orders
(tens, hundreds, thousands etc.), we can use the
system to count by generating numbers ourselves.

3 However, the system also makes some quite
difficult intellectual demands. Children find it hard
at first to combine different denominations, such as
tens and ones.

4 Teachers should be aware that the ability to
combine denominations rests on a thorough grasp
of additive composition.

5 There is some evidence that experience with the
structure of the decimal system may enhances
children’s understanding of additive composition.
There is also evidence that it is possib le to use



22 Paper 2: Understanding whole numbers

money to provoke children’s progress in
understanding additive composition.

The inverse relation between
addition and subtraction

The research we have considered so far suggests
that by the age of six or seven children understand
quite a lot about number: they understand
equivalence well enough to know that if two sets
are equivalent they can infer the number that
describes one by counting the other; they
understand that addition and subtraction are the
operations that change the number in a set; they
understand additive composition and what must
be added to one set to make it equivalent to the
other; they understand that they can count on if
you add more elements to a set; and they
understand about ordinal number and can make
transitive inferences. However, there is an insight
about how addition and subtraction affect the
number of elements in a set that we still need to
consider. This is the insight that addition is the
inverse of subtraction and vice versa, and thus that
equal additions and subtractions cancel each other
out:27 + 19 -19=27and 27 - 19 + 19 = 27.

It is easy to see that one cannot understand either
addition or subtraction or even number fully without
also knowing about the inverse relation of each of
these operations to the other: It is absolutely essential
when adding and subtracting to understand that
these are reversible actions. Otherwise one will not
understand that one can move along the number
scale in two opposite directions — up and down.

The understanding of any inverse relation should,
according to Piaget (1952), be particularly hard for
young children, since in his theory young children are
not able to carry out ‘reversible’ thought processes.
Children in the five- to eight-year range do not see
that if 4 + 8 = |2, therefore 12 — 8 = 4 because
they do not realise that the original addition (+8) is
cancelled out by the inverse subtraction (=8).This
claim is a central part of Piaget's theory about
children’s arithmetical learning, but he never tested it
directly, even though it would have been quite easy
to do so.

In one of his last publications, Piaget and Moreau
(2001) did report an ingenious, but rather too
complicated, study of the inverse relations between
addition and subtraction and also between

multiplication and division. They asked children,
aged from six- to ten-years, to choose a number
but not to tell them what this was. Then they asked
the child first to add 3 to this number, next to
double the sum and then to add 5 to the result of
the multiplication. Next, they asked the child what
the result was, and went on to tell him or her what
was the number that s/he chose to start with.
Finally the experimenters asked each child to
explain how they had managed to work out what
this initial number was.

Piaget and Moreau reported that this was a difficult
task. The youngest children in the sample did not
understand that the experimenters had performed
the inverse operations, subtracting where the child
had added and dividing where s/he had multiplied.
The older children did show some understanding
that this was how the experimenters reached the
right number, but did not understand that the order
of the inverse operations was important. The
experimenters accounted for the younger children’s
difficulties by arguing that these children had failed to
understand the adult's use of inversion (equal
additions and subtractions and equal multiplications
and divisions) because they did not understand the
principle of inversion.

This was a highly original study but Piaget and
Moreau'’s conclusions from it can be questioned. One
alternative explanation for the children’s difficulties is
that they may perfectly have understood the inverse
relations between the different operations, but they
may still not have been able to work out how the
adult used them to solve the problem.The children,
also, had to deal with two kinds of inversion
(addition-subtraction and multiplication-division) in
order to explain the adult's correct solution, and

so their frequent failures to produce a coherent
explanation may have been due to their not knowing
about one of the inverse relations, e.g. between
multiplication and division, even though they were
completely at home with the other, e.g. between
addition and subtraction.

Nevertheless, some following studies seemed to
confirm that young school-children are often
unaware aware that inverse transformations cancel
each other out in a + b — b sums. In two studies
(Bisanz and Lefevre, 1990; Stern, 1992), the vast
majority of the younger children did no better with
inverse a + b — b sums in which they could take
advantage of the inversion principle than with control
a + b — ¢ sums where this was not possible. For
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example, Stern reported that only 13% of the seven-
year-old children and 48% of the nine-year-olds in her
study used the inversion principle consistently, when
some of the problems that they were given were

a + b —b sums and others a + b — ¢ sums.

This overall difficulty was confirmed in a further study
by Siegler and Stern (1998), who gave eight-year-old
German children inversion problems in eight
successive sessions. Their aim was to see whether
the children improved in their use of the inversion
principle to solve problems. The children were also
exposed to other traditional scholastic problems
(e.g.a + b —c), which could not be solved by using
the inverse principle. In the last of the eight sessions,
Siegler and Stern also gave the children control
problems, which involved sequences such as a + b +
b, so that the inversion principle was not appropriate
for solution. The experimenters recorded how well
children distinguished the problems that could be
solved through the inversion principle from those
that had to be solved in some other way.

The study showed that the children who were given
lots of inversion problems in the first seven sessions
tended to get better at solving these problems over
these sessions, but in the final session in which the
children were given control as well as inversion
problems they often, quite inappropriately,
overgeneralised the inversion strategy to the control
sums: they would give g as the answerina +b + b
control problems as well as in inverse a + b —b
problems. Their relatively good performance with
the inversion problems in the previous sessions,
therefore, was probably not the result of an
increasing understanding of inversion. They seem to
have learned some lower-level and totally inadequate
strategy, such as ‘if the first number (a) is followed by
another number (b) which is then repeated, the
answer must be d.

The pervasive failures of the younger school children
in these studies to take advantage of the inversion
principle certainly suggest that it is extremely difficult
for them to understand and to learn how to use this
principle, as Piaget first suggested. However; in all
these tasks the problems were presented either
verbally or in written form. Other studies, which
employed sets of physical objects, paint a different
picture. (Bryant, Christie and Rendu, 1999;
Rasmussen, Ho and Bisanz, 2003). For example,
Bryant et al. used sets of bricks to present five-

and six-year-old children with a + b — b inversion
problems and a + a — b control problems. In this

particular task young children did a great deal better
with the inversion problems than with the control
problems, which is good evidence that they were
using the inversion principle when they could. In the
same study the children were also given equivalent
inversion and control problems as verbal sums (27 +
|4 — 14): they used the inversion principle much less
often in this task than in the task with bricks, a result
which resonates well with Hughes' (1981) discovery
that pre-school children are much more successful at
working out the results of additions and subtractions
in problems that involve concrete objects than in
abstract, verbal sums.

The fact that young children are readier to use the
inversion principle in concrete than in abstract
problems suggests that they may learn about
inversion initially through their actions with concrete
material. Bryant et al. raised this possibility, and they
also made a distinction between two levels in the
understanding of the inverse relation between
addition and subtraction. One is the level of identity:
when identical stuff is added to and then subtracted
from an object, the final state of this object is the
same as the initial state.Young children have many
informal experiences of inverse transformations at
this level. A child gets his shirt dirty (mud is added to
it) and then it is cleaned (mud is subtracted) and the
shirt is as it was before. At meal-times various objects
(knives, forks etc.) are put on the dining room table
and then subtracted when the meal is over; the table
top is as empty after the meal, as it was before.

Note that understanding the inversion of identity
may not involve quantity. The child can understand
that, if the same (or identical) stuff is added and then
removed, the status quo is restored without having to
know anything about the quantity of the stuff.

The other possible level is the understanding of the
inversion of quantity. If | have 10 sweets and someone
gives me 3 more and then | eat 3, | have the same
number left as at the start, and it doesn't matter
whether the 3 sweets that | ate are the same 3
sweets as were given to me or different ones.
Provided that | eat the same number as | was given,
the quantitative status quo is now restored.

In a second study, again using toy bricks, Bryant et al.
established that five- and six-year-old children found
problems, called identity problems, in which exactly

the same bricks were added to and then subtracted
from the initial set (or vice versa), easier than other
problems, called quantity problems, in which the
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same number of bricks was added and then
subtracted (or vice versa), but the actual bricks
subtracted were quite different from the bricks that
had been added before. Bryant et al. also found a
greater improvement with age in children’s
performance in quantity inversion problems than in
identity inversion problems. These results point to a
developmental hypothesis: children’s understanding
of the inversion of identity precedes, and may
provide the basis for, their understanding of the
inversion of quantity. First they understand that
adding and subtracting the same stuff restores the
physical status quo.Then they extend this knowledge
to quantity, realising now that adding and subtracting
the same quantity restores the quantitative status
quo, whether the addend and subtrahend are the
same stuff or not.

However, the causal determinants of learning about
inversion might vary between children. Certainly
there are many reports of substantial individual
differences within the same age groups in the
understanding of the inversion principle. Many of the
seven- and nine-year-olds in Bisanz and LeFevre's
study (1990) used the inversion principle to solve
appropriate problems but over half of them did not.
Over half of the ten-year-olds tested in Stern’s
(1992) original study did take advantage of the
principle, but around 40% seemed unable to do so.

Recent work by Gilmore (Gilmore and Bryant, 2006;
Gilmore and Papadatou-Pastou, 2008) suggests that
the underlying pattern of these individual differences
might take a more complex and also a more
interesting form than just a dichotomy between
those who do and those who do not understand
the inversion principle. She used cluster analysis

with samples of six- to eight-year-olds who had
been given inversion and control problems (again
the control problems had to be solved through
calculation), and consistently found three groups

of children. One group appeared to have a clear
understanding of inversion and good calculation skills
as well; these children did better in the inversion
than in the control problems, but their scores in the
control problems were also relatively high. Another
group consisted of children who seemed to have
little understanding of inversion and whose
calculation skills were weak as well. The remaining
group of children had a good understanding of
inversion, but their calculation skills were weak: in
other words, these children did better in the
inversion than in the control problems, but their
scores in the control problems were particularly low.

Thus, the discrepancy between knowing about
inversion and knowing how to calculate went one
way but not the other. Gilmore identified a group of
children who could use the inversion principle and
yet did not calculate well, but she found no evidence
at all for the existence a group of children who
could calculate well but were unable to use the
inversion principle. Children, therefore, do not have
to be good at adding and subtracting in order to
understand the relation between these two
operations. On the contrary, they may need to
understand the inverse relation before they can
learn to add and subtract efficiently.

How can knowledge of inversion facilitate children’s
ability to calculate? Our answer to this is only
hypothetical at this stage, but it is worth examining
here. If children understand well the principle of
inversion, they may use their knowledge of number
facts more flexibly, and thus succeed in more
problems where calculation is required than children
who cannot use their knowledge flexibly. For
example, if they know that 9 + 7 = |6 and
understand inversion, they can use this knowledge
to answer two more questions: |6 —9 =7 and

6 —7 =7 Similarly, the use of ‘indirect addition’ to
solve difficult subtraction problems depends on
knowing and using the inverse relation between
addition and subtraction. One must understand
inversion to be able to see, for example, that an easy
way to solve the subtraction 42 — 39 is to convert it
into an addition: the child can count up from 39 to
42, find that this is 3, and will then know that 42 — 39
must equal 3. In our view, no one could reason this
way without also understanding the inverse relation
between addition and subtraction.

If this hypothesis is correct, it has fascinating
educational implications. Children spend much time
at home and in school practising number facts,
perhaps trying to memorise them as if they were
independent of each other. However, a mixture of
learning about number facts and about mathematical
principles that help them relate one number fact to
others, such as inversion, could provide them with
more flexible knowledge as well as more interesting
learning experiences. So far as we know, there is no
direct evidence of how instruction that focuses both
on number facts and principles works in comparison
with instruction that focuses only on number facts.
However, there is some preliminary evidence on
the role of inversion in facilitating children's
understanding of the relation between the
suma+b=candc—b (or—a)="?
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Some researchers have called this ‘the complement’
question and analysed its difficulty in a quite direct
way by telling children first that @ + b = ¢ and then
immediately asking them the ¢ —a = 7 question
(Baroody, Ginsburg and Waxman, 1983; Baroody,
1999; Baroody and Tiilikainen, 2003; Resnick, 1983;
Putnam, de Bettencourt and Leinhardt, 1990).These
studies established that the step from the first to the
second sum is extremely difficult for children in their
first two or three years at school, and most of them
fail to take it. Only by the age of about eight years do
a majority of children use the information from the
addition to solve the subtraction, and even at this age
many children continue to make mistakes.VWould
they be able to do better if their understanding of
the inverse relation improved?

The study by Siegler and Stern (1998) described
earlier on, with eight-year-olds, seems to suggest that
it is not that easy to improve children’s understanding
of the inverse relation between addition and
subtraction: after solving over 100 inversion
problems, distributed over 7 days, the children did
very poorly in using it selectively; i.e. using it when it
was appropriate, and not using it when it was not
appropriate. However, the method that they used
had several characteristics, which may not have
facilitated learning. First, the problems were all
presented simply as numbers written on cards, with
no support of concrete materials or stories. Second,
the children were encouraged to answer correctly
and also quickly, if possible, but they did not receive
any feedback on whether they were correct. Finally,
they were asked to explain how they had solved the
problem, but if they indicated that they had used the
inverse relation to solve it, they were neither told
that this was a good idea nor asked to think more
about it if they had used it inappropriately. In brief, it
was not a teaching study.

Recently we completed two studies on teaching
children about the inverse relation between addition
and subtraction (Nunes, Bryant, Hallett, Bell and
Evans, 2008). Our aims were to test whether it is
possible to improve children’s understanding of the
inverse relation and to see whether they would
improve in solving the complement problem after
receiving instruction on inversion.

One of the studies was with eight-year-olds, i.e.
children of the same age as those who participated
in the Siegler and Stern study. Our study was
considerably briefer; as it involved a pre-test, two
teaching sessions, and a post-test. In the pre-test the

children answered inverse problems (a + b — b),
control problems (a + b — ¢) and complement
problems (a + b = ¢;c —a/b = 7). During the training,
they only worked on inversion problems. So if the
taught groups improved significantly on the
complement problems, this would have to be a
consequence of realising the relevance of the

inverse principle to this type of problem.

For the teaching phase, the children were randomly
assigned to one of three groups: a Control group,

who only received practice in calculation; a Visual
Demonstration group and aVerbal Calculator group,
both receiving instruction on the inverse relation. The
form of the instruction varied between the two groups.

The Visual Demonstration group was taught with the
support of concrete materials, and started with a
series of trials that took advantage of the identity
inversion. First the children counted the number

of bricks in a row of Unifix bricks, which was
subsequently hidden under a cloth so that no
counting was possible after that. Next, the
experimenter added some bricks to the row and
subtracted others. The child was then asked how
many bricks were left under the cloth.The number of
bricks added and subtracted was either the same or
differed by one; this required the children to attend
during all trials, as the answer was not in all examples
the same number as before the additions and
subtractions, but they could still use the inverse
principle easily because the difference of one did not
make the task too different from an exact inversion
trial. When they had given their answer, they received
feedback and explained how they had found the
answer. If they had not used the inversion principle,
they were encouraged to think about it (e.g. How
many were added?! How many were taken away?
Would the number be the same or different?).

The Verbal Calculator group received the same
number of trials but no visual demonstration. After
they had provided their answer, they were encouraged
to repeat the trial verbally as they entered the
operations into a calculator and checked the answer.
Thus they would be saying, for example, fourteen plus
eight minus eight is' and looking at the answer.

As explained, we had three types of problems in

the pre- and post-test: inversion, control and
complement problems, which were transfer problems
for our intervention group, as they had not learned
about these directly during the training. We did not
expect the groups to differ in the control trials, as the



26 Paper 2: Understanding whole numbers

amount of experience they had between pre-

and post-test was limited, but we expected the
experimental teaching groups to perform significantly
better than the Control group in the inversion and
transfer problems.

The results were clear:

* Both taught groups made more progress than the
Control group from the pre-test to the post-test in
the inversion problems.

* The Visual Demonstration group made more
progress than the Control group in the transfer
problems; the Verbal Calculator group's
improvement did not differ from the improvement
in the Control group in the transfer problems.

* The children's performance did not improve
significantly in the control problems in any of
the groups.

Thus with eight-year-olds both Visual and Verbal
methods can be used to promote children’s reflection
about the inverse relation between addition and
subtraction. Although the two methods did not differ
when directly compared to each other, they differed
when compared with the fixed-standard provided by
the control group: the Visual Demonstration method
was effective in promoting transfer from the types of
items used in the training to new types of items, of a
format not presented during the training, and the
Verbal method did not.

In our second teaching study, we worked with much
younger children, whose mean age was just five years.
We carried out the study using the same methods,
with a pre-test, two teaching sessions, and a post-test,
but this time all the children were taught using the
Visual Demonstration method. Because the children
were so young, we did not use complement problems
to assess transfer; but we included a delayed post-test,
given to the children about three weeks after they
had completed the training in order to see whether
the effects of the intervention, if any, would remain
significant at a later date without further instruction.

The intervention showed significant effects for the
children in one school but not for the children in the
other school; the effects persisted until the delayed
post-test was given. Although we cannot be certain,
we think that the difference between the schools
was due to the fact that in the school where the
intervention did not have a significant effect we were

unable to find a quite room to work with the
children without interruptions and the children had
difficulty in concentrating.

The main lesson from this second study was that it is
possible for this intervention to work with such young
children and for the effects to last without further
instruction, but it is not certain that it will do so.

Finally, we need to consider whether knowing about
inversion is really as important as we have claimed
here. Two studies support this claim. The first was by
Stern (2005). She established in a longitudinal study
that German children’s performance in inversion
tasks, which they solved in their second year at
school, significantly predicted their performance in an
algebra assessment given about |5 years later; when
they were 23 years old and studying in university. In
fact, the brief inversion task that she gave to the
children had a higher correlation with their
performance in the algebra test than the 1Q test
given at about the same time as the inversion task.
Partialling out the effect of IQ from the correlation
between the inversion and the algebra tests did not
affect this predictive relation between the inversion
task and the algebra test.

The second study was by our own team (Nunes et
al, 2007). It combined longitudinal and intervention
methods to test whether the relation between
reasoning principles and mathematics learning is a
causal one.The participants in the longitudinal study
were tested in their first year in school. In the second
year, they completed the mathematics achievement
tests administered by the teachers and designed
centrally in the United Kingdom.The gap between
our assessment and the mathematics achievement
test was about 14 months. One of the components
of our reasoning test was an assessment of children’s
understanding of the inverse relation between
addition and subtraction; the others were additive
composition (assessed by the shop task) and
correspondence (in particular; one-to-many
correspondence). We found that children’s
performance in the reasoning test significantly
predicted their mathematics achievement even after
controlling for age, working memory, knowledge of
mathematics at school entry, and general cognitive
ability. We did not report the specific connection
between the inversion problems and the children’s
mathematics achievement in the original paper, so we
report it here.VWe used a fixed-order regression
analysis so that the connection between the inversion
task and mathematics achievement could be
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considered after controlling for the children’s age,
general cognitive ability and working memory.The
inversion task remained a significant predictor of the
children’s mathematics achievement, and explained

| 2% extra variance. This is a really remarkable result:
6 inversion problems given about |4 months before
the mathematics achievement test made a significant
contribution to predicting children’s achievement
after such stringent controls.

Our study also included an intervention component.
We identified children who were underperforming in
the logical assessment for their age at the beginning
of their first year in school and created a control and
an intervention group. The control children received
no intervention and the intervention group received
instruction on the reasoning principles for one hour a
week for |2 weeks during the time their peers were
participating in mathematics lessons. So they had no
extra time on maths but specialised instruction on
reasoning principles. We then compared their
performance in the state-designed mathematics
achievement tests with that of the control group.The
intervention group significantly outperformed the
control group. The mean for the control group in the
mathematics assessment was at the 28th percentile
using English norms; the intervention group’s mean
was just above the 50th percentile, i.e. above the
mean. So a group of children who seemed at risk for
difficulties with mathematics caught up through this
intervention. In the intervention study it is not
possible to separate out the effect of inversion; the
children received instruction on three reasoning
principles that we considered of great importance as
a basis for their learning. It would be possible to carry
out separate studies of how each of the three
reasoning principles that we taught the children
affects their mathematics performance but we did
not consider this a desirable approach, as our view is
that each one of them is central to children’s
mathematics learning.

The combination of longitudinal and intervention
methods in the analysis of the causes of success and
difficulties in learning to read is an approach that was
extremely successful (Bradley and Bryant, 1983).
The study by Nunes et al,, (2007) shows that this
combination of methods can also be used
successfully in the analysis of how children learn
mathematics. However, three caveats are called for
here. First, the study involved relatively small samples:
a replication with a larger sample is highly
recommended. Second, it is our view that it is also
necessary to attempt to replicate the results of the

intervention in studies carried out in the classroom.
Experimental studies, such as ours, provide a proof of
existence: they show that it is possible to accomplish
something under controlled conditions. But they do
not show that it is possible to accomplish the same
results in the classroom. The step from the laboratory
to the classroom must be carefully considered (see
Nunes and Bryant, 2006, for a discussion of this
issue). Finally, it is clear to us that developmental
processes that describe children’s development when
they do not have any special educational needs (they
do not have brain deficiencies, for example, and have
hearing and sight within levels that grant them access
to information normally accessed by children) may
need further analysis when we want to understand
the development of children who do have special
educational needs. We exemplify here briefly the
situation of children with severe or profound hearing
loss. The vast majority of deaf children are born to
hearing parents (about 90%), who may not know
how to communicate with their children without
much additional learning. Mathematics learning
involves logical reasoning, as we have argued, and also
involves learning conventional representations for
numbers. Knowledge of numbers can be used to
accelerate and promote children’s reflections about
their schemes of action, and this takes place through
social interaction. Parents teach children a lot about
counting before they go to school (Schaeffer;
Eggleston and Scott, 1974;Young-Loveridge, 1989)
but the opportunities for these informal learning
experiences may be restricted for deaf children. They
would enter school with less knowledge of counting
and less understanding of the relations between
addition, subtraction, and number. This does not mean
that they have to develop their understanding of
numbers in a different way from hearing children, but
it does mean that they may need to learn in a much
more carefully planned environment so that their
learning opportunities are increased and appropriate
for their visual and language skills. In brief, there may
be special children whose mathematical development
requires special attention. Understanding their
development may or may not shed light on a more
general theory of mathematics learning.
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Summary

I The inversion principle is an essential part of
additive reasoning: one cannot understand either
addition or subtraction unless one also
understands their relation to each other.

2 Children probably first recognise the inverse
relation between adding and subtracting the
identical stuff. We call this the inversion of identity.

3 The understanding of the inversion of quantity is
a step-up. It means understanding that a quantity
stays the same if the same number of items is
added to it and subtracted from it, even though
the added and subtracted items are different from
each other.

4 The inversion of quantity is more difficult for young
children to understand, but in tasks that involve
concrete objects, many children in the five- to
seven-year age range do grasp this form of
inversion to some extent.

5 There are however strong individual differences
among children in this form of understanding.
Children in the five- to eight-year range fall into
three main groups. Those who are good a
calculating and also good at using the in version
principle, those who are weak in both things,
and those who are good at using the in version
principle, but weak in calculating.

6 The evidence suggests that children’s
understanding of the inversion principle plays an
important causal role in their progress in learning
about mathematics. Children’s understanding of
inversion is a good predictor of their mathematical
success, and improving this understanding has the
result of improving children’s mathematical
knowledge in general.

Additive reasoning and
problem solving

In this section we continue to analyse children’s
ability to solve additive reasoning problems. Additive
reasoning refers to reasoning used to solve problems
where addition or subtraction are the operations
used to find a solutions.We prefer to use this
expression, rather than addition and subtraction
problems, because it is often possible to solve the
same problem either by addition or by subtraction.

For example, if you buy something that costs £35,
you may pay with two £20-notes.You can calculate
your change by subtraction (40 — 35) or by addition
(35 + 5). So, problems are not addition or
subtraction problems in themselves, but they can be
defined by the type of reasoning that they require,
additive reasoning.

Although preschoolers’ knowledge of addition and
subtraction is limited, as we argued in the previous
section, it is clear that their initial thinking about these
two arithmetical operations is rooted in their
everyday experiences of seeing quantities being
combined with, or taken away from, other quantities.
They find purely numerical problems like ‘what is 2
and | more? a great deal more difficult than
problems that involve concrete situations, even when
these situations are described in words and left
entirely to the imagination (Ginsburg, 1977; Hughes,
1981; 1986; Levine, Jordan and Huttenlocher, 1992).

The type of knowledge that children develop initially
seems to be related to two types of action: putting
more elements in a set (or joining two sets) and
taking out elements from one set (or separating two
sets). These schemes of action are used by children
to solve arithmetic problems when they are
presented in the context of stories.

By and large, three main kinds of story problem have
been used to investigate children’s additive reasoning:

* the Change problem (‘Bill had eight apples and then
he gave three of them away. How many did he
have left?").

* the Combine problem (‘Jane has three dolls and Mary
has four How many do they have altogether?").

* the Compare problem (‘Sam has five books and
Sarah has eight. How many more books does Sarah
have than Sam?’).

A great deal of research (e.g. Brown, 1981; Carpenter,
Hiebert and Moser, 1981; Carpenter and Moser, 1982;
De Corte and Verschaffel, 1987; Kintsch and Greeno,
1985; Fayol, 1992; Ginsburg, 1977; Riley, Greeno and
Heller, 1983;Vergnaud, 1982) has shown that in
general, the Change and Combine problems are
much easier than the Compare problems.The most
interesting aspect of this consistent pattern of results
is that problems that are solved by the same
arithmetic operation — or in other words, by the same
sum — can differ radically in how difficult they are.
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Usually pre-school children do make the appropriate
moves in the easiest Change and Combine problems:
they put together and count up (counting on or
counting all) and separate and count the relevant set
to find the answerVery few pre-school children seem
to know addition and subtraction facts, and so they
succeed considerably more if they have physical objects
(or use their fingers) in order to count. Research by
Carpenter and Moser (1982) gives an indication of
how pre-school children perform in the simpler
problems. These researchers interviewed children (aged
about four to five years) twice before they had had
been given any instruction about arithmetic in school;
we give here the results of each of these interviews, as
there is always some improvement worth noting
between the testing occasions.

For Combine problems (given two parts, find the
whole), 75% and 82% of the answers were correct
when the numbers were small and 50% and 71%
when the numbers were larger; only 3% of the
responses with small numbers were obtained through
the recall of number facts and this was the largest
percentage of recall of number facts observed in their
study. For Change problems (Tim had | | candies; he
gave 7 to Martha; how many did he have left?), the
pre-schoolers were correct 42% and 6 1% with larger
numbers (Carpenter and Moser do not report the
figures for smaller numbers) at each of the two
interviews; only 1% of recall of number facts is
reported. So, pre-school children can do relatively well
on simple Change and Combine problems before
they know arithmetic facts; they do so by putting sets
together or by separating them and counting.

This classification of problems into three types —
Combine, Change and Compare — is not sufficient
to describe story problem-solving. In a Change
problem, for example, the story might provide the
information about the initial state and the change
(Tim had | | candies; he gave 7 to Martha); the child
is asked to say what the final state is. But it is also
possible to provide information, for example, about
the transformation and the end state (Tim had
some candies; he gave Martha 7 and he has 4 left)
and ask the child to say what the initial state was
(how many did he have before he gave candies to
Martha?). This sort of analysis has resulted in more
complex classifications, which consider which
information is given and which information must be
supplied by the children in the answer. Stories that
describe a situation where the quantity decreases, as
in the example above, but have a missing initial state
can most easily be solved by an addition. The conflict

between the decrease in quantity and the operation
of addition can be solved if the children understand
the inverse relation between subtraction and
addition: by adding the number that Tim still has

and the number he gave away, one can find out
how many candies he had before.

Different analyses of word problems have been
proposed (e.g. Briars and Larkin, 1984; Carpenter and
Moser, 1982; Fuson, 1992; Nesher, 1982; Riley, Greeno
and Heller, 1983;Vergnaud, 1982).We focus here on
some aspects of the analysis provided by Gérard
Vergnaud, which allows for the comparison of many
different types of problems and can also be used to
help understand the level of difficulty of further types
of additive reasoning problems, involving directed
numbers (i.e. positive and negative numbers).

First,Vergnaud distinguishes between numerical and
relational calculation. Numerical calculation refers to the
arithmetic operations that the children carry out to
find the answer to a problem:in the case of additive
reasoning, addition and subtraction are the relevant
operations. Relational calculation refers to the
operations of thought that the child must carry out in
order to handle the relations involved in the problem.
For example, in the problem ‘Bertrand played a game
of marbles and lost 7 marbles. After the game he had
3 marbles left. How many marbles did he have before
the game?’, the relational calculation is the realisation
that the solution requires using the inverse of
subtraction to go from the final state to the initial
state and the numerical calculation would be 7 + 3.

Vergnaud proposes that children perform these
relational calculations in an implicit manner:to use his
expression, they rely on ‘theorems in action’. The
children may say that they fjust know’ that they have
to add when they solve the problem, and may be
unable to say that the reason for this is that addition
is the inverse of subtraction.Vergnaud reports
approximately twice as many correct responses by
French pre-school children (aged about five years) to
a problem that involves no relational calculation
(about 50% correct in the problem: Pierre had 6
marbles. He played a game and lost 4; how many did
he have after the game?) than to the problem above
(about 26% correct responses), where we are told
how many marbles Bertrand lost and asked how
many he had before the game.

Vergnaud also distinguished three types of
meanings that can be represented by natural
numbers: quantities (which he calls measures),
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transformations and relations. This distinction has
an effect on the types of problems that can be
created starting from the simple classification in
three types (change, combine and compare) and
their level of difficulty.

First, consider the two problems below, the first
about combining a quantity and a transformation and
the second about combining two transformations.

* Pierre had 6 marbles. He played one game and
lost 4 marbles. How many marbles did he have
after the game!?

* Paul played two games of marbles. He won 6 in
the first game and lost 4 in the second game.
What happened, counting the two games together?

French children, who were between pre-school and
their fourth year in school, consistently performed
better on the first than on the second type of
problem, even though the same arithmetic calculation
(6-4) is required in both problems. By the second year
in school, when the children are about seven years old,
they achieve about 80% correct responses in the first
problem, and they only achieve a comparable level of
success two Years later in the second problem. So,
combining transformations is more difficult than
combining a quantity and a transformation.

Brown (1981) confirmed these results with English
students in the age range | | to |6.In her task,
students are shown a sign-post that indicates that
Grange is 29 miles to the west and Barton is 58
miles to the east; they are asked how do they work
out how far they need to drive to go from Grange
to Barton.There were eight choices of operations
connecting these two numbers for the students to
indicate the correct one.The rate of correct
responses to this problem was 73%, which contrasts
with 95% correct responses when the problem
referred to a union of sets (a combine problem).

The children found problems even more difficult
when they needed to de-combine transformations
than when they had to combine them. Here is an
example of a problem with which they needed to
de-combine two transformations, because the story
provides the result of combining operations and the
question that must be answered is about the state
of affairs before the combination took place.

* Bruno played two games of marbles. He played the
first and the second game. In the second game he

lost 7 marbles. His final result, with the two games
together, was that he had won 3 marbles. What
happened in the first game?

This de-combination of transformations was still very
difficult for French children in the fourth year in
school (age about nine years): they attained less than
509% correct responses.

Vergnaud's hypothesis is that when children combine
transformations, rather than quantities, they have to
go beyond natural numbers: they are now operating
in the domain of whole numbers. Natural numbers
are counting numbers.You can certainly count the
number of marbles that Pierre had before he started
the game, count and take away the marbles that he
lost in the second game, and say how many he had
left at the end. In the case of Paul's problem, if you
count the marbles that he won in the first game, you
need to count them as ‘one more, two more, three
more etc: you are actually not counting marbles but
the relation between the number that he now has to
the number he had to begin with. So if the starting
point in a problem that involves transformations is
not known, the transformations are now relations. Of
course, children who do solve the problem about
Paul's marbles may not be fully aware of the
difference between a transformation and a relation,
and may succeed exactly because they overlook this
difference. This point is discussed in Paper 4, when we
consider in detail how children think about relations.

Finally, problems where children are asked to quantify
relations are usually difficult as well:

* Peter has 8 marbles. John has 3 marbles. How many
more marbles does Peter have than John?

The question in this problem is neither about a
quantity (i.e.John's or Peter's marbles) nor about a
transformation (no-one lost or got more marbles): it
is about the relation between the two quantities.
Although most pre-school children can say that Peter
has more marbles, the majority cannot quantify the
relation (or the difference) between the two.The
best known experiments that demonstrate this
difficulty were carried out by Hudson (1983) in the
United States. In a series of three experiments, he
showed the children some pictures and asked them
two types of question:

* Here are some birds and some worms. How many
more birds than worms?
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* Here are some birds and some worms. The birds
are racing to get a worm. How many birds won't
get worms!?

The first question asks the children to quantify the
relation between the two sets, of worms and birds:
the second question asks the children to imagine that
the sets were matched and quantify the set that has
no matching elements. The children in the first year of
school (mean age seven years) attained 64% correct
responses to the first question and 100% to the
second question; in nursery school (mean age four
years nine months) and kindergarten (mean age 6
years 3 months), the rate of correct responses was,
respectively, 1 7% and 25% to the first question and
83% and 96% to the second question.

It is, of course, difficult to be completely certain that
the second question is easier because the children
are asked a question about quantity whereas the first
question is about a relation. The reason for this
ambiguity is that two things have to change at the
same time for the story to be different: in order to
change the target of the question, so that it is either
a quantity or a relation, the language used in the
problem also varies: in the first problem, the word
‘more’ is used, and in the second it is not.

Hudson included in one of his experiments a pre-
test of children’s understanding of the word ‘more’
(e.g. Are there more red chips or more white
chips?) and found that they could answer this
question appropriately. He concluded that it was the
linguistic difficulty of the 'How many more...?
question that made the problem difficult, not simply
the difficulty of the word ‘more’.We are not
convinced by his conclusion and think that more
research about children’s understanding of how to
quantify relations is required. Stern (2005), on the
other hand, suggests that both explanations are
relevant: the linguistic form is more difficult and
quantifying relations is also more difficult than using
numbers to describe quantities.

In the domain of directed numbers (i.e. positive

and negative numbers), it is relatively easier to study
the difference between attributing numbers to
quantities and to relations without asking the ‘how
many more’ question. Unfortunately, studies with
larger sample, which would allow for a quantitative
comparison in the level of difficulty of these
problems, are scarce. However, some indication

that quantifying relations is more difficult for
students is available in the literature.

Vergnaud (1982) pointed out that relationships

between people could be used to create problems
that do not contain the question ‘how many more'.
Among others, he suggested the following example.

* Peter owes 8 marbles to Henry but Henry owes
6 marbles to Peter:What do they have to do to
get even?

According to his analysis, this problem involves a
composition of relations.

Marthe (1979) compared the performance of French
students in the age range || to |5 years in two
problems involving such composition of relations
with their performance in two problems involving

a change situation (i.e. quantity, transformation,
quantity). In order to control for problem format, all
four problems had the structure a + x = b, in which x
shows the place of the unknown.The problems used
large numbers so that students had to go through
the relational calculation in order to determine the
numerical calculation (with small numbers, it is
possible to work in an intuitive manner, sometimes
starting from a hypothetical amount and adjusting the
starting point later to make it fit). An example of a
problem type using a composition of relations is
shown below.

* Mr Dupont owes 684 francs to Mr. Henry. But Mr
Henry also owes money to Mr Dupont. Taking
everything into account, Mr Dupont must give back
327 francs to Mr Henry.What amount did Mr
Henry owe to Mr Dupont?

Marthe did find that problems about relations were
quite a bit more difficult than those about quantities
and transformations; there was a difference of 20%
between the rates of correct responses for the
younger children and 0% for the older children.
However, the most important effect in these
problems seemed to be whether the students had
to deal with numbers that had the same or different
signs: problems with same signs were consistently
easier than those with different signs.

In summary, different researchers have argued that it
is one thing to learn to use numbers to represent
quantities and a quite different one to use numbers
to quantify relations. Relations are more abstract and
more challenging for students. Thompson (1993)
hypothesises that learning to quantify and think
about numbers as measures of relations is a crucial
step that students must take in order to understand
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algebra.We are completely sympathetic to this
hypothesis, but we think that the available evidence
is a bit thin.

More than two decades ago, Dickson, Brown and
Gibson (1984) reviewed research on additive reasoning
and problem solving, and pointed out how difficult it is
to come to firm conclusions when no single study has
covered the variety of problems that any theoretical
model would aim to compare.We have to piece the
evidence together from diverse studies, and of course
samples vary across different locations and cohorts. In
the last decade research on additive reasoning has
received less attention in research on mathematics
education than before. Unfortunately, this has left some
questions with answers that are, at best, based on single
studies with limited numbers of students. It is time to
use a new synthesis to re-visit these questions and

seek for unambiguous answers within a single research
programme.

Summary

In word problems children are told a brief story
which ends in an arithmetical question. These
problems are widely used in school textbooks
and also as a research tool.

2 There are three main kinds of w ord problem:
Combine, Change and Compare.

3 Vergnaud argued that the crucial elements in
these problems were Quantities (measures),
Transformations and Relations. On the whole,
problems that involve Relations are harder than
those involving Transformations.

4 However, other factors also affect the level of
difficulty in word problems. Any change in sign is
often hard for children to handle: when the story
is about an addition but the solution is to subtract,
as in missing addend problems, children often fail
to use the inverse operation.

5 Overall the extreme variability in the level of
difficulty of different problems, even when these
demand exactly the same mathematical solution
(the same simple additions or subtractions)
confirms the view that there is a great deal more
to arithmetical learning than knowing how to carry
out particular operations.

6 Research on word problems supports a different
approach, which is that arithmetical learning

depends on children making a coherent
connection between quantitative relations and
the appropriate numerical analysis.

Overall conclusions and
educational implications

* Learning about quantities and numbers are two
different matters: children can understand relations
between quantities and not know how to make
inferences about the numbers that are used to
represent the quantities; they might also learn to
count without making a connection between
counting and what it implies for the relations
between quantities.

* Some ideas about quantities are essential for
understanding number: equivalence between
quantities, their order of magnitude, and the part-
whole relations implicit in determining the number
of elements in a set.

* These core ideas, in turn, require that children
come to understand yet other logical principles:
transitive relations in equivalence and order,
which operations change quantities and which do
not, and the inverse relation between addition
and subtraction. These notions are central to
understanding numbers and how they represent
quantities; children who have a good grasp of
them learn mathematics better in school.
Children who have difficulties with these ideas
and do not receive support to come to grips
with them are at risk for difficulties in learning
mathematics, but these difficulties can be
prevented to a large extent if they receive
appropriate instruction.

There is no question that word problems give us a
valuable insight into children’s reasoning about
addition and subtraction. They demonstrate that
there is a great deal more to understanding these
operations than just learning how to add and
subtract. Children’s solutions do depend on their
ability to reason about the relations between
quantities in a logical manner. There is no doubt
about these conclusions, even if there is need for
further research to pin down some of the details.

Learning to count and to use numbers to
represent quantities is an important element in
this developmental process. Children can more
easily reason about the relation between
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addition, subtraction, and number when they
know how to represent quantities by counting.
But this is not a one-way relation: it is by adding,
subtracting, and understanding the inverse
relation between these operations that children
understand additive composition and learn to
solve additive reasoning problems.

The major implication from this review is that
schools should take very seriously the need to
include in the curriculum instruction that promotes
reflection about relations between quantities,
operations, and the quantification of relations.

These reflections should not be seen as
appropriate only for very young children: when
natural numbers start to be used to represent
relations, directed numbers become a new
domain of activity for children to re-construct
their understanding of additive relations. The
construction of a solid understanding of additive
relations is not completed in the first years of
primary school: some problems are still difficult for
students at the age of |5,

Endnotes

| Gelman and Butterworth (2005) make a similar distinction
between numerosity and the representation of number:‘we
need to distinguish possession of the concept of n umerosity
itself (knowing that any set has a numerosity that can be
determined by enumeration) from the possession of
rerepresentations (in language) of particular numerosities’
(pp. 6). However, we adopt here the term ‘quantities’ because
it has an established definition and use in the context of
children’s learning of mathematics.

2 It is noted here that evidence from cases studies of acquired

dyscalculia (a cognitive disorder affecting the ability to solve
mathematics problems observed in patients after neurological
damage) is consistent with the idea that under standing
quantities and number knowledge can be dissociated:
calculation may be impaired and conser vation of quantities
may be intact in some patients whereas in other s calculation

is intact and conceptual knowledge impaired (Mittmair-Delazer,
Sailer and Benke, 1995). Dissociations between arithmetic skills
and the meaning of numbers were extensively described by
McCloskey (1992) in a detailed review of cases of acquired
dyscalculia.
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Summary of paper 3:
Understanding
rational numbers and
intensive quantities

Headlines

* Fractions are used in primary school to represent
quantities that cannot be represented by a single
whole number. As with whole numbers, children
need to make connections between quantities and
their representations in fractions in order to be
able to use fractions meaningfully.

There are two types of situation in which fractions
are used in primary school. The first involves
measurement: if you want to represent a quantity
by means of a number and the quantity is smaller
than the unit of measurement, you need a fraction
— for example, a half cup or a quarter inch.The
second involves division: if the dividend is smaller
than the divisor, the result of the division is
represented by a fraction. For example, when you
share 3 cakes among 4 children, each child receives
%4 of a cake.

Children use different schemes of action in these
two different situations. In division situations, they
use correspondences between the units in the
numerator and the units in the denominator. In
measurement situations, they use partitioning.

Children are more successful in understanding
equivalence of fractions and in ordering fractions
by magnitude in situations that involve division than
in measurement situations.

It is crucial for children’s understanding of fractions
that they learn about fractions in both types of
situation: most do not spontaneously transfer what
they learned in one situation to the other

When a fraction is used to represent a quantity,
children need to learn to think about how the

numerator and the denominator relate to the
value represented by the fraction. They must think
about direct and inverse relations: the larger the
numerator, the larger the quantity but the larger
the denominator, the smaller the quantity.

Like whole numbers, fractions can be used to
represent quantities and relations between
quantities, but in primary school they are rarely
used to represent relations. Older students
often find it difficult to use fractions to
represent relations.

There is little doubt that students find fractions a
challenge in mathematics. Teachers often say that it
is difficult to teach fractions and some think that it
would be better for everyone if children were not
taught about fractions in primary school. In order
to understand fractions as numbers, students must
be able to know whether two fractions are
equivalent or not, and if they are not, which one is
the bigger number. This is similar to understanding
that 8 sweets is the same number as 8 marbles and
that 8 is more than 7 and less than 9, for example.
These are undoubtedly key understandings about
whole numbers and fractions. But even after the
age of | | many students have difficulty in knowing
whether two fractions are equivalent and do not
know how to order some fractions. For example, in
a study carried out in London, students were asked
to paint 2/3 of figures divided in 3, 6 and 9 equal
parts. The majority solved the task correctly when
the figure was divided into 3 parts but 40% of the
I'l-to I2-year-old students could not solve it
when the figure was divided into 6 or 9 parts,
which meant painting an equivalent fraction

(4/6 and 6/9, respectively).
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Fractions are used in primary school to represent
quantities that cannot be represented by a single
whole number. If the teaching of fractions were to be
omitted from the primary school curriculum, children
would not have the support of school learning to
represent these quantities. We do not believe that it
would be best to just forget about teaching fractions
in primary school because research shows that
children have some informal knowledge that could be
used as a basis for learning fractions. Thus the question
is not whether to teach fractions in primary school
but what do we know about their informal knowledge
and how can teachers draw on this knowledge.

There are two types of situation in which fractions
are used in primary school: measurement and
division situations.

When we measure anything, we use a unit of
measurement. Often the object we are measuring
cannot be described only with whole units, and we
need fractions to represent a part of the unit. In the
kitchen we might need to use a 2 cup of milk and
when setting the margins for a page in a document
we often need to be precise and define the margin
as, for example, as 3.17 cm. These two examples
show that, when it comes to measurement, we

use two types of notation, ordinary and decimal
notation. But regardless of the notation used, we
could not accurately describe the quantities in these
situations without using fractions. When we speak
of % of a chocolate bar, we are using fractions in a
measurement situation: we have less than one unit,
so we need to describe the quantity using a fraction.

In division situations, we need a fraction to represent a
quantity when the dividend is smaller than the divisor.
For example, if 3 cakes are shared among 4 children, it
is not possible for each one to have a whole cake, but
it is still possible to carry out the division and to
represent the amount that each child receiv es using

a number; %. It would be possible to use decimal
notation in division situations too, but this is rarely the
case. The reason for preferring ordinary fractions in
these situations is that there are tw o quantities in
division situations: in the example, the number of
cakes and the number of children. An ordinary
fraction represents each of these quantities by a whole
number: the dividend is represented by the numerator,
the divisor by the denominator, and the operation of
division by the dash between the two numbers.

Although these situations are so similar for adults, we
could conclude that it is not necessar y to distinguish

between them, however, research shows that
children think about the situations differently.
Children use different schemes of action in each
of these situations.

In measurement situations, they use partitioning. If

a child is asked to show % of a chocolate, the child
will try to cut the chocolate in 4 equal par ts and
mark 3 parts. If a child is asked to compare % and
6/8, for example, the child will partition one unit in
4 parts, the other in 8 parts, and try to compare the
two. This is a difficult task because the partitioning
scheme develops over a long period of time and
children have to solve many problems to succeed

in obtaining equal parts when partitioning. Although
partitioning and comparing the parts is not the only
way to solve this problem, this is the most likely
solution path tried out by children, because they
draw on their relevant scheme of action.

In division situations, children use a different scheme
of action, correspondences. A problem analogous to
the one above in a division situation is: there are 4
children sharing 3 cakes and 8 children sharing 6
identical cakes; if the two groups share the cakes
fairly, will the children in one group get the same
amount to eat as the children in the other group?
Primary school pupils often approach this problem
by establishing correspondences between cakes and
children. In this way they soon realise that in both
groups 3 cakes will be shared by 4 children; the
difference is that in the second group there are tw o
lots of 3 cakes and two lots of 4 children, but this
difference does not affect how much each child gets.

From the beginning of primary school, many children
have some informal knowledge about division that
could be used to understand fractional quantities.
Between the ages of five and seven years, they are
very bad at partitioning wholes into equal parts

but can be relatively good at thinking about the
consequences of sharing. For example, in one study
in London 31% of the five-year-olds, 50% of the six-
year-olds and 81% of the seven-year-olds understood
the inverse relation between the divisor and the
shares resulting from the division: they knew that the
more recipients are sharing a cake, the less each one
will receive. They were even able to articulate this
inverse relation when asked to justify their answers.
It is unlikely that they had at this time made a
connection between their understanding of
quantities and fractional representation; actually, it is
unlikely that they would know how to represent the
quantities using fractions.
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The lack of connection between students’
understanding of quantities in division situations and
their knowledge about the magnitude of fractions is
very clearly documented in research. Students who
have no doubt that recipients of a cak e shared
between 3 people will fare better than those of a
cake shared between 5 people may, nevertheless, say
that |/5 is a bigger fraction than |/3 because 5 is a
bigger number than 3. Although they understand the
inverse relation in the magnitude of quantities in a
division situation, they do not seem to connect this
with the magnitude of fractions. The link between
their understanding of fractional quantities and
fractions as numbers has to be developed through
teaching in school.

There is only one well-controlled experiment which
compared directly young children’s understanding of
quantities in measurement and division situations. In
this study, carried out in Portugal, the children were
six- to seven-years-old. The context of the problems
in both situations was very similar: it was about
children eating cakes, chocolates or pizzas. In the
measurement problems, there was no sharing,

only partitioning. For example, in one of the
measurement problems, one girl had a chocolate bar
which was too large to eat in one go. So she cut her
chocolate in 3 equal pieces and ate I. A boy had an
identical bar of chocolate and decided to cut his into
6 equal parts, and eat 2. The children were asked
whether the boy and the girl ate the same amount
of chocolate. The analogous division problem was
about 3 girls sharing one chocolate bar and 6 boys
sharing 2 identical chocolate bars.The rate of correct
responses in the partitioning situation was 10% for
both six- and seven-year-olds and 35% and 49%,
respectively, for six- and seven-year-olds in the
division situation.

These results are relevant to the assessment of
variations in mathematics curricula. Different
countries use different approaches in the initial
teaching of fraction, some starting from division
and others from measurement situations. There is
no direct evidence from classroom studies to

show whether one starting point results in higher
achievement in fractions than the other. The scarce
evidence from controlled studies supports the idea
that division situations provide children with more
insight into the equivalence and order of quantities
represented by fractions and that they can learn how
to connect these insights about quantities with
fractional representation. The studies also indicate
that there is little transfer across situations: children

who succeed in comparing fractional quantities and
fractions after instruction in division situations do

no better in a post-test when the questions are
about measurement situations than other children

in a control group who received no teaching. The
converse is also true: children taught in measurement
situations do no better than a control group in
division situations.

A major debate in mathematics teaching is

the relative weight to be given to conceptual
understanding and procedural knowledge in teaching.
The difference between conceptual understanding
and procedural knowledge in the teaching of
fractions has been explored in many studies. These
studies show that students can learn procedures
without understanding their conceptual significance.
Studies with adults show that knowledge of
procedures can remain isolated from under standing
for a long time: some adults who are able to
implement the procedure they learned for dividing
one fraction by another admit that they have no idea
why the numerator and the denominator exchange
places in this procedure. Learners who are able to
co-ordinate their knowledge of procedures with
their conceptual understanding are better at solving
problems that involve fractions than other learners
who seem to be good at procedures b ut show less
understanding than expected from their knowledge
of procedures. These results reinforce the idea that it
is very important to try to make links between
children’s knowledge of fractions and their
understanding of fractional quantities.

Finally, there is little, if any, use of fractions to
represent relations between quantities in primary
school. Secondary school students do not easily
quantify relations that involve fractions. Perhaps
this difficulty could be attenuated if some teaching
about fractions in primary school involved
quantifying relations that cannot be described

by a single whole number.
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Recommendations

Research about mathematical
learning

Recommendations for teaching
and research

Children’s knowledge of fractional
quantities starts to develop before they
are taught about fractions in school.

Teaching Teachers should be aware of children's insights
regarding quantities that are represented by fractions and
make connections between their understanding of these
quantities and fractions.

There are two types of situation relevant
to primary school teaching in which
quantities cannot be represented by a
single whole number: measurement and
division.

Teaching The primary school curriculum should include the
study of both types of situation in the teaching of fr actions.
Teachers should be aware of the different types of reasoning
used by children in each of these situations.

Research Evidence from experimental studies with larger
samples and long-term interventions in the classroom are
needed to establish whether division situations are indeed

a better starting point for teaching fractions.

Children do not easily transfer their
understanding of fractions from division to
measurement situations and vice-versa.

Teaching Teachers should consider how to establish links
between children’s understanding of fractions in division and
measurement situations.

Research Investigations on how links between situations can
be built are needed to support curriculum development and
classroom teaching.

Many students do no make links between
their conceptual understanding of fractions
and the procedures that they are taught
to compare and operate on fractions in
school.

Teaching Greater attention may be required in the teaching
of fractions to creating links between procedures and
conceptual understanding.

Research There is a need for longitudinal studies designed
to clarify whether this separation between procedural and
conceptual knowledge does have important consequences for
further mathematics learning.

Fractions are taught in primary school only
as representations of quantities.

Teaching Consideration should be given to the inclusion of
situations in which fractions are used to represent relations.
Research Given the importance of understanding and
representing relations numerically, studies that investigate
under what circumstances primary school students can use
fractions to represent relations between quantities are
urgently needed.
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Understanding rational
numbers and intensive

quantities

Introduction

Rational numbers, like natural numbers, can be used
to represent quantities. There are some quantities
that cannot be represented by a natural number; and
to represent these quantities, we must use rational
numbers. We cannot use natural numbers when the
quantity that we want to represent numerically:
* is smaller than the unit used for counting,
irrespective of whether this is a natural unit
(e.g. we have less than one banana) or a
conventional unit (e.g. a fish weighs less than a kilo)
* involves a ratio between two other quantities (e.g.
the concentration of orange juice in a jar can be
described by the ratio of orange concentrate to
water; the probability of an event can be described
by the ratio between the number of favourable
cases to the total number of cases).

The term ‘fraction’is often identified with situations
where we want to represent a quantity smaller than
the unit. The expression ‘rational number' usually
covers both sorts of examples. In this paper, we will
use the expressions ‘fraction’ and ‘rational number’
interchangeably. Fractions are considered a basic
concept in mathematics learning and one of the
foundations required for learning algebra (Fennell,
Faulkner, Ma, Schmid, Stotsky, Wu et al. (2008); so
they are important for representing quantities and
also for later success in mathematics in school.

In the domain of whole numbers, it has been known
for some time (e.g. Carpenter and Moser, 1982;
Ginsburg, 1977; Riley, Greeno and Heller, 1983) that
it is important for the development of children’s
mathematics knowledge that they establish
connections between the numbers and the
quantities that they represent. There s little
comparable research about rational numbers

(but see Mack, 1990), but it is reasonable to expect
that the same hypothesis holds: children should learn
to connect quantities that must be represented by
rational numbers with their mathematical notation.
However, the difficulty of learning to use rational
numbers is much greater than the difficulty of
learning to use natural numbers. This paper discusses
why this is so and presents research that shows
when and how children have significant insights into
the complexities of rational numbers.

In the first section of this paper, we discuss what
children must learn about rational numbers and why
these might be difficult for children once they have
learned about natural numbers. In the second section
we describe research which shows that these are
indeed difficult ideas for students even at the end of
primary school. The third section compares children’s
reasoning across two types of situations that have
been used in different countries to teach children
about fractions. The fourth section presents a brief
overview of research about children’s understanding
of intensive quantities. The fifth section considers
whether children develop sound understanding of
equivalence and order of magnitude of fractions
when they learn procedures to compare fractions.
The final section summarises our conclusions and
discusses their educational implications.

What children must know in
order to understand rational
numbers

Piaget's (1952) studies of children’s understanding
of number analysed the crucial question of whether
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young children can understand the ideas of
equivalence (cardinal number) and order (ordinal
number) in the domain of natural numbers. He also
pointed out that learning to count may help the
children to understand both equivalence and order.
All sets that are represented by the same number
are equivalent; those that are represented by a
different number are not equivalent. Their order of
magnitude is the same as the order of the number
labels we use in counting, because each number label
represents one more than the previous one in the
counting string.

The understanding of equivalence in the domain

of fractions is also crucial, but it is not as simple
because language does not help the children in

the same way. Two fractional quantities that have
different labels can be equivalent, and in fact there

is an infinite number of equivalent fractions: 1/3, 2/6,
6/9,8/12 etc. are different number labels but they
represent equivalent quantities. Because rational
numbers refer; atthough often implicitly, to a whole, it
is also possible for two fractions that have the same
number label to represent different quantities: 1/3 of
|2 and /3 of 18 are not representations of
equivalent quantities.

In an analogous way, it is not possible simply to
transfer knowledge of order from natural to rational
numbers. If the common fraction notation is used,
there are two numbers, the numerator and the
denominator, and both affect the order of magnitude
of fractions, but they do so in different ways. If the
denominator is constant, the larger the numerator,
the larger is the magnitude of the fraction; if the
numerator is constant, the larger the denominator,
the smaller is the fraction. If both vary, then more
knowledge is required to order the fractions, and it
is not possible to tell which quantity is more by
simply looking at the fraction labels.

Rational numbers differ from whole numbers also in
the use of two numerical signs to represent a single
quantity: it is the relation betw een the numbers, not
their independent values, that represents the
quantity. Stafylidou and Vosniadou (2004) analysed
Greek students’ understanding of this form of
numerical representation and observed that most
students in the age range || to |3 years did not
seem to interpret the written representation of
fractions as involving a multiplicative relation
between the numerator and the denominator:

20% of the | |-year-olds, 37% of the |2-year-olds
and 48% of the |3-year-olds provided this type of

interpretation for fractions. Many younger students
(about 38% of the 10-year-olds in grade 5) seemed
to treat the numerator and denominator as
independent numbers whereas others (about 20%)
were able to conceive fractions as indicating a part-
whole relation but many (22%) are unable to offer
a clear explanation for how to interpret the
numerator and the denominator.

Rational numbers are also different from natural
numbers in their density (see, for example,
Brousseau, Brousseau and Warfield, 2007;
Vamvakoussi and Vosniadou, 2004): there are no
natural numbers between | and 2, for example,

but there is an infinite number of fractions between
| and 2. This may seem unimportant but it is this
difference that allows us to use rational numbers to
represent quantities that are smaller than the units.
This may be another source of difficulty for students.

Rational numbers have another property which is
not shared by natural numbers: every non-zero
rational number has a multiplicative inverse (e.g. the
inverse of 2/3 is 3/2). This property may seem
unimportant when children are taught about
fractions in primary school, but it is important for
the understanding of the division algorithm (i.e. we
multiply the fraction which is the dividend by the
inverse of the fraction that is the divisor) and will be
required later in school, when students learn about
algebra. Booth (1981) suggested that students often
have a limited understanding of inverse relations,
particularly in the domain of fractions, and this
becomes an obstacle to their under standing of
algebra. For example, when students think of
fractions as representing the number of parts into
which a whole was cut (denominator) and the
number of parts taken (numerator), they find it very
difficult to think that fractions indicate a division and
that it has, therefore, an inverse.

Finally, rational numbers have two common written
notations, which students should learn to connect: 1/2
and 0.5 are conceptually the same number with two
different notations. There isn't a similar variation in
natural number notation (Roman numerals are
sometimes used in specific contexts, such as clocks
and indices, but they probably play little role in the
development of children’s mathematical knowledge).
Vergnaud (1997) hypothesized that different
notations afford the understanding of different
aspects of the same concept; this would imply that
students should learn to use both notations for
rational numbers. On the one hand, the common
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fractional notation 1/2 can be used to help students
understand that fractions are related to the operation
of division, because this notation can be inter preted
as'l divided by 2". The connection between fractions
and division is certainly less explicit when the decimal
notation 0.5 is used. It is reasonable to expect that
students will find it more difficult to understand what
the multiplicative inverse of 0.5 is than the inverse of
[/2, but unfortunately there seems to be no evidence
yet to clarify this.

On the other hand, adding 1/2 and 3/10is a
cumbersome process, whereas adding the same
numbers in their decimal representation, 0.5 and 0.3,
is a simpler matter. There are disagreements regarding
the order in which these notations should be taught
and the need for students to learn both notations in
primary school (see, for example, Brousseau,
Brousseau and Warfield, 2004; 2007), but, to our
knowledge, no one has proposed that one notation
should be the only one used and that the other one
should be banned from mathematics classes. There is
no evidence on whether children find it easier to
understand the concepts related to rational numbers
when one notation is used rather than the other.

Students’ difficulties
with rational numbers

Many studies have documented students’ difficulties
both with understanding equivalence and order of
magnitude in the domain of rational numbers (e.g.
Behr, Harel, Post and Lesh, 1992; Behr, Wachsmuth,
Post and Lesh, 1984: Hart, 1986; Hart, Brown,
Kerslake, Kiichermann and Ruddock, 1985; Kamii
and Clark, 1995; Kerslake, 1986). We illustrate here
these difficulties with research carried out in the
United Kingdom.

The difficulty of equivalence questions varies across
types of tasks. Kerslake (1986) noted that when
students are given diagrams in which the same shapes
are divided into different numbers of sections and
asked to compare two fractions, this task is relatively
simple because it is possible to use a perceptual
comparison. However, if students are given a diagram
with six or nine divisions and asked to mark 2/3 of
the shape, a large proportion of them fail to mark
the equivalent fractions, 4/6 and 6/9. Hart, Brown,
Kerslake, Kiichermann and Ruddock (1985), working
with a sample of students (N =55) in the age range
Il to |3 vyears, found that about 60% of the | |- to

| 2-year-olds and about 65% of the 12-to |3-y ear

olds were able to solve this task. We (Nunes, Bryant,
Pretzlik and Hurry, 2006) gave the same item more
recently to a sample of |30 primary school students
inYears 4 and 5 (mean ages, respectively, 8.6 and 9.6
years). The rate of correct responses across these
items was 28% for the children in Year 4 and 49% for
the children in Year 5. This low percentage of correct
answers could not be explained by a lack of
knowledge of the fraction 2/3: when the diagram was
divided into three sections, 93% of the students in
the study by Hart el al. (1985) gave a correct answer;
in our study, 78% of the Year 4 and 91% of the Year 5
students’ correctly shaded 2/3 of the figure.

This quantitative information is presented here to
illustrate the level of difficulty of these questions.

A different approach to the analysis of how the level
of difficulty can vary is presented later, in the third
section of this paper.

Students often have difficulty in ordering fractions
according to their magnitude. Hart et al. (1985) asked
students to compare two fractions with the same
denominator (3/7 and 5/7) and tw o with the same
numerator (3/5 and 3/4). When the fractions have the
same denominator, students can respond correctly by
considering the numerators only and ordering them as
if they were natural numbers.The rate of correct
responses in this case is relatively high but it does not
effectively test students’ understanding of rational
numbers. Hart et al. (1985) observed approximately
90% correct responses among their students in the
age range | | to |3 years and we (Nunes et al,, 2006)
found that 94% of the students in Year 4 and 87% of
the students in Year 5 gave correct responses. In
contrast, when the numerator was the same and the
denominator varied (comparing 3/5 and 3/4), and the
students had to consider the value of the fractions in a
way that is not in agreement with the order of natur al
numbers, the rate of correct responses was
considerably lower: in the study by Hart et dl,,
approximately 70% of the answers were correct,
whereas in our study the percent of cor rect responses
were 25% in Year 4 and 70% among in Year 5.

These difficulties are not particular to UK students:
they have been widely reported in the literature on
equivalence and order of fractions (for examples in
the United States see Behr, Lesh, Post and Silver; 1983:
Behr, Wachsmuth, Post and Lesh 1984: Kouba, Brown,
Carpenter, Lindquist, Silver and Swafford, 1988).

Difficulties in comparing rational numbers are not
confined to fractions. Resnick, Nesher, Leonard,
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Magone, Omanson and Peled (1989) have shown
that students have difficulties in comparing decimal
fractions when the number of places after the decimal
point differs. The samples in their study were relatively
small (varying from |7 to 38) but included students
from three different countries, the United States, Israel
and France, and in three grade levels (44Eh to 6th).The
children were asked to compare pairs of decimals
such as 0.5 and 0.36,2.35 and 2.350, and 4.8 and 4.63.
The rate of correct responses varied between 36%
and 52% correct, even though all students had
received instruction on decimals. A more recent study
(Lachance and Confrey, 2002) of 5th grade students
(estimated age approximately 10 years) who had
received an introduction to decimal fractions in the
previous year showed that only about 43% were able
to compare decimal fractions correctly” Rittle-Johnson,
Siegler and Allibali (2001) confirmed students’
difficulties when comparing the magnitude of
decimals: the rate of correct responses by the
students (N = 73; 5th grade; mean age | | years 8
months) in their study was 19%.

In conclusion, the very basic ideas about equivalence
and order of fractions by magnitude, without which we
could hardly say that the students have a good sense
for what fractions represent, seems to elude many
students for considerable periods of time. In the
section that follows, we will contrast two situations
that have been used to introduce the concept of
fractions in primary school in order to examine the
question of whether children’s learning may differ as

a function of these differences between situations.

Children’s schemas
of action in division situations

Mathematics educators and researchers may not
agree on many things, but there is a clear consensus
among them on the idea that rational numbers are
numbers in the domain of quotients (Brousseau,
Brousseau and Warfield, 2007; Kieren, 1988; 1993;
1994; Ohlsson, 1988): that is, numbers defined by the
operation of division. So, it seems reasonable to seek
the origin of children’s understanding of rational
numbers in their understanding of division.’

Our hypothesis is that in division situations children
can develop some insight into the equivalence and
order of quantities in fractions; we will use the term
fractional quantities to refer to these quantities.
These insights can be developed even in the
absence of knowledge of representations for fractions,

either in written or in oral form.Two schemes
of action that children use in division have been
analysed in the literature: partitioning and
correspondences (or dealing).

Behr, Harel, Post and Lesh (1992; 1993) pointed out
that fractions represent quantitites in a different way
across two types of situation. The first type is the part-
whole situation. Here one starts with a single quantity,
the whole, which is divided into a cer tain number of
parts (y), out of which a specified number is taken (x);
the symbol x/y represents this quantity in terms of
part-whole relations. Partitioning is the scheme of
action that children use in par t-whole tasks. The most
common type of fraction problem that teachers give
to children is to ask them to partition a whole into a
fixed number of parts (the denominator) and show a
certain fraction with this denominator. For example,
the children have to show what 3/5 of a pizza is.*

The second way in which fractions represent
quantities is in quotient situations. Here one starts
with two quantities, x and y, and treats x as the
dividend and y as the divisor, and by the operation of
division obtains a single quantity x/y. For example, the
quantities could be 3 chocolates (x) to be shared
among 5 children (y).The fractional symbol x/y
represents both the division (3 divided by 5) and the
quantity that each one will receive (3/5). A quotient
situation calls for the use of correspondences as the
scheme of action: the children establish
correspondences between portions and recipients.
The portions may be imagined by the children, not
actually drawn, as they must be when the children
are asked to partition a whole and show 3/5.°

When children use the scheme of par titioning in
part-whole situations, they can gain insights about
quantities that could help them under stand some
principles relevant to the domain of rational numbers.
They can, for example, reason that, the more parts
they cut the whole into, the smaller the parts will be.
This could help them understand how fractions are
ordered. If they can achieve a higher level of precision
in reasoning about partitioning,

they could develop some understanding of the
equivalence of fractions: they could come to
understand that, if they have twice as many parts,
each part would be halved in size. For example, you
would eat the same amount of chocolate after
cutting one chocolate bar into tw o parts and eating
one part as after cutting it into four parts and eating
two, because the number of parts and the size of the
parts compensate for each other precisely. It is an
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empirical question whether children attain these
understandings in the domain of whole numbers and
extend them to rational numbers.

Partitioning is the scheme that is most often used
to introduce children to fractions in the United
Kingdom, but it is not the only scheme of action
relevant to division. Children use correspondences
in quotient situations when the dividend is one
quantity (or measure) and the divisor is another
quantity. For example, when children share out
chocolate bars to a number of recipients, the
dividend is in one domain of measures — the
number of chocolate bars — and the divisor is in
another domain — the number of children. The
difference between partitioning and correspondence
division is that in partitioning there is a single whole
(i.e. quantity or measure) and in cor respondence
there are two quantities (or measures).

Fischbein, Deri, Nello and Marino (1985) hypothesised
that children develop implicit models of division
situations that are related to their experiences. We
use their hypothesis here to explore what sorts of
implicit models of fractions children may develop from
using the partitioning or the correspondence scheme
in fractions situations. Fischbein and colleagues
suggested, for example, that children form an implicit
model of division that has a specific constraint: the
dividend must be larger than the divisor VWe ourselves
hypothesise that this implicit model is developed only
in the context of partitioning. When children use the
correspondence scheme, precisely because there are
two domains of measures, young children readily
accept that the dividend can be smaller than the
divisor: they are ready to agree that it is perfectly
possible to share one chocolate bar among

three children.

At first glance, the difference between these two
schemes of action, partitioning and correspondence,
may seem too subtle to be of interest when we are
thinking of children’s understanding of fractions.
Certainly, research on children’s understanding of
fractions has not focused on this distinction so far.
However, our review shows that it is a crucial
distinction for children’s learning, both in terms

of what insights each scheme of action aff ords and
in terms of the empirical research results.

There are at least four differences between what
children might learn from using the par titioning
scheme or the scheme of correspondences.

* The first is the one just pointed out: that, when
children set two measures in correspondence, there
is No necessary relation between the size of the
dividend and of the divisor. In contrast, in partitioning
children form the implicit model that the sum of the
parts must not be larger than the whole. Therefore,
it may be easier for children to develop an
understanding of improper fractions when they form
correspondences between two fields of measures
than when they partition a single whole. They might
have no difficulty in understanding that 3 chocolates
shared between 2 children means that each child
could get one chocolate plus a half. In contrast, in
partitioning situations children might be puzzled if
they are told that someone ate 3 parts of a
chocolate divided in 2 parts.

A second possible difference between the two
schemes of action may be that, when using
correspondences, children can reach the conclusion
that the way in which partitioning is carried out does
not matter, as long as the correspondences between
the two measures are 'fair. They can reason, for
example, that if 3 chocolates are to be shared by 2
children, it is not necessary to divide all 3 chocolates
in half, and then distribute the halves; giving a whole
chocolate plus a half to each child would accomplish
the same fairness in sharing. It was argued in the first
section of this paper that this an important insight in
the domain of rational numbers: different fractions
can represent the same quantity.

L]

A third possible insight about quantities that can
be obtained from correspondences more easily
than from partitioning is related to ordering of
quantities. WWhen forming correspondences,
children may realize that there is an inverse
relation between the divisor and the quotient: the
more people there are to share a cake, the less
each person will get: Children might achieve the
corresponding insight about this inverse relation
using the scheme of partitioning: the more parts
you cut the whole into, the smaller the parts.
However, there is a difference between the
principles that children would need to abstract
from each of the schemes. In partitioning, they
need to establish a within-quantity relation (the
more parts, the smaller the parts) whereas in
correspondence they need to establish a
between-quantity relation (the more children,
the less cake). It is an empirical matter to find out
whether or not it is easier to achieve one of
these insights than the other.
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* Finally, both partitioning and correspondences
could help children to understand something
about the equivalence between quantities, but the
reasoning required to achieve this understanding
differs across the two schemes of action.When
setting chocolate bars in correspondence with
recipients, the children might be able to reason
that, if there were twice as many chocolates and
twice as many children, the shares would be
equivalent, even though the dividend and the
divisor are different. This may be easier than the
comparable reasoning in partitioning. In
partitioning, understanding equivalence is based
on inverse proportional reasoning (twice as many
pieces means that each piece is half the size)
whereas in contexts where children use the
correspondence scheme, the reasoning is based on
a direct proportion (twice as many chocolates and
twice as many children means that everyone still
gets the same).

This exploratory and hypothetical analysis of how
children can reach an understanding of equivalence
and order of fractions when using partitioning or
correspondences in division situations suggests that
the distinction between the two schemas is worth
investigating empirically. It is possible that the scheme
of correspondences affords a smoother transition
from natural to rational numbers, at least as far as
understanding equivalence and order of fractional
quantities is concerned.

We turn now to an empirical analysis of this question.
The literature about these schemes of action is vast
but this paper focuses on research

that sheds light on whether it is possib le to find
continuities between children’s understanding of
quantities that are represented by natural numbers
and fractional quantities. We review research on
correspondences first and then research on
partitioning.

Children’s use of the
correspondence scheme in
judgements about quantities

Piaget (1952) pioneered the study of how and when
children use the correspondence scheme to draw
conclusions about quantities. In one of his studies,
there were three steps in the method.

* First, Piaget asked the children to place one pink
flower into each one of a set of vases;

* next, he removed the pink flowers and asked the
children to place a blue flower into each one of the
same vases;

* then, he set all the flowers aside, leaving on the
table only the vases, and asked the children to take
from a box the exact number of straws required if
they wanted to put one flower into each straw.

Without counting, and only using correspondences,
five- and six-year old children were able to make
inferences about the equivalence between straws and
flowers: by setting two straws in correspondence with
each vase, they constructed a set of straws equivalent
1o the set of vases. Piaget concluded that the children’s
judgements were based on ‘multiplicative equivalences’
(p. 219) established by the use of the correspondence
scheme: the children reasoned that, if there is a 2-to-1
correspondence between flowers and vases and a 2-
to-| correspondence between straws and vases, the
number of flowers and straws must be the same.

In Piaget's study, the scheme of correspondence
was used in a situation that involved ratio but not
division. Frydman and Bryant (1988) carried out

a series of studies where children established
correspondences between sets in a division situation
which we have described in more detail in Paper 2,
Understanding whole numbers. The studies showed
that children aged four often shared pretend sweets
fairly, using a one-for-you one-for-me type of
procedure. After the children had distributed the
sweets, Frydman and Bryant asked them to count
the number of sweets that one doll had and then
deduce the number of sweets that the other doll
had. About 40% of the four-year-olds were able to
make the necessary inference and say the exact
number of sweets that the second doll had; this
proportion increased with age. This result extends
Piaget's observations that children can make
equivalence judgements not only in multiplication but
also in division problems by using correspondence.

Frydman and Bryant's results were replicated in a
number of studies by Davis and his colleagues (Davis
and Hunting, 1990; Davis and Pepper, 1992; Pitkethly
and Hunting, 1996), who refer to this scheme of
action as ‘dealing’. They used a variety of situations,
including redistribution when a new recipient comes,
to study children’s ability to use correspondences in
division situations and to make inferences about
equality and order of magnitude of quantities. They
also argue that this scheme is basic to children’s
understanding of fractions (Davis and Pepper, 1992).
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Correa, Nunes and Bryant (1998) extended these
studies by showing that children can make inferences
about quantities resulting from a division not only
when the divisors are the same but also when they
are different. In order to circumvent the possibility
that children feel the need to count the sets after
division because they think that they could have
made a mistake in sharing, Bryant and his colleagues
did not ask the children to do the sharing: the
sweets were shared by the experimenter; outside the
children’s view, after the children had seen that the
number of sweets to be shared was the same.

There were two conditions in this study: same
dividend and same divisor versus same dividend
and different divisors. In the same dividend and same
divisor condition, the children should be able to
conclude for the equivalence between the sets that
result from the division; in the same dividend and
different divisor condition, the children should
conclude that the more recipients there are, the
fewer sweets they receive;i.e. in order to answer
correctly, they would need to use the inverse
relation between the divisor and the result as a
principle, even if implicitly.

About two-thirds of the five-year-olds, the vast
majority of the six-year-olds, and all the seven-year-
olds concluded that the recipients had equivalent
shares when the dividend and the divisor were the
same. Equivalence was easier than the inverse
relation between divisor and quotient: 34%, 53%
and 81% of the children in these three age lev els,
respectively, were able to conclude that the more
recipients there are, the smaller each one’s share will
be. Correa (1994) also found that children’s success
in making these inferences improved if they solved
these problems after practising sharing sweets
between dolls; this indicates that thinking about ho w
to establish correspondences improves their ability
to make inferences about the relations between the
quantities resulting from sharing.

In all the previous studies, the dividend was
composed of discrete quantities and was lar ger

than the divisor. The next question to consider is
whether children can make similar judgements about
equivalence when the situations involve continuous
quantities and the dividend is smaller than the
divisor: that is, when children have to think about
fractional quantities.

Kornilaki and Nunes (2005) investigated this
possibility by comparing children’s inferences in

division situations in which the quantities were
discrete and the dividends were larger than the
divisors to their inferences in situations in which the
quantities were continuous and dividends smaller
than the divisors. In the discrete quantities tasks, the
children were shown one set of small toy fishes to
be distributed fairly among a group of white cats and
another set of fishes to be distributed to a group of
brown cats; the number of fish was always greater
than the number of cats. In the continuous quantities
tasks, the dividend was made up of fish-cakes, to be
distributed fairly among the cats: the number of
cakes was always smaller than the number of cats,
and varied between | and 3 cakes, whereas the
number of cats to receive a portion in each group
varied between 2 and 9. Following the paradigm
devised by Correa, Nunes and Bryant (1998), the
children were neither asked to distribute the fish nor
to partition the fish cakes. They were asked whether,
after a fair distribution in each group, each cat in one
group would receive the same amount to eat as
each cat in the other group .*

In some trials, the number of fish (dividend) and cats
(divisor) was the same; in other trials, the dividend
was the same but the divisor was different. So in the
first type of trials the children were asked about
equivalence after sharing and in the second type the
children were asked to order the quantities obtained
after sharing.

The majority of the children succeeded in all the
items where the dividend and the divisor w ere the
same: 62% of the five-year-olds, 84% of the six-year
olds and all the seven-year-olds answered all the
questions correctly. When the dividend was the same
and the divisors differed, the rate of success was
319%,50% and 81%, respectively, for the three age
levels. There was no difference in the level of success
attained by the children with discrete versus
continuous quantities.

In almost all the items, the children explained their
answers by referring to the type of relation betw een
the dividends and the divisors: same divisor, same
share or, with different divisors, the more cats
receiving a share, the smaller their share.The use

of numbers as an explanation for the relative size of
the recipients’ shares was observed in 6% of answers
by the seven-year-olds when the quantities were
discrete and less often than this by the younger
children. Attempts to use numbers to speak about
the shares in the continuous quantities trials were
practically non-existent (3% of the seven-year-olds’
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explanations). Thus, the analysis of justifications
supports the idea that the children were reasoning
about relations between quantities rather than using
counting when they made their judgments of
equivalence or ordered the quantities that would be
obtained after division.

This study replicated the previous findings, which
we have mentioned already, that young children can
use correspondences to make inferences about
equivalences and also added new evidence relevant
to children’s understanding of fractional quantities:
many young children who have never been taught
about fractions used correspondences to order
fractional quantities. They did so successfully when
the division would have resulted in unitary fractions
and also when the dividend was greater than | and
the result would not be a unitary fraction (e.g. 2 fish
cakes to be shared by 3,4 or 5 cats).

A study by knowledge Mamede, Nunes and Bryant
(2005) confirmed that children can make inferences
about the order of magnitude of fractions in sharing
situations where the dividend is smaller than the
divisor (e.g. | cake shared by 3 children compared
to | cake shared by 5 children). She worked with
Portuguese children in their first year in school, who
had received no school instruction about fractions.
Their performance was only slightly weaker than that
of British children: 55% of the six-year-olds and 71%
of the seven-year-olds were able to make the
inference that the larger the divisor, the smaller the
share that each recipient would receive.

These studies strongly suggest that children can
learn principles about the relationship between
dividend and divisor from experiences with sharing
when they establish correspondences between the
two domains of measures, the shared quantities
and the recipients. They also suggest that children
can make a relatively smooth transition from
natural numbers to rational numbers when they
use correspondences to understand the relations
between quantities. This argument is central to
Streefland’s (1987; 1993; 1997) hypothesis about
what is the best starting point for teaching
fractions to children and has been advanced by
others also (Davis and Pepper, 1992; Kieren, 1993;
Vergnaud, 1983).

This research tell an encouraging story about
children’s understanding of the logic of division even
when the dividend is smaller than the divisor, but
there is one further point that should be considered

in the transition between natural and rational
numbers. In the domain of rational numbers there is
an infinite set of equivalences (e.g. 1/2 = 2/4 = 3/6
etc) and in the studies that we have described so far
the children were only asked to make equivalence
judgements when the dividend and the divisor in the
equivalent fractions were the same. Can they still
make the inference of equivalence in sharing
situations when the dividend and the divisor are
different across situations, but the dividend-divisor
ratio is the same?

Nunes, Bryant, Pretzlik, Bell, Evans and Wade (2007)
asked British children aged between 7.5 and 10 years,
who were inYears 4 and 5 in school, to make
comparisons between the shares that would be
received by children in sharing situations where the
dividend and divisor were different but their ratio was
the same. Previous research (see, for example, Behr,
Harel, Post and Lesh, 1992; Kerslake, 1986) shows that
children in these age levels have difficulty with the
equivalence of fractions. The children in this study had
received some instruction on fractions: they had been
taught about halves and quarters in problems about
partitioning. They had only been taught about one pair
of equivalent fractions: they were taught that one half
is the same as two quarters. In the correspondence
item in this study, the children were presented with
two pictures: in the first, a group of 4 girls was going to
share fairly | pie; in the second, a group of 8 boys was
going to share fairly 2 pies that were exactly the same
as the pie that the girls had. The question was whether
each girl would receive the same share as each boy.
The overall rate of correct responses was 73% (78%
inYear 4 and 70% in Year 5; this difference was not
significant). This is an encouraging result: the children
had only been taught about halves and quarters;
nevertheless, they were able to attain a high rate of
correct responses for fractional quantities that could
be represented as /4 and 2/8.

In the studies reviewed so far the children were
asked about quantities that resulted from division
and always included two domains of measures; thus
the children’s correspondence reasoning was
engaged in these studies. However, they did not
involve asking the children to represent these
quantities through fractions. The final study reviewed
here is a brief teaching study (Nunes, Bryant, Pretzlik,
Evans, Wade and Bell, 2008), where the children
were taught to represent fractions in the context of
two domains of measures, shared quantities and
recipients, and were asked about the equivalence
between fractions. The types of arguments that the
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children produced to justify the equivalence of the
fractions were then analyzed and compared to the
insights that we hypothesized would emerge in the
context of sharing from the use of the
correspondence scheme.

Brief teaching studies are of great value in research
because they allow the researchers to know what
understandings children can construct if they are
given a specific type of guidance in the interaction
with an adult (Cooney, Grouws and Jones, 1988;
Steffe and Tzur, 1994: Tzur, 1999: Yackel, Cobb,
Wood, Wheatley and Merkel, 1990). They also have
compelling ecological validity: children spend much
of their time in school trying to use what they have
been taught to solve new mathematics problems.
Because this study has only been published in a
summary form (Nunes, Bryant, Pretzlik and Hurry,
2006), some detall is presented here.

The children (N = 62) were in the age range from
7.5to 10 years,in Years 4 and 5 in school. Children in
Year 4 had only been taught about half and quar ters
and the equivalence between half and two quarters;
children in Year 5 had been taught also about thirds.
They worked with a researcher outside the
classroom in small groups (12 groups of betw een 4
and 6 children, depending on the class size) and were
asked to solve each problem first individually, and
then to discuss their answers in the group. The
sessions were audio- and video-recorded. The
children’s arguments were transcribed verbatim; the
information from the video-tapes was later
coordinated with the transcripts in order to help the
researchers understand the children’s arguments.

In this study the researchers used problems
developed by Streefland (1990). The children solved
two of his sharing tasks on the first day and an
equivalence task on the second day of the teaching
study. The tasks were presented in booklets with
pictures, where the children also wrote their
answers. The tasks used in the first day were:

* Six girls are going to share a packet of biscuits. The
packet is closed; we don't know how many biscuits
are in the packet. (a) If each girl received one
biscuit and there were no biscuits left, how many
biscuits were in the packet? (b) If each girl received
a half biscuit and there were no biscuits left, how
many biscuits were in the packet? (c) If some more
girls join the group, what will happen when the
biscuits are shared? Do the girls now receive
more or less each than the six girls did?

* Four children will be sharing three chocolates. (a)
Will each child be able to get one bar of chocolate?
(b) Will each child be able to get at least a half bar
of chocolate? (c) How would you share the
chocolate?! (The booklets contained a picture with
three chocolate bars and four children and the
children were asked to show how they would share
the chocolates) Write what fraction each one gets.

After the children had completed these tasks,

the researcher told them that they were going to
practice writing fractions which they had not yet
learned in school. The children were asked to write
‘half” with numerical symbols, which they knew
already. The researcher taught the children to write
fractions that they had not yet learned in school in
order to help the children re-inter pret the meaning
of fractions. The numerator was to be used to
represent the number of items to be divided, the
denominator should represent the number of
recipients, and the dash between them two numbers
should represent the sign for division (for a discussion
of children’s interpretation of fraction symbols in this
situation, see Charles and Nason, 2000, and Empson,
Junk, Dominguez and Turner, 2005).

The equivalence task, presented on the second
day, was:

* Six children went to a pizzeria and ordered two
pizzas to share between them.The waiter brought
one first and said they could start on it because it
would take time for the next one to come. (a)
How much will each child get from the first pizza
that the waiter brought? Write the fraction that
shows this. (b) How much will each child get from
the second pizza?! Write your answer: (c) If you add
the two pieces together, what fraction of a pizza
will each child get? You can write a plus sign
between the first fraction and the second fraction,
and write the answer for the share each child gets
in the end. (d) If the two pizzas came at the same
time, how could they share it differently? (e) Are
these fractions (the ones that the children wrote
for answers ¢ and d equivalent?

According to the hypotheses presented in the
previous section, we would expect children to
develop some insights into rational numbers by
thinking about different ways of sharing the same
amount. It was expected that they would realize that:
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| it is possible to divide a smaller number by a larger
number

2 different fractions might represent the same
amount

3 twice as many things to be divided and twice as
many recipients would result in equivalent amounts

4 the larger the divisor, the smaller the quotient.

The children's explanations for why they thought
that the fractions were equivalent provided evidence
for all these insights, and more, as described below.

It is possible to divide a smaller
number by a larger number

There was no difficulty among the students in
attempting to divide | pizza among 6 children. In
response to part a of the equivalence problem, all
children wrote at least one fraction correctly (some
children wrote more than one fraction for the same
answer, always correctly).

In response to part ¢, when the children were asked
how they could share the 2 pizzas if both pizzas
came at the same time and what fr action would
each one receive, some children answered /3 and
others answered 2/12 from each pizza, giving a total
share of 4/12. The latter children, instead of sharing

| pizza among 3 girls, decided to cut each pizza in
|2 parts:ie.they cut the sixths in half.

Different fractions can represent the
same amount

The insight that different fractions can represent

the same amount was expressed in all groups. For
example, one child said that, ‘They're the same
amount of people, the same amount of pizzas, and
that means the same amount of fractions. It doesn't
matter how you cut it Another child said, ‘Because it
wouldn't really matter when they shared it, they'd get
that [3 girls would get | pizza], and then they'd get
that [3 girls would get the other pizza], and then it
would be the same. Another child said, ‘It's the same
amount of pizza. They might be different fractions
but the same amount [this child had offered 4/12 as
an alternative to 2/6]. Another child said: ‘Erm, well
basically just the time doesn't make much difference,
the main thing is the number of things.

When the dividend is twice as large
and the divisor is also twice as large,
the result is an equivalent amount

The principle that when the dividend is twice as
large and the divisor is also twice as large, the result
is an equivalent amount was expressed in | | of the
|2 groups. For example, one child said, ‘It's half the
girls and half the pizzas; three is a half of six and one
is a half of two. Another child said, 'If they have two
pizzas, then they could give the first pizza to three
girls and then the next one to another three gir Is.
(...) If they all get one piece of that each, and they
get the same amount, they all get the same amount’.

So all three ideas we thought that could appear in
this context were expressed by the children. But
two other principles, which we did not expect to
observe in this correspondence problem, were also
made explicit by the children.

The number of parts and size of
parts are inversely proportional

The principle that the number of parts and size of
parts are inversely proportional was enunciated in 8 of
the 12 groups. For example, one child who cut the
pizzas the second time around in |2 par ts each said,
‘Because it's double the one of that [total number of
pieces] and it's double the one of that [number of
pieces for each], they cut it twice and each is half the
size; they will be the same’. Another child said, ‘Because
one sixth and one sixth is actually a different way in
fractions [from | third] and it doub led [the number of
pieces] to make it [the size of the piece] littler, and
halving [the number of pieces] makes it [the size of the
piece] bigger; so | halved it and it became one third'.

The fractions show the same
part-whole relation

The reasoning that the fractions show the same
part-whole relation, which we had not expected to
emerge from the use of the cor respondence
scheme, was enunciated in only one group (out of
12), initially by one child, and was then reiterated by
a second child in her own terms. The first child said,
“You need three two sixths to make six [6/6 — he
shows the 6 pieces marked on one pizza], and you
need three one thirds to make three (3/3 — shows
the 3 pieces marked on one pizza). [He wrote the
computation and continued] There’s two sixths, add
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two sixths three times to make six sixths. With one
third, you need to add one third three times to
make three thirds.

To summarize: this brief teaching experiment was
carried out to elicit discussions betw een the
children in situations where they could use the
correspondence scheme in division. The first set of
problems, in which they are asked about sharing
discrete quantities, created a background for the
children to use this scheme of action. The
researchers then helped them to construct an
interpretation for written fractions where the
numerator is the dividend, the denominator is the
divisor, and the line indicates the operation of
division. This interpretation did not replace their
original interpretation of number of parts taken
from the whole; the two meanings co-existed and
appeared in the children’s arguments as they
explained their answers. In the subsequent
problems, where the quantity to be shared was
continuous and the dividend was smaller than the
divisor, the children had the oppor tunity to
explore the different ways in which continuous
quantities can be shared. They were not asked to
actually partition the pizzas, and some made marks
on the pizzas whereas others did not. The most
salient feature of the children’s drawings was that
they were not concerned with partitioning per se,
even when the parts were marked, but with the
correspondences between pizzas and recipients.
Sometimes the correspondences were carried out
mentally and expressed verbally and sometimes
the children used drawings and gestures which
indicated the correspondences.

Other researchers have identified children’s use of
correspondences to solve problems that involve
fractions, although they did not necessarily use this
label in describing the children’s answers. Empson
(1999), for example, presented the following
problem to children aged about six to seven years
(first graders in the USA): 4 children got 3 pancakes
to share; how many pancakes are needed for |2
children in order for the children to have the same
amount of pancake as the first group? She reported
that 3 children solved this problem by partitioning
and 3 solved it by placing 3 pancakes in
correspondence to each group of 4 children. Similar
strategies were reported when children solved
another problem that involved 2 candy bars shared
among 3 children.

Kieren (1993) also documented children’s use of
correspondences to compare fractions. In his
problem, the fractions were not equivalent: there
were 7 recipients and 4 items in Group A and 4
recipients and 2 items in Group B.The children
were asked how much each recipient would get
in each group and whether the recipients in both
groups would get the same amount. Kieren
presents a drawing by an eight-year-old, where
the items are partitioned in half and the
correspondences between the halves and the
recipients are shown; in Group A, a line without a
recipient shows that there is an extra half in that
group and the child argues that there should be
one more person in Group A for the amounts to
be the same. Kieren termed this solution
‘corresponding or ‘ratiolike’ thinking' (p. 54).

Conclusion

The scheme of correspondences develops relatively
early: about one-third of the five-year-olds, half of six-
year-olds and most seven-year-olds can use
correspondences to make inferences about
equivalence and order in tasks that in volve fractional
quantities. Children can use the scheme of
correspondences to:

* establish equivalences between sets that have the
same ratio to a reference set (Piaget, 1952)

* re-distribute things after having carried out one
distribution (Davis and Hunting, 1990; Davis and
Pepper, 1992; Davis and Pitkethly, 1990; Pitkethly
and Hunting, 1996);

* reason about equivalences resulting from division
both when the dividend is larger or smaller than
the divisor (Bryant and colleagues: Correa, Nunes
and Bryant, 1994; Frydman and Bryant, 1988; 1994,
Empson, 1999; Nunes, Bryant, Pretzlik and Hurry,
2006; Nunes, Bryant, Pretzlik, Bell, Evans and Wade,
2007; Mamede, Nunes and Bryant, 2005);

* order fractional quantities (Kieren, 1993; Kornilaki
and Nunes, 2005; Mamede, 2007).

These studies were carried out with children up to
the age of ten years and all of them produced
positive results. This stands in clear contrast with the
literature on children’s difficulties with fractions and
prompts the question whether the difficulties might
stem from the use of partitioning as the starting
point for the teaching of fractions (see also Lamon,
1996; Streefland, 1987). The next section examines
the development of children’s partitioning action and
its connection with children’s concepts of fractions.
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Children’s use of the scheme
of partitioning in making
judgements about quantities

The scheme of partitioning has been also named
subdivision and dissection (Pothier and Sawada,
1983), and is consistently defined as the process

of dividing a whole into parts. This process is
understood not as the activity of cutting something
into parts in any way, but as a process that must be
guided from the outset by the aim of obtaining a
pre-determined number of equal parts.

Piaget, Inhelder and Szeminska (1960) pioneered the
study of the connection between partitioning and
fractions. They spelled out a number of ideas that
they thought were necessary for children to develop
an understanding of fractions, and analysed them in
partitioning tasks. The motivation for partitioning was
sharing a cake between a number of recipients, but
the task was one of par titioning. They suggested that
‘the notion of fraction depends on two fundamental
relations: the relation of part to whole (...) and the
relation of part to part' (p. 309). Piaget and colleagues
identified a number of insights that children need to
achieve in order to understand fractions:

| the whole must be conceived as divisible, an idea
that children under the age of about tw o do not
seem to attain

2 the number of parts to be achieved is determined
from the outset

3 the parts must exhaust the whole (i.e.there
should be no second round of par titioning and no
remainders)

4 the number of cuts and the number of parts are
related (e.g. if you want to divide something in 2
parts, you should use only | cut)

5 all the parts should be equal

6 each part can be seen as a whole in itself, nested
into the whole but also susceptible of further
division

7 the whole remains invariant and is equal to the

sum of the parts.

Piaget and colleagues observed that children rarely
achieved correct partitioning (sharing a cake) before
the age of about six years. There is variation in the

level of success depending on the shape of the whole
(circular areas are more difficult to partition than
rectangles) and on the number of parts. A major
strategy in carrying out successful partitioning was the
use of successive divisions in two: so children are able
to succeed in dividing a whole into fourths before
they can succeed with thirds. Successive halving
helped the children with some fractions: dividing
something into eighths is easier this way. However; it
interfered with success with other fractions: some
children, attempting to divide a whole into fifths,
ended up with sixths by dividing the whole first in
halves and then subdividing each half in three parts.

Piaget and colleagues also investigated children’s
understanding of their seventh criterion for a true
concept of fraction, i.e. the conservation of the
whole. This conservation, they argued, would require
the children to understand that each piece could
not be counted simply as one piece, but had to be
understood in its relation to the whole. Some
children aged six and even seven years failed to
understand this, and argued that if someone ate a
cake cutinto /2 + 2/4 and a second per son ate a
cake cut into 4/4, the second one would eat more
because he had four parts and the first one only had
three. Although these children would recognise that
if the pieces were put together in each case they
would form one whole cake, they still maintained
that 4/4 was more than /2 + 2/4. Finally, Piaget and
colleagues also observed that children did not have
to achieve the highest level of development in the
scheme of partitioning in order to understand the
conservation of the whole.

Children’s difficulties with partitioning continuous
wholes into equal parts have been confirmed many
times in studies with pre-schoolers and children in
their first years in school (e.g. Hiebert and
Tonnessen, 1978; Hunting and Sharpley, 1988 b,)
observed that children often do not anticipate the
number of cuts and fail to cut the whole extensiv ely,
leaving a part of the whole un-cut. These studies also
extended our knowledge of how children’s expertise
in partitioning develops. For example, Pothier and
Sawada (1983) and Lamon (1996) proposed more
detailed schemes for the analysis of the development
of partitioning schemes and other researchers
(Hiebert and Tonnessen, 1978; Hunting and Sharpley,
1988 a and b; Miller; 1984; Nouvillis, 1976) found that
the difficulty of partitioning discrete and continuous
quantities is not the same, as hypothesized by Piaget.
Children can use a procedure for partitioning
discrete quantities that is not applicable to
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continuous quantities: they can ‘deal out’ the discrete
quantities but not the continuous ones. Thus they
perform significantly better with the former than the
latter: This means that the transition from discrete to
continuous quantities in the use of par titioning is not
difficult, in contrast to the smooth transition noted in
the case of the correspondence scheme.

These studies showed that the scheme of
partitioning continuous quantities develops slowly,
over a longer period of time.The next question to
consider is whether partitioning can promote the
understanding of equivalence and ordering of
fractions once the scheme has developed.

Many studies investigated children's understanding of
equivalence of fractions in partitioning contexts (e.g.
Behr; Lesh, Post and Silver; 1983: Behr, Wachsmuth,
Post and Lesh, 1984; Larson, 1980; Kerslake, 1986),
but differences in the methods used in these studies
render the comparisons between partitioning and
correspondence studies ambiguous. For example, if
the studies start with a representation of the
fractions, rather than with a problem about
quantities, they cannot be compared to the studies
reviewed in the previous section, in which children
were asked to think about quantities without
necessarily using fractional representation. We shall
not review all studies but only those that use
comparable methods.

Kamii and Clark (1995) presented children with
identical rectangles and cut them into fractions using
different cuts. For example, one rectangle was cut
horizontally in half and the second was cut across a
diagonal. The children had the opportunity to verify
that the rectangles were the same size and that the
two parts from each rectangle were the same in size.
They asked the children: if these were chocolate
cakes, and the researcher ate a part cut from the
first rectangle and the child ate a part cut from the
second, would they eat the same amount? This
method is highly comparable to the studies by
Kornilaki and Nunes (2005) and by Mamede (2007),
where the children do not have to carry out the
actions, so their difficulty with partitioning does not
influence their judgements. They also use similarly
motivated contexts, ending in the question of whether
recipients would eat the same amount. However, the
question posed by Kamii and Clark draws on the
child's understanding of partitioning and the relations
between the parts of the two wholes because each
whole corresponds to a single recipient.

The children in Kamii's study were considerably older
than those in the correspondence studies: they were
in the fifth or sixth year in school (approximately | |
and 12 years). Both groups of children had been
taught about equivalent fractions. In spite of having
received instruction, the children’s rate of success
was rather low: only 44% of the fifth graders and
519% of the sixth graders reasoned that they would
eat the same amount of chocolate cak e because
these were halves of identical wholes.

Kamii and Clark then showed the children two
identical wholes, cut one in fourths using a horizontal
and a vertical cut, and the other in eighths, using only
horizontal cuts. They discarded one fourth from the
first ‘chocolate cake’, leaving three fourths be eaten,
and asked the children to take the same amount
from the other cake, which had been cut into
eighths, for themselves. The percentage of correct
answers was this time even lower: | 3% of the fifth
graders and 32% of the sixth graders correctly
identified the number of eighths required to take the
same amount as three fourths.

Recently, we (Nunes and Bryant, 2004) included a
similar question about halves in a survey of English
children’s knowledge of fractions. The children in our
study were in their fourth and fifth year (mean ages
eight and a half and nine and a half, respectively) in
school. The children were shown pictures of a boy
and a girl and two identical rectangular areas, the
‘chocolate cakes’. The boy cut his cake along the
diagonal and the girl cut hers horizontally. The
children were asked to indicate whether they ate the
same amount of cake and, if not, to mark the child
who ate more. Our results were more positive than
Kamii and Clark’s: 55% of the children in y ear four
(eight and a half year olds) in our study answ ered
correctly. However, these results are weak by
comparison to children’s rate of correct responses
when the problem draws on their understanding of
correspondences. In the Kornilaki and Nunes study,
100% of the seven-year-olds (third graders) realized
that two divisions that have the same dividend and
the same divisor result in equivalent shares. Our
results with fourth graders, when both the dividend
and the divisor were different, still shows a higher
rate of correct responses when correspondences are
used: 78% of the fourth graders gave correct answers
when comparing one fourth and two eighths.

In the preceding studies, the students had to think
about the quantities ignoring their perceptual
appearance. Hart et al. (1985) and Nunes et dl.
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(2004) presented students with verbal questions,
which did not contain drawings that could lead to
incorrect conclusions based on perception. In both
studies, the children were told that two boys had
identical chocolate bars; one cut his into 8 parts and
ate 4 and the other cut his into 4 par ts and ate 2.
Combining the results of these two studies, it is
possible to see how the rate of correct responses
changed across age: 40% at ages 8 to 9 years, 74% at
[0tol | years, 60% at | | to 12 years,and 64% at 12
to |3 years. The students aged 8 to 10 were
assessed by Nunes et al. and the older ones by Hart
et al. These results show modest progress on the
understanding of equivalence questions presented in
the context of partitioning even though the
quantities eaten were all equivalent to half.

Mamede (2007) carried out a direct comparison
between children’s use of the correspondence and
the partitioning scheme in solving equivalence and
order problems with fractional quantities. In this well-
controlled study, she used story problems involving
chocolates and children, similar pictures and
mathematically identical questions; the division
scheme relevant to the situation was the only
variable distinguishing the problems. In
correspondence problems, for example, she asked
the children: in one party, three girls are going to
share fairly one chocolate cake;in another party, six
boys are going to share fairly two chocolate cakes.
The children were asked to decide whether each
boy would eat more than each girl, each girl would
eat more than each boy, or whether they would
have the same amount to eat. In the partitioning
problems, she set the following scenario: This girl and
this boy have identical chocolate cakes; the cakes are
too big to eat at once so the gir | cuts her cake in

3 identical parts and eats one and the boy cuts his
cake in 6 identical parts and eats 2. The children
were asked whether the girl and the boy ate the
same amount or whether one ate more than the
other. The children (age range six to seven) were
Portuguese and in their first year in school; they had
received no instruction about fractions.

In the correspondence questions, the responses of
35% of the six-year-olds and 49% of the seven-year-
olds were correct; in the partitioning questions, 10%
of the answers of children in both age levels were
correct. These highly significant differences suggest
that the use of correspondence reasoning supports
children’s understanding of equivalence between
fractions whereas partitioning did not seem to afford
the same insights.

Finally, it is important to compare students’ arguments
for the equivalence and order of quantities
represented by fractions in teaching studies where
partitioning is used as the basis for teaching. Many
teaching studies that aim at promoting students’
understanding of fractions through partitioning have
been reported in the literature (e.g, Behr, Wachsmuth,
Post and Lesh, 1984; Brousseau, Brousseau and
Warfield, 2004; 2007; Empson, 1999; Kerslake, 1986;
Olive and Steffe, 2002; Olive and Vomvoridi, 2006;
Saenz-Ludlow, 1994; Steffe, 2002). In most of these
studies, students' difficulties with partitioning are
circumvented either by using pre-divided materials
(e.g. Behr; Wachsmuth, Post and Lesh, 1984) or by
using computer tools where the computer carries
out the division as instructed by the student

(e.g Olive and Steffe, 2002; Olive and Vomvoridi, 2006).

Many studies combine partitioning with
correspondence during instruction, either because
the researchers do not use this distinction (e .g.
Saenz-Ludlow, 1994) or because they wish to
construct instruction that combines both schemes

in order to achieve a better instructional program
(e.g. Brousseau, Brousseau and Warfield, 2004; 2007).
These studies will not be discussed here.Two studies
that analysed student’s arguments focus the
instruction on partitioning and are presented here.

The first study was carried out by Berhr, Wachsmuth,
Post and Lesh (1984). The researchers used objects
of different types that could be manipulated during
instruction (e.g. counters, rectangles of the same size
and in different colours, pre-divided into fractions
such as halves, quarters, thirds, eighths) but also
taught the students how to use algorithms (division
of the denominator by the numerator to find a
ratio) to check on the equivalence of fractions. The
students were in fourth grade (age about 9) and
received instruction over |8 weeks. Behr et al.
provided a detailed analysis of children’s arguments
regarding the ordering of fractions. In summary, they
report the following insights after instruction.

* When ordering fractions with the same numerator
and different denominators, students seem to be able
to argue that there is an inverse relation between the
number of parts into which the whole was cut and
the size of the parts. This argument appears either
with explicit reference to the numerator (‘there are
two pieces in each, but the pieces in two fifths are
smaller! p. 328) or without it (‘the bigger the number
is, the smaller the pieces get! p. 328).
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* A third fraction can be used as a reference point
when two fractions are compared: three ninths is
less than three sixths because ‘three ninths is ...
less than half and three sixths is one half’ (p. 328).
It is not clear how the students had learned that
3/6 and 1/2 are equivalent but they can use this
knowledge to solve another comparison.

* Students used the ratio algorithm to verify whether
the fractions were equivalent: 3/5 is not equivalent
to 6/8 because ‘if they were equal, three goes into
six, but five doesn't go into eight. (p. 331).

* Students learned to use the manipulative materials
in order to carry out perceptual comparisons: 6/8
equals 3/4 because 'l started with four parts. Then |
didn’t have to change the size of the paper at all. |
just folded it, and then | got eight! (p. 331).

Behr et al. report that, after 18 weeks of instruction,
a large proportion of the students (27%) continued
to use the manipulatives in order to carry our
perceptual comparisons; the same proportion (27%)
used a third fraction as a reference point and a
similar proportion (23%) used the ratio algorithm
that they had been taught to compare fractions.

Finally, there is no evidence that the students w ere
able to understand that the number of parts and size
of parts could compensate for each other precisely
in a proportional manner. For example, in the
comparison between 6/8 and 3/4 the students could
have argued that there were twice as many parts
when the whole was cut into 8 par ts in comparison
with cutting in 4 parts, so you need to take twice as
many (6) in order to have the same amount.

In conclusion, students seemed to develop some
insight into the inverse relation between the divisor
and the quantity but this only helped them when the
dividend was kept constant: they could not extend
this understanding to other situations where the
numerator and the denominator differed.

The second set of studies that focused on
partitioning was carried out by Steffe and his
colleagues (Olive and Steffe, 2002; Olive and
Vomvoridi, 2006; Steffe, 2002). Because the aim of
much of the instruction was to help the children
learn to label fractions or compose fractions that
would be appropriate for the label, it is not possible
to extract from their reports the children’s
arguments for equivalence of fractions.

However, one of the protocols (Olive and Steffe,
2002) provides evidence for the student's difficulty
with improper fractions, which, we hypothesise, could
be a consequence of using par titioning as the basis
for the concept of fractions. The researcher asked Joe
to make a stick 6/5 long. Joe said that he could not
because ‘there are only five of them'. After prompting,
Joe physically adds one more fifth to the five already
used, but it is not clear whether this ph ysical action
convinces him that 6/5 is mathematically appropriate.
In a subsequent example, Joe labels a stick made with
9 sticks, which had been defined as ‘one seventh’ of
an original stick, 9/7, but according to the researchers
‘an important perturbation’ remains. Joe later counts
8 of a stick that had been designated as ‘one seventh’
but doesn't use the label ‘eight sevenths’.When the
researcher proposes this label, he questions it: ‘How
can it be EIGHT sevenths?’ (Olive and Steffe, 2002,

p. 426). Joe later refused to make a stick that is 10/7,
even though the procedure is physically possible.
Subsequently, on another day, Joe's reaction to
another improper fraction is: I still don't understand
how you could do it. How can a fraction be bigger
than itself? (Olive and Steffe, 2002, p. 428; emphasis

in the original).

According to the researchers, Joe only sees that
improper fractions are acceptable when they
presented a problem where pizzas were to be shared
by people.When 12 friends ordered 2 slices each of
pizzas cut into 8 slices, Joe realized immediately that
more than one pizza would be required; the traditional
partitioning situation, where one whole is divided into
equal parts, was transformed into a less usual one,
where two wholes are required but the size of the
part remains fixed.

This example illustrates the difficulty that students
have with improper fractions in the context of
partitioning but which they can overcome by
thinking of more than one whole.

Conclusion

Partitioning, defined as the action of cutting a

whole into a pre-determined number of equal parts,
shows a slower developmental process than
correspondence. In order for children to succeed,
they need to anticipate the solution so that the r ight
number of cuts produces the right number of equal
parts and exhausts the whole. Its accomplishment,
however, does not seem to produce immediate
insights into equivalence and order of fractional
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quantities. Apparently, many children do not see it as
necessary that halves from two identical wholes are
equivalent, even if they have been taught about the

equivalence of fractions in school.

In order to use this scheme of action as the basis

for learning about fractions, teaching schemes and
researchers rely on pre-cut wholes or computer
tools to avoid the difficulties of accurate partitioning.
Students can develop insight into the inverse relation
between the number of parts and the size of the
parts through the partitioning scheme but there is
no evidence that they realize that if you cut a whole
in twice as many parts each one will be half in size.
Finally, improper fractions seem to cause uneasiness
to students who have developed their conception of
fractions in the context of par titioning; it is important
to be aware of this uneasiness if this is the scheme
chosen in order to teach fractions.

Rational numbers and children’s
understanding of intensive
quantities

In the introduction, we suggested that rational
numbers are necessary to represent quantities that
are measured by a relation between two other
quantities. These are called intensive quantities and
there are many examples of such quantities both

in everyday life and in science. In everyday life, we
often mix liquids to obtain a cer tain taste. If you
mix fruit concentrate with water to make juice, the
concentration of this mixture is described by a
rational number: for example, 1/3 concentrate and
2/3 water. Probability is an intensive quantity that is
important both in mathematics and science and is
measured as the number of favourable cases divided
by the number of total cases.”

The conceptual difficulties involved in understanding
intensive quantities are largely similar to those
involved in understanding the representation of
quantities that are smaller than the whole. In

order to understand intensive quantities, students
must form a concept that takes two variables
simultaneously into account and realise that there is
an inverse relation between the denominator and
the quantity represented.

Piaget and Inhelder described children’s thinking
about intensive quantities as one of the many
examples of the development of the scheme of
proportionality, which they saw as one of the

hallmarks of adolescent thinking and formal
operations. They devoted a book to the analysis of
children’s understanding of probabilities (Piaget and
Inhelder, 1975) and described in great detail the
steps that children take in order to understand the
quantification of probabilities. In the most
comprehensive of their studies, the children were
shown pairs of decks of cards with different numbers
of cards, some marked with a cross and others
unmarked. The children were asked to judge which
deck they would choose to draw from if they
wanted to have a better chance of drawing a

card marked with a cross.

Piaget and Inhelder observed that many of the
young children treated the number of marked and
unmarked cards as if they were independent:
sometimes they chose one deck because it had
more marked cards than the other and sometimes
they chose a deck because it had fewer blank cards
than the other. This approach can lead to correct
responses when either the number of marked cards
or the number of unmarked cards is the same in
both decks, and children aged about seven years
were able to make correct choices in such problems.
This is rather similar to the observations of children’s
successes and difficulties in comparing fractions
reported earlier on: they can reach the correct
answer when the denominator is constant or when
the numerator is constant, as this allow them to
focus on the other value.When they must think of
different denominators and numerators, the
questions become more difficult.

Around the age of nine, children started making
correspondences between marked and unmarked
cards within each deck and were able to identify
equivalences using this type of procedure. For
example, if asked to compare a deck with one
marked and two unmarked cards (|/3 probability)
with another deck with two marked and four
unmarked cards (2/6 probability), the children would
re-organise the second deck in two lots, setting one
marked card in correspondence with two unmarked,
and conclude that it did not make any difference
which deck they picked a card from. Piaget and
Inhelder saw these as empirical proportional
solutions, which were a step towards the abstraction
that characterises proportional reasoning.

Noelting (1980 a and b) replicated these results with
another intensive quantity, the taste of orange juice
made from a mixture of concentrate and water. In
broad terms, he described children’s thinking and its
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development in the same way as Piaget and Inhelder
had done. This is an important replication of Piaget's
results results considering that the content of the
problems differed marked across the studies,
probability and concentration of juice.

Nunes, Desli and Bell (2003) compared students’
ability to solve problems about extensive and
intensive quantities that involved the same type of
reasoning. Extensive quantities can be represented
by a single whole number (e.g. 5 kilos, 7 cows, 4
days) whereas intensive quantities are represented
by a ratio between two numbers. In spite of these
differences, it is possible to create problems which
are comparable in other aspects but differ with
respect to whether the quantities are extensive or
intensive. Intensive quantities problems always
involve three variables. For example, three variables
might be amount of orange concentrate, amount of
water, and the taste of the orange juice, which is
the intensive quantity. The amount of orange
concentrate is directly related to how orangey the
juice tastes whereas the amount of water is
inversely related to how orangey the juice tastes.

A comparable extensive quantities problem would
involve three extensive quantities, with the one
under scrutiny being inversely proportional to one
of the variables and directly proportional to the
other. For example, the number of days that the
food bought by a farmer lasts is directly
proportional to the amount of food purchased and
inversely proportional to the number of animals
she has to feed. In our study, we analysed students’
performance in comparison problems where they
had to consider either intensive quantities (e.g. how
orangey a juice would taste) or extensive quantities
(e.g. the number of days the farmer’s food supply
would last). Students performed significantly better
in the extensive quantities problems even though
both types of problem involved proportional
reasoning and the same number of variables. So,
although the difficulties shown by children across
the two types of problem are similar, their level of
success was higher with extensive than intensive
quantities. This indicates that students find it difficult
to form a concept where two variables must be
coordinated into a single construct? and therefore
it may be important for schools and teachers to
consider how they might promote this
development in the classroom.

We shall not review the lar ge literature on intensive
quantities here (see, for example, Erickson, 1979;
Kaput, 1985; Schwartz, 1988; Stavy, Strauss, Orpaz

and Carmi, 1982; Stavy and Tirosh, 2000), but there is
little doubt that students’ difficulties in understanding
intensive quantities are very similar to those that
they have when thinking about fractions which
represent quantities smaller than the unit. They treat
the values independently, they find it difficult to think
about inverse relations, and they might think of the
relations between the numbers as additive instead of
multiplicative.

There is presently little information to indicate
whether students can transfer what they have
learned about fractions in the context of
representing quantities smaller than the unit to the
representation and understanding of intensive
quantities. Brousseau, Brousseau, and Warfield (2004)
suggest both that teachers believe that students will
easily go from one use of fractions to another, and
that nonetheless the differences between these two
types of situation could actually result in interference
rather than in easy transfer of insights across
situations. In contrast, Lachance and Confrey (2002)
developed a curriculum for teaching third grade
students (estimated age about 8 years) about ratios
in a variety of problems, including intensive quantities
problems, and then taught the same students in
fourth grade (estimated age about 9 years) about
decimals. Their hypothesis is that students would
show positive transfer from learning about ratios to
learning about decimals. They claimed that their
students learned significantly more about decimals
than students who had not par ticipated in a similar
curriculum and whose performance in the same
questions had been described in other studies.

We believe that it is not possible at the moment to
form clear conclusions on whether knowledge of
fractions developed in one type of situation transfers
easily to the other, shows no transfer, or actually
interferes with learning about the other type of
situation. In order to settle this issue, we must

carry out the appropriate teaching studies and
comparisons.

However, there is good reason to conclude that the
use of rational numbers to represent intensive
quantities should be explicitly included in the
curriculum. This is an important concept in everyday
life and science, and causes difficulties for students.
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Learning to use mathematical
procedures to determine the
equivalence and order

of rational numbers

Piaget's (1952) research on children’s understanding
of natural numbers shows that young children, aged
about four; might be able to count two sets of
objects, establish that they have the same number,
and still not conclude that they are equivalent if the
sets are displayed in very different perceptual
arrangements. Conversely, they might establish the
equivalence between two sets by placing their
elements in correspondence and, after counting the
elements in one set, be unable to infer what the
number in the other set is (Piaget, 1952; Frydman
and Bryant, 1988). As we noted in Paper 2,
Understanding whole numbers, counting is a
procedure for creating equivalent sets and placing
sets in order but many young children who know
how to count do not use counting when ask ed to
compare or create equivalent sets (see, for example,
Michie, 1984, Cowan and Daniels, 1989; Cowan,
[987; Cowan, Foster and Al-Zubaidi, 1993 Saxe,
Guberman and Gearhart, 1987).

Procedures to establish the equivalence and order
of fractional quantities are much more complex than
counting, particularly when both the denominator
and the numerator differ. Students are taught
different procedures in different countries. The
procedure that seems most commonly taught in
England is to check the equivalence by analysing
the multiplicative relation between or within the
fractions. For example, when comparing 1/3 with
4/12, students are taught to find the factor that
connects the numerators (I and 4) and then apply
the same factor to the denominators. If the
numerator and the denominator of the second
fraction are the product of the numerator and the
denominator of the first fraction by the same
number, 4 in this case, they are equivalent. An
alternative approach is to find whether the
multiplicative relation between the numerator

and the denominator of each fraction is the same
(3 in this case): if it is, the fractions are equivalent.

If students learned this procedure and applied it
consistently, it should not matter whether the factor
is, for example, 2, 3 or 5, because these are well-
known multiplication associations. It should also not
matter whether the fraction with larger numerator
and denominator is the first or the second. However,
research shows that these variations affect students’

performance. Hart et al. (1985) presented students
with the task of identifying the missing values in
equivalent fractions. The children were presented
with the item below and asked which numbers
should replace the square and the triangle:

2/7=01/14=10/A

The rate of correct responses by || to 12 and |2-to
| 3-year-olds for the second question was about half
that for the first one: about 56% for the first question
and 24% for the second. The within-fraction method
cannot be easily applied in these cases b ut the factors
are 2 and 5, and these multiplication tables should be
quite easy for students at this age level.

We recently replicated these different levels of
difficulty in a study with 8- to |0-year-olds. The
easiest questions were those where the common
factor was 2; the rates of correct responses for

[/3 =2/ and 6/8 = 3/ were 52% and 45%,
respectively. The most difficult question was 4/12

= |/ this was only answered correctly by 16%

of the students. It is unlikely that the difficulty of
computation could explain the differences in
performance: even weak students in this age range
should be able to identify 3 as the factor connecting
4 and 12, if they had been taught the within-fr action
method, or 4 as the factor connecting | and 4, if
they were taught the between-fractions method.

A noteworthy aspect of our results was the low
correlations between the different items: although
most were significant (due to the large sample size;
N = 188), only two of the nine correlations were
above 4. This suggests that the students were not
able to use the procedure that they learned
consistently to solve five items that had the same
format and could be solved by the same procedure.

Our assessment, like the one by Hart et al. (1985),
also included an equivalence question set in the
context of a story:two boys have identical chocolate
bars, one cuts his into 8 equal par ts and eats 4 and
the other cuts his into 4 equal par ts and eats 2; the
children are asked to indicate whether the boys eat
the same amount of chocolate and, if not, who eats
more. This item is usually seen as assessing children’s
understanding of quantities as it is not expressed in
fraction terms. In our sample, no student wrote the
fractions 4/8 and 2/4 and compared them by means
of a procedure. We analysed the correlations
between this item and the five items described in
the previous paragraph. If the students used the
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same reasoning or the same procedure to solv e the
items, there should be a high cor relation between
them. This was not so: the highest of the correlations
between this item and each of the five previous ones
was 0.32, which is low. This result exemplifies the
separation between understanding fractional
quantities and knowledge of procedures in the
domain of rational numbers. This is much the same
as observed in the domain of natural numbers.

It is possible that understanding the relations between
quantities gives students an advantage in learning the
procedures to establish the equivalence of fractions,
but it may not guarantee that they will actually learn it
if teachers do connect their under standing with the
procedure. When we separated the students into two
groups, one that answered the question about the
boys and the chocolates correctly and the other that
did not, there was a highly significant difference
between the two groups in the rate of correct
responses in the procedural items: the group who
succeeded in the chocolate question showed 38%
correct responses to the procedural items whereas
the group who failed only answered 18% of the
procedural questions correctly.

A combination of longitudinal and inter vention
studies is required to clarify whether students who
understand fractional quantities benefit more when
taught how to represent and compare fractions.
There are presently no studies to clarify this matter.

Research that analyses students’ knowledge of
procedures used to find equivalent fractions and its
connection with conceptual knowledge of fractions
has shown that there can be discrepancies betw een
these two forms of knowledge. Rittle-Johnson, Siegler
and Alibali (2001) argued that procedural and
conceptual knowledge develop in tandem but
Kerslake (1986) and Byrnes and colleagues (Byrnes,
1992; Byrnes and Wasik, 1991), among others,
identified clear discrepancies between students’
conceptual and procedural knowledge of fractions.
Recently we (Hallett, Nunes and Bryant, 2007)
analysed a large data set (N = 318 children in Years
4 and 5) and observed different profiles of relative
performance in items that assess knowledge of
procedures to compare fractions and understanding
of fractional quantities. Some children show greater
success in procedural questions than would be
expected from their performance in conceptual
items, others show better performance in conceptual
items than expected from their performance in the
procedural items, and still others do not show any

discrepancy between the two.Thus, some students
seem to learn procedures for finding equivalent
fractions without an understanding of why the
procedures work, others base their approach to
fractions on their understanding of quantities without
mastering the relevant procedures, and yet others
seem able to co-ordinate the two forms of
knowledge. Our results show that the third group is
more successful not only in a test about fractions but
also in a test about intensive quantities, which did
not require the use of fractions in the representation
of the quantities.

Finally, we ask whether students are better at using
procedures to compare decimals than to compare
ordinary fractions. The students in some of the grade
levels studied by Resnick and colleagues (1989)
would have been taught how to add and subtract
decimals: they were in grades 5 and 6 (the estimated
age for U.S. students is about 10 and | | years) and
one of the early uses of decimals in the cur riculum
in the three participating countries is addition and
subtraction of decimals. When students are taught to
align the decimal numbers by placing the decimal
points one under the other before adding — for
example, when adding 0.8, 0.26 and 0.36 you need
to align the decimal points before carrying out the
addition —they may not realise that they are using a
procedure that automatically converts the values to
the same denominator: in this case, x/1000. It is
possible that students may use this procedure of
aligning the decimal point without fully understanding
that this is a conversion to the same denominator
and thus that it should help them to compare the
value of the fractions: after learning how to add and
subtract with decimals, they may still think that 0.8 is
less than 0.36 but probably would not have said that
0.80 is less than 0.36.

To conclude, we find in the domain of rational
numbers a similar separation between
understanding quantities and learning to operate
with representations when judging the equivalence
and order of magnitude of quantities. Students are
taught procedures to test whether fractions are
equivalent but their knowledge of these procedures
is limited, and they do not apply it across items
consistently. Similarly, students who solve
equivalence problems in context are not necessarily
experts in solving problems when the fractions are
presented without context.

The significance of children’s difficulties in
understanding equivalence of fractions cannot be
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overstressed: in the domain of rational numbers,
students cannot learn to add and subtract with
understanding if they do not realise that fractions
must be equivalent in order to be added. Adding 1/3
and 2/5 without transforming one of these into an
equivalent fraction with the same denominator as
the other is like adding bananas and tins of soup: it
makes no sense. Above and beyond the fact that
one cannot be said to understand numbers without
understanding their equivalence and order, in the
domain of rational numbers equivalence is a core
concept for computing addition and subtraction.
Kerslake (1986) has shown that students learn to
implement the procedures for adding and
subtracting fractions without having a glimpse at
why they convert the fractions into common
denominators first. This separation between the
meaning of fractions and the procedures cannot
bode well for the future of these learners.

Conclusions and educational
implications

Rational numbers are essential for the
representation of quantities that cannot be
represented by a single natural number. For this
reason, they are needed in everyday life as well as
science, and should be part of the curriculum in the
age range 5 to 16.

Children learn mathematical concepts by applying
schemes of action to problem solving and reflecting
about them.Two types of action schemes are
available in division situations: partitioning, which
involves dividing a whole into equal parts, and
correspondence situations, where two quantities
(or measures) are involved, a quantity to be shared
and a number of recipients of the shares.

Children as young as five or six years in age are
quite good at establishing correspondences to
produce equal shares, whereas they experience
much difficulty in partitioning continuous quantities.
Reflecting about these schemes and drawing insights
from them places children in different paths for
understanding rational number:When they use the
correspondence scheme, they can achieve some
insight into the equivalence of fractions by thinking
that, if there are twice as many things to be shared
and twice as many recipients, then each one’s share
is the same. This involves thinking about a direct
relation between the quantities. The partitioning
scheme leads to understanding equivalence in a

different way: if a whole is cut into twice as many
parts, the size of each part will be halved. This
involves thinking about an inverse relation between
the quantities in the problem. Research consistently
shows that children understand direct relations
better than inverse relations.

There are no systematic and controlled
comparisons to allow for unambiguous conclusions
about the outcomes of instruction based on
correspondences or partitioning. The available
evidence suggests that testing this hypothesis
appropriately could result in more successful
teaching and learning of rational numbers.

Children’s understanding of quantities is often
ahead of their knowledge of fractional
representations when they solve problems using
the correspondence scheme. Schools could make
use of children’s informal knowledge of fractional
quantities and work with problems about
situations, without requiring them to use formal
representations, to help them consolidate this
reasoning and prepare them for formalization.

Research has identified the arguments that children
use when comparing fractions and trying to see
whether they are equivalent or to order them by
magnitude. It would be important to investigate
next whether increasing teachers’ awareness of
children’s own arguments would help teachers
guide children’s learning more effectively.

In some countries, greater attention is given to
decimal representation than to ordinary fractions
in primary school whereas in others ordinary
fractions continue to play an important role. The
argument that decimals are easier to understand
than ordinary fractions does not find support in
surveys of students’ performance: students find it
difficult to make judgements of equivalence and
order both with decimals and with ordinary
fractions.

Some researchers (e.g. Nunes, 1997;Tall, 1992;
Vergnaud, 1997) argue that different
representations shed light onto the same concepts
from different perspectives. This would suggest
that a way to strengthen students’ learning of
rational numbers is to help them connect both
representations. Moss and Case (1999) analysed
this possibility in the context of a curriculum based
on measurements, where ordinary fractions and
percentages were used to represent the same
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information. Their results are encouraging, but the
study does not include the appropriate controls
that would allow for establishing firmer conclusions.

Students can learn procedures for comparing,
adding and subtracting fractions without connecting
these procedures with their understanding of
equivalence and order of fractional quantities,
independently of whether they are taught with
ordinary or decimal representation. This is not a
desired outcome of instruction, but seems to be a
quite common one. Research that focuses on the
use of children’s informal knowledge suggests that it
is possible to help students make connections (e.g.
Mack, 1990), but the evidence is limited. There is
now considerably more information regarding
children’s informal strategies to allow for new
teaching programmes to be designed and assessed.

Finally, this review opens the way for a fresh
research agenda in the teaching and learning of
fractions. The source for the new research
questions is the finding that children achieve insights
into relations between fractional quantities before
knowing how to represent them. It is possible to
envisage a research agenda that would not focus
on children's misconceptions about fractions, but
on children's possibilities of success when teaching
starts from thinking about quantities rather than
from learning fractional representations.

Endnotes

| Rational numbers can also be used to represent relations that
cannot be described by a single whole number but the
representation of relations will not be discussed here .

2 The authors report a successful programme of instruction
where they taught the students to estab lish connections
between their understanding of ratios and decimals. The
students had received two years of instruction on ratios. A full
discussion of this very interesting work is not possible here as
the information provided in the paper is insufficient.

3 There are different hypotheses regarding what types of
subconstructs or meanings for rational numbers should be
distinguished (see, for example, Behr, Harel, Post and Lesh,
1992; Kieren, 1988) and how many distinctions are justifiable.
Mathematicians and psychologists may well use different
criteria and consequently reach different conclusions.
Mathematicians might be looking for conceptual issues in
mathematics and psychologists for distinctions that have an
impact on children’s learning (i.e. show different levels of
difficulty or no transfer of learning across situations). We have
decided not to pursue this in detail but will consider this
question in the final section of the paper.

4 Steffe and his colleagues have used a different type of problem,
where the size of the part is fixed and the children have to
identify how many times it fits into the whole.

5 This classification should not be confused with the classif ication
of division problems in the mathematics education literature.
Fischbein, Deri, Nello and Marino (1985) define partitive
division (which they also term sharing division) as a model for
situations in which ‘an object or collection of objects is divided
into a number of equal fragments or sub-collections. The
dividend must be larger than the divisor;the divisor (operator)
must be a whole number; the quotient must be smaller than
the dividend (operand)... In quotative division or measurement
division, one seeks to determine how many times a given
quantity is contained in a lar ger quantity. In this case, the only
constraint is that the dividend must be larger than the divisor. If
the quotient is a whole number; the model can be seen as
repeated subtraction.” (Fischbein, Deri, Nello and Marino, 1985,
p.7).In both types of problems discussed by Fishbein et al,, the
scheme used in division is the same, partitioning, and the
situations are of the same type, part-whole.

6 Empson, Junk, Dominguez and Turner (2005) have stressed that
‘the depiction of equal shares of, for example, sevenths in a
part-whole representation is not a necessary step to
understanding the fraction |/7 (for contrasting views, see
Charles and Nason, 2000; Lamon, 1996 Pothier and Sawada,
1983). What is necessary, however, is understanding that |/7 is
the amount one gets when | is divided into 7 same-siz ed parts!

7 Not all intensive quantities are represented by fractions;
speed, for example, is represented by a ratio, such as in 70
miles per hour.

8 Vergnaud (1983) proposed this hypothesis in his comparison
between isomorphism of measures and product of measures
problems. This issue is discussed in greater detail in another
paper 4 of this review.
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Summary of paper 4:
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and their graphical
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Headlines

* Children have greater difficulty in understanding
relations than in understanding quantities. This is
true in the context of both additive and
multiplicative reasoning problems.

Primary and secondary school students often
apply additive procedures to solve multiplicative
reasoning problems and also apply multiplicative
procedures to solve additive reasoning problems.

Explicit instruction to help students become aware
of relations in the context of additive reasoning
problems can lead to significant improvement in
children’s performance.

The use of diagrams, tables and graphs to
represent relations facilitates children’s thinking
about and discussing the nature of the relations
between quantities in problems.

Excellent curriculum development work has been
carried out to design instruction to help students
develop awareness of their implicit knowledge of
multiplicative relations. This programme has not
been systematically assessed so far.

An alternative view is that students’ implicit
knowledge should not be the starting point for
students to learn about proportional relations;
teaching should focus on formalisations rather
than informal knowledge and seek to connect
mathematical formalisations with applied situations
only later.

* There is no research comparing the results of
these diametrically opposed ideas.

Children need to learn to co-ordinate their
knowledge of numbers with their understanding
of quantities. This is critical for mathematics
learning in primary school so that they can use
their understanding of quantities to support their
knowledge of numbers and vice versa. But this is
not all that students need to learn to be able to
use mathematics sensibly. Using mathematics also
involves thinking about relations between
quantities. Research shows quite unambiguously
that it is more difficult for children to solve
problems that involve relations than to solve
problems that involve only quantities.

A simple problem about quantities is: Paul had 5
marbles. He played two games with his friend. In the
first game, he won 6 marbles. In the second game he
lost 4 marbles. How many marbles does he have
now!? The same numerical information can be used
differently, making the problem into one which is all
about relations: Paul played three games of marbles.
In the first game, he won 5 marbles. In the second
game, he won 6. In the third game, he lost 4. Did he
end up winning or losing marbles? How many?

The arithmetic that children need to use to solve is
the same in both problems:add 5 and 6 and subtract
4. But the second problem is significantly more difficutt
for children because it is all about relations. They don't
know how many marbles Paul actually had at any time,
they only know that he had 5 more after the first
game than before, and 6 more after the second game ,
and 4 fewer after the third game. Some children say
that this problem cannot be solved because we don't
know how many marbles Paul had to begin with: they
recognise that it is possible to operate on guantities,
but do not recognise that it is possib le to operate on
relations. Why should this be so?
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One possible explanation is the way in which we
express relations. When we speak about quantities, we
say that Paul won marbles or lost marbles; these are
two opposite statements. VWhen we speak about
relations, statements that use opposite words may
mean the same thing: after winning 5 marbles, we can
say that Paul now has 5 more marbles or that before
he had 5 fewer: In order to grasp the concept of
relations fully, students must be able to view these
two different statements as meaning the same thing.
Research shows that some students are able to treat
these different statements as having the same meaning
but others find this difficuft. Students who realise that
the two statements mean the same thing are more
successful in solving problems about relations.

A second plausible explanation is that many children
do not distinguish clearly between quantities and
relations when they use numbers.When they are
given a problem about relations, they interpret the
relations as quantities. If they are given a problem like
“Tom, Fred, and Rhoda put their apples into a bag.
Tom and Fred together had |7 more apples than
Rhoda. Tom had 7 apples. Rhoda had 5 apples. How
many apples did Fred have?, they write down that
Tom and Fred had |7 apples together (instead of

|7 more than Rhoda). When they make this
interpretation error, the problem seems very easy:

if Tom had 7, Fred had 10. The information about
Rhoda seems irrelevant. But of course this is not the
solution. It is possible to teach children to represent
quantities and relations differently, and thus to
distinguish the two: for example, they can be taught
to write ‘plus 7' to show that this is not a quantity
but a relation. Children aged seven to nine years can
adopt this notation and at the same time improve
their ability to solve relational problems. However,
even after this teaching, they still seem to be tempted
1o interpret relations as quantities. So, learning to
represent relations helps children take a step towards
distinguishing relations and quantities but they need
plenty of opportunity to think about this distinction.

A third difficulty is that relational thinking involves
building a model of a problem situation in order to
treat the relations in the problem mathematically. In
primary school, children have little opportunity to
explore situations in their mathematics lessons
before solving a problem. If they make a mistake

in solving a problem when their computation was
correct, the error is explained as ‘choice of the
wrong operation’, but the wrong choice of
operation is a symptom, not an explanation for
what went wrong during problem solving.

Models of situations are ways of thinking about them,
and more than one way may be appropriate. It all
depends on the question that we want to answer.
Suppose there are |2 girls and 18 boys in a class and
they are assigned to single-sex groups during French
lessons. If there were not enough books for all of
them and the Head Teacher decided to give 4 books
to the girls and 6 books to the boys, would this be
fair? If you give one book to each girl, there are 8
girls left without books; if you give one book to each
boy, there are 12 boys left without books. This seems
unfair. If you ask all the children to share, 3 girls will
share one book and 3 boys will share one book. This
seems fair. The first model is additive: the questions it
answers are ‘How many more girls than books?" and
‘How many more boys than books? The second
model is multiplicative: it examines the ratio between
girls and books and the ratio between boys and
books. If the Head Teacher is planning to buy more
books, she needs an additive model. If the Head
Teacher is not planning to b uy more books, the

ratio is more informative. A model of a situation is
constructed by the problem solver for a purpose;
additive and multiplicative relations answer different
questions about the same situation.

Children, but also adults, often make mistakes in the
choice of operation when solving problems: they
sometimes use additive reasoning when they should
have used multiplicative reasoning but they can also
make the converse mistake, and use multtiplicative
reasoning when additive reasoning would be
appropriate. So, we need to examine research that
explains how children can become more successful in
choosing the appropriate model to answer a question.

Experts often use diagrams, tables and graphs to help
them analyse situations. These resources could support
children’s thinking about situations. But children seem
1o have difficulty in using these resources and have to
learn how to use them. They have to become literate
in the use of these mathematical tools in order to
interpret them correctly. A question that has not been
addressed in the literature is whether children can
learn about using these tools and about anal ysing
situations mathematically at the same time. Research
about interpreting tables and graphs has been carried
out either to assess students' previous knowledge (or
misconceptions) before they are taught or to test
ways of making them literate in the use of these tools.

A remarkable exception is found in the work of
researchers in the Freudenthal Institute. One of their
explicit aims for instruction in mathematics is to help
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students mathematise situations: i.e. to help them
build a model of a situation and later tr ansform it into
a model for other situations through their awareness
of the relations in the model. They argue that we
need to use diagrams, tables and graphs during the
process of mathematising situations. These are built by
students (with teacher guidance) as they explore the
situations rather than presented to the students ready
made for interpretation. Students are encouraged to
use their implicit knowledge of relations; by building
these representations, they can become aware of
which models they are using. The process of solution
is thus not to choose an operation and calculate but
1o analyse the relations in the problem and work
towards solution. This process allows the students to
become aware of the relations that are conserved
throughout the different steps.

Streefland worked out in detail how this process
would work if students were asked to solve Hart's
famous onion soup recipe problem. In this problem,
students are presented with a recipe of onion soup
for 8 people and asked how much of each ingredient
they would need if they were preparing the soup for
6 people. Many students use their everyday
knowledge of relations in searching for a solution: they
think that you need half of the original recipe (which
would serve 4) plus half of this (which w ould serve 2
people) in order to have a recipe for 6 people. This
perfectly sound reasoning is actually a mixture of
additive and muttiplicative thinking: half of a recipe for
8 serves 4 people (multiplicative reasoning) and half of
the latter serves 2 (multiplicative reasoning); 6 people
is 2 more than 4 (additive); a recipe for 6 is the same
as the recipe for 4 plus the recipe for 2 (additive).

Streefland and his colleagues suggested that
diagrams and tables provide the sort of
representation that helps students think about the
relations in the problem. It is illustrated here by the
ratio table showing how much water should be used
in the soup.The table can be used to help students
become aware that the first two steps in their
reasoning are multiplicative: they divide the number

of persons in half and also the amount of water

in half. Additive reasoning does not work: the
transformation from 8 to 4 people would mean
subtracting 4 whereas the parallel transformation

in the amount of water would be to subtract |. So
the relation is not the same. If they can discover
that multiplicative reasoning preserves the relation,
whereas additive reasoning does not, they could be
encouraged to test whether there is a multiplicative
relation that they can use to find the recipe for 6;
they could come up with X3, trebling the recipe for
2. Streefland's ratio table can be used as a model for
testing if other situations fit this sort of multiplicative
reasoning. The table can be expanded to calculate
the amounts of the other ingredients.

An alternative approach in curriculum development is
1o start from formalisations and not to base teaching
on students’ informal knowledge. The aim of this
approach is to establish links between different formal
representations of the same relations. A programme
proposed by Adjiage and Pluvinage starts with lines
divided into segments: students learn how to
represent segments with the same fraction even
though the lengths of the lines differ (e.g. 3/5 of lines
of different lengths). Next they move to using these
formal representations in other types of prob lems: for
example, mixtures of chocolate syrup and milk where
the number of cups of each ingredient differs but the
ratio of chocolate to total number of cups is the
same. Finally, students are asked to write abstractions
that they learned in these situations and formulate
rules for solving the problems that they solved during
the lessons. An example of generalisation expected is
‘seven divided by four is equal to seven fourths' or 7
+ 4 =7/4. An example of a rule used in problem
solving would be ‘Given an enlargement in which a 4
c¢m length becomes a 7 cm length, then any length to
be enlarged has to be multiplied by 7/4.

There is no systematic research that compares these
two very different approaches. Such research would
provide valuable insight into how children come to
understand relations.

+2 +£ X3
i T i - ane N

persons | 8 | 4 | 2 | b
pints of water 2 | 1 | Ve | 1Y,
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Recommendations

Research about mathematical
learning

Recommendations for teaching
and research

Numbers are used to represent quantities
and relations. Primary school children
often interpret statements about relations
as if they were about quantities and thus
make mistakes in solving problems.

Teaching Teachers should be aware of children’s difficulties
in distinguishing between quantities and relations during
problem solving.

Many problem situations involve both
additive and multiplicative relations; which
one is used to solve a problem depends
on the question being asked. Both children
and adults can make mistakes in selecting
additive or multiplicative reasoning to
answer a question.

Teaching The primary school curriculum should include the
study of relations in situations in a more explicit way.
Research Evidence from experimental studies is needed on
which approaches to making students aware of relations in
problem situations improve problem solving.

Experts use diagrams, tables and graphs to
explore the relations in a problem
situation before solving a problem.

Teaching The use of tables and graphs in the classroom may
have been hampered by the assumption that students must first
be literate in interpreting these representations before they can
be used as tools. Teachers should consider using these tools as
part of the learning process during problem solving.

Research Systematic research on how students use
diagrams, tables and graphs to represent relations during
problem solving and how this impacts their later learning is
urgently needed. Experimental and longitudinal methods
should be combined.

Some researchers propose that informal
knowledge interferes with students’
learning. They propose that teaching
should start from formalisations which are
only later applied to problem situations.

Teaching Teachers who start from formalisations should try
to promote links across different types of mathematical
representations through teaching.

Research There is a need for experimental and longitudinal
studies designed to investigate the progress that students
make when teaching starts from formalisations rather than
from students’ informal knowledge and the long-term
consequences of this approach to teaching students

about relations.
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Understanding relations
and their graphical
representation

Relations and their importance
in mathematics

In our analysis of how children come to understand
natural and rational numbers, we examined the
connections that children need to make between
quantities and numbers in order to understand
what numbers mean. Numbers are certainly used
to represent quantities, but they are also used to
represent relations. The focus of this section is on
the use of numbers to represent relations. Relations
do not have to be quantified: we can simply say, for
example, that two quantities are equivalent or
different. This is a qualitative statement about the
relation between two quantities. But relations can
be quantified also: if there are 20 children in the
class and 17 books, we can say that there are 3
more children than books. The number 3 quantifies
the additive relation between |7 and 20 and so we
can say that 3 quantifies a relation.

When we use numbers to represent quantities, the

numbers are the result of a measurement oper ation.

Measures usually rely on culturally developed
systems of representation. In order to measure
discrete quantities, we count their units, and in order
to measure continuous quantities, we use systems
that have been set up to allow us to represent them
by a number of conventional units. Measures are
usually described by a number followed by a noun,
which indicates the unit of quantity the n umber
refers to: 5 children, 3 centimetres, 200 grams. And
we can't replace the noun with another noun
without changing what we are talking about. When
we quantify a relation, the number does not refer to
a quantity. We can say ‘3 more children than books'
or ‘3 books fewer than children’: it makes no
difference which noun comes after the number

because the number refers to the relation between
the two quantities, how many more or fewer.

When we use qualitative statements about the
relations between two quantities, the quantities may
or may not have been expressed numerically. For
example, we can look at the children and the books
in the class and know that there are more children
without counting them, especially if the difference is
quite large. So we can say that there are more
children than books without knowing how many
children or how many books. But in order to quantify
a relation between two quantities, the quantities
need to be measurable, even if, in the case of
differences, we can evaluate the relationship without
actually measuring them. The ability to express the
relationship quantitatively, without knowing the actual
measures, is one of the roots of algebra (see Paper
5). For this reason, we will often use the term
‘measures’ in this section, instead of ‘quantities’, to
refer to quantities that are represented n umerically.

It is perfectly possible that when children first appear
to succeed in quantifying relations, they are actually
still thinking about quantities: when they say ‘3
children more than books’, they might be thinking of
the poor little things who won't have a book when
the teacher shares the books out, not of the relation
between the number of books and the number of
children. This hypothesis is consistent with results of
studies by Hudson (1983), described in Paper 2:
young children are quite able to answer the
question ‘how many birds won't get worms' but they
can't tell ‘how many more birds than worms'.We, as
adults, may think that they understand something
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about relations when they answer the first question,
but they may be talking about quantities, i.e. the
number of birds that won't get worms.

There is no doubt to us that children must grasp
how numbers and quantities are connected in
order to understand what numbers mean. But
mathematics is not only about representing
quantities with numbers. A major use of
mathematics is to manipulate numbers that
represent relations and arrive at conclusions
without having to operate directly on the quantities.
Attributing a number to a quantity is measuring;
quantifying relations and manipulating them is
quantitative reasoning. To quote Thompson (1993):
‘Quantitative reasoning is the analysis of a situation
into a quantitative structure — a network of
quantities and quantitative relationships... A
prominent characteristic of reasoning quantitatively
is that numbers and numeric relationships are of
secondary importance, and do not enter into the
primary analysis of a situation. What is important is
relationships among quantities’ (p. | 65). Elsewhere,
Thompson (1994) emphasised that ‘a quantitative
operation is nonnumerical; it has to do with the
comprehension [italics in the original] of a situation.
Numerical operations (which we have termed
measurement operations) are used to evaluate a
quantity’ (p. 187-188).

In order to reach the right conclusions in
quantitative reasoning, one must use an appropriate
representation of the relations between the
quantities, and the representation depends on what
we want to know about the relation between the
quantities. Suppose you want to know whether you
are paying more for your favourite chocolates at
one shop than another, but the boxes of chocolates
in the two shops are of different sizes. Of course the
bigger box costs more money, but are you paying
more for each chocolate? You don't know unless you
quantify the relation between price and chocolates.
This relation, price per chocolate, is not quantified in
the same way as the relation ‘more children than
books. When you want to know how many children
won't have books, you subtract the number of
books from the number of children (or vice versa).
When you want to know the price per chocolate,
you shouldn't subtract the number of chocolates
from the price (or vice versa); you should divide the
price by the number of chocolates. Quantifying
relations depends on the nature of the question y ou
are asking about the quantities. If you are asking how
many more, you use subtraction; if you are asking a

rate question, such as price per chocolate, you use
division. So quantifying relations can be done by
additive or multiplicative reasoning. Additive
reasoning tells us about the difference between
quantities; multiplicative reasoning tells us about the
ratio between quantities. The focus of this section is
on multiplicative reasoning but a brief discussion of
additive relations will be included at the outset to
illustrate the difficulties that children face when they
need to quantify and operate on relations. However,
before we turn to the issue of quantification of
relations, we want to say why we use the terms
additive and multiplicative reasoning, instead of
speaking about the four arithmetic operations.

Mathematics educators (e.g. Behr, Harel, Post and
Lesh, 1994; Steffe, 1994; Vergnaud, 1983) include
under the term ‘additive reasoning’ those problems
that are solved by addition and subtraction and
under the term ‘multiplicative reasoning’ those that
are solved by multiplication and division. This way of
thinking, focusing on the problem structure rather
than on the arithmetic operations used to solve
problems, has become dominant in mathematics
education research in the last three decades or so.
It is based on some assumptions about ho w children
learn mathematics, three of which are made explicit
here. First, it is assumed that in order to understand
addition and subtraction properly, children must also
understand the inverse relation between them;
similarly, in order to understand multiplication and
division, children must understand that they also are
the inverse of each other. Thus a focus on specific
and separate operations, which was more typical of
mathematics education thinking in the past, is
justified only when the focus of teaching is on
computation skills. Second, it is assumed that the
links between addition and subtraction, on one
hand, and multiplication and division, on the other,
are conceptual: they relate to the connections
between quantities within each of these domains of
reasoning. The connections between addition and
multiplication and those between subtraction and
division are procedural: you can multiply by carrying
out repeated additions and divide by using repeated
subtractions. Finally, it is assumed that, in spite of the
procedural links between addition and multiplication,
these two forms of reasoning are distinct enough to
be considered as separate conceptual domains. So
we will use the terms additive and multiplicative
reasoning and relations rather than refer to the
arithmetic operations.
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Quantifying additive relations

The literature about additive reasoning consistently
shows that compare problems, which involve
relations between quantities, are more difficult

than those that involve combining sets or

transformations. This literature was reviewed in

Paper |. Our aim in taking up this theme again here

is to show that there are three sources of difficulties

for students in quantifying additive relations:

* to interpret relational statements as such, rather
than to interpret them as statements about
quantities

* to transform relational statements into equivalent
statements which help them think about the
problem in a different way

* to combine two relational statements into a third
relational statement without falling prey to the
temptation of treating the result as a statement
about a quantity.

This discussion in the context of additive reasoning
illustrates the role of relations in quantitative
reasoning. The review is brief and selective, because
the main focus of this section is on m ultiplicative
reasoning.

Interpreting relational statements as
quantitative statements

Compare problems involve two quantities and a
relation between them. Their general format is:

A had x; B has y; the relation between A and B is z.
This allows for creating a number of different
compare problems. For example, the simplest
compare problems are of the form: Paul has 8
marbles; Alex had 5 marbles; how many more does
Paul have than Alex? or How many fewer does Alex
have than Paul? In these problems, the quantities are
known and the relation is the unknown.

Carpenter, Hiebert and Moser (1981) observed that
53% of the first grade (estimated age about 6 years)
children that they assessed in compare prob lems
answered the question ‘how many more does A
have than B’ by saying the number that A has. This

is the most common mistake reported in the
literature: the relational question is answered as a
quantity mentioned in the problem. The explanation
for this error cannot be children’s lack of knowledge
of addition and subtraction, because about 85% of
the same children used correct addition and
subtraction strategies when solving problems that
involved joining quantities or a transformation of an
initial quantity. Carpenter and Moser report that

many of the children did not seem to know what to
do when asked to solve a compare problem.

Transforming relational statements into
equivalent relational statements

Compare problems can also state how many items
A has, then the value of the relation betw een A's
and B's quantities, and then ask how much B has.
Two problems used by Vershaffel (1994) will be
used to illustrate this problem type. In the problem
‘Chris has 32 books. Ralph has |3 more books than
Chris. How many books does Ralph have?, the
relation is stated as ‘13 more books” and the answer
is obtained by addition; this problem type is referred
to by Lewis and Mayer (1987) as involving
consistent language. In the problem ‘Pete has 29
nuts. Pete has |4 more nuts than Rita. How many
nuts does Rita have?', the relation is stated as ‘14
more nuts' but the answer is obtained by
subtraction; this problem types is referred to as
involving inconsistent language . Verschaffel found that
Belgian students in sixth grade (aged about 12) gave
82% correct responses to problems with consistent
language and 71% correct responses to problems
with inconsistent language. The operation itself,
whether it was addition or subtraction, did not
affect the rate of correct responses.

Lewis and Mayer (1987) have argued that the rate
of correct responses to relational statements with
consistent or inconsistent language varies because
there is a higher cognitive load in processing
inconsistent sentences. This higher cognitive load is
due to the fact that the subject of the sentence in
the question ‘how many nuts does Rita have?'is the
object of the relational sentence ‘Pete has |4 more
nuts than Rita'. It takes more effort to process these
two sentences than other two, in which the subject
of the question is also the subject of the relational
statement. They provided some evidence for this
hypothesis, later confirmed by Verschaffel (1994),
who also asked the students in his study to retell
the problem after the students had already
answered the question.

In the problems where the language was consistent,
almost all the students who gave the right answer
simply repeated what the researcher had said: there
was no need to rephrase the problem. In the
problems where the language was inconsistent,
about half of the students (54%) who gave correct
answers retold the problem by rephrasing it
appropriately. Instead of saying that ‘Pete has 14 nuts
more than Rita’, they said that ‘Rita has 14 nuts less
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than Pete’, and thus made Rita into the subject of
both sentences. Verschaffel interviewed some of the
students who had used this correct rephrasing by
showing them the written problem that he had read
and asking them whether they had said the same
thing. Some said that they changed the phrase
intentionally because it was easier to think about the
question in this way; they stressed that the meaning
of the two sentences was the same. Other students
became confused, as if they had said something
wrong, and were no longer certain of their answers.
In conclusion, there is evidence that at least some
students do reinterpret the sentences as
hypothesised by Lewis and Mayer; some do this
explicitly and others implicitly. However, almost as
many students reached correct answers without
seeming to rephrase the problem, and may not
experience the extra cognitive load predicted.

It is likely that, under many conditions, we rephrase
relational statements when solving problems. So two
significant findings arise from these studies:

* rephrasing relational statements seems to be a
strategy used by some people, which may place
extra cognitive demands on the problem solver
but nevertheless helps in the search for a solution

* rephrasing may be done intentionally and explicitly,
as a strategy, but may also be carried out implicitly
and apparently unintentionally, producing
uncertainty in the problem solvers' minds if they
are asked about the rephrasing.

Combining relational statements into a
third relational statement

Compare problems typically involve two quantities
and a relation between them but it is possible to
have problems that require children to work with
more quantities and relations than these simpler
problems. In these more complex problems, it may
be necessary to combine two relational statements
to identify a third one.

Thompson (1993) analysed students’ reasoning in
complex comparison problems which involved at
least three quantities and three relations. His aim
was to see how children interpreted complex
relational problems and how their reasoning
changed as they tackled more problems of the same
type. To exemplify his problems, we quote the first
one: ‘Tom, Fred, and Rhoda combined their apples
for a fruit stand. Fred and Rhoda together had 97
more apples than Tom. Rhoda had |7 apples. Tom

had 25 apples. How many apples did Fred have?’
(p. 167).This problem includes three quantities
(Tom'’s, Fred's and Rhoda’s apples) and three
relations (how many more Fred and Rhoda have
than Tom; how many fewer Rhoda has than Tom; a
combination of these two relations). He asked six
children who had achieved different scores in a pre-
test (three with higher and three with middle lev el
scores) sampled from two grade levels, second
(aged about seven) and fifth (aged about nine) to
discuss six problems presented over four different
days. The children were asked to think about the
problems, represent them and discuss them.

On the first day the children went directly to trying
out calculations and represented the relations as
quantities: the statement ‘97 more apples than Tom’
was interpreted as ‘97 apples’. They did not know
how to represent ‘97 more’. This leads to the
conclusion that Fred has 80 apples because Rhoda
has 17. On the second day, working with problems
about marbles won or lost during the games, the
researcher taught the children to use
representations by writing, for example, ‘plus 12’

to indicate that someone had won |2 marbles and
‘minus | to indicate that someone had lost |
marble. The children were able to work with these
representations with the researcher’s support, but
when they combined two statements, for example
minus 8 and plus 14, they thought that the answer
was 6 marbles (a quantity), instead of plus six

(a relation). So at first they represented relational
statements as statements about quantities,
apparently because they did not know how to
represent relations. However, after having learned
how to represent relational statements, they
continued to have difficulties in thinking only
relationally, and unwittingly converted the result of
operations on relations into statements about
quantities.Yet, when asked whether it would always
be true that someone who had won 2 marbles in a
game would have 2 marbles, the children recognised
that this would not necessarily be true. They did
understand that relations and quantities are different
but they interpreted the result of combining two
relations as a quantity.

Thompson describes this tension between
interpreting numbers as quantities or relations as the
major difficulty that the students faced throughout
his study. When they seemed to understand
‘difference’ as a relation between two quantities
arrived at by subtraction, they found it difficult to
interpret the idea of ‘difference’ as a relation
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between two relations. The children could correctly
answer, when asked, that if someone has 2 marbles
more than another person, this does not mean that
he has two marbles; however, after combining two
relations (minus 8 and plus 14), instead of saying
that this person ended up with plus 6 marbles, they
said that he now had 6 marbles.

Summary

I At first, children have difficulties in using additive
reasoning to quantify relations; when asked about
a relation, they answer about a quantity.

2 Once they seem to conquer this, they continue to
find it difficult to combine relations and stay within
relational reasoning: the combination of two
relations is often converted into a statement
about a quantity.

3 So children’s difficulties with relations are not
confined to multiplicative reasoning: they are also
observed in the domain of additive reasoning.

Quantifying multiplicative relations

Research on how children quantify multiplicative
relations has a long tradition. Piaget and his
colleagues (Inhelder and Piaget, 1958; Piaget and
Inhelder, 1975) originally assumed that children first
think of quantifying relations additively and can only
think of relations multiplicatively at a later age. This
hypothesis led to the prediction of an ‘additive
phase’in children’s solution to multiplicative
reasoning problems, before they would be able to
conceive of two variables as linked by a
multiplicative relation. This hypothesis led to much
research on the development of proportional
reasoning, which largely supported the claim that
many younger students offer additive solutions to
proportions problems (e.g. Hart, 1981 b; 1984;
Karplus and Peterson, 1970; Karplus, Pulos and Stage,
1983; Noelting, 1980 a and b).These results are not
disputed but their interpretation will be examined in
the next sections of this paper because cur rent
studies suggest an alternative interpretation.

Work carried out mostly by Lieven Verschaffel and
his colleagues (e.g. De Bock, Verschaffel et al,, 2002;
2003) shows that students also make the converse
mistake, and multiply when they should be adding in
order to solve some relational problems. This type of

error is not confined to young students: pre-service
elementary school teachers in the United States
(Cramer, Post and Currier, 1993) made the same
sort of mistake when asked to solve the problem:
Sue and Julie were running equally fast around a track.
Sue started first. When she had run 9 laps, Julie had
run 3 laps. When Julie completed |5 laps, how many
laps had Sue run? The relation between Sue's and
Julie's numbers of laps should be quantified
additively: because they were running at the same
speed, this difference would (in principle) be
constant. However, 32 of 33 pre-service teachers
answered 45 (15 x 3), apparently using the ratio
between the first two measures (9 and 3 laps) to
calculate Sue's laps. This latter type of mistake would
not be predicted by Piaget’s theory.

The hypothesis that we will pursue in this chapter,
following authors such as Thompson 1994) and
Vergnaud (1983), is that additive and multiplicative
reasoning have different origins. Additive reasoning
stems from the actions of joining, separating, and
placing sets in one-to-one correspondence.
Multiplicative reasoning stems from the action of
putting two variables in one-to-many
correspondence (one-to-one is just a par ticular
case), an action that keeps the ratio between the
variables constant. Thompson (1994) made this
point forcefully in his discussion of quantitative
operations: ‘Quantitative operations originate in
actions: The quantitative operation of combining
two quantities additively originates in the actions of
putting together to make a whole and separating a
whole to make parts; the quantitative operation of
comparing two quantities additively originates in the
action of matching two quantities with the goal of
determining excess or deficits; the quantitative
operation of comparing two quantities
multiplicatively originates in matching and subdividing
with the goal of sharing. As one interiorizes actions,
making mental operations, these operations in the
making imbue one with the ability to comprehend
situations representationally and enable one to draw
inferences about numerical relationships that are not
present in the situation itself " (pp. 185—186).

We suggest that, if students solve additive and
multiplicative reasoning problems successfully but
they are guided by implicit models, they will find it
difficult to distinguish between the two models.
According to Fischbein (1987), implicit models
and informal reasoning provide a starting point
for learning, but one of the aims of mathematics
teaching in primary school is to help students
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formalize their informal knowledge (Treffers, 1987).
In this process, the models will change and become
more explicitly connected to the systems of
representations used in mathematics.

In this section, we analyse how students establish
and quantify relations between quantities in
multiplicative reasoning problems. We first discuss
the nature of multiplicative reasoning and present
research results that describe how children’s
informal knowledge of multiplicative relations
develops. In the subsequent section, we discuss the
representation of multiplicative relations in tables
and graphs. Next we analyse how children establish
other relations between measures, besides linear
relations. The final section sets out some hypotheses
about the nature of the difficulty in dealing with
relations in mathematics and a research agenda for
testing current hypotheses systematically.

The development of multiplicative reasoning
Multiplicative reasoning is important in many ways
in mathematics learning. Its role in understanding
numeration systems with a base and place value
was already discussed in Paper 2. In this section,
we focus on a different role of multiplicative
reasoning in mathematics learning, its role in
understanding relations between measures or
quantities, which has already been recognised

by different researchers (e.g. Confrey, 1994,
Thompson, 1994; Vergnaud, 1983; 1994).

Additive and multiplicative reasoning problems

are essentially different: additive reasoning is used

in one-variable problems, when quantities of the
same kind are put together; separated or compared,
whereas multiplicative reasoning involves two
variables in a fixed-ratio to each other. Even the
simplest multiplicative reasoning problems involve
two variables in a fixed ratio. For example, in the
problem ‘Hannah bought 6 sweets; each sweet costs
5 pence; how much did she spend? there are two
variables, number of sweets and price per sweet. The
problem would be solved by a multiplication

if, as in this example, the total cost is unknown. The
same problem situation could be presented with

a different unknown quantity, and would then be
solved by means of a division: ‘Hannah bought some
sweets; each sweet costs 5p; she spent 30p; how
many sweets did she buy?

Even before being taught about multiplication and
division in school, children can solve multiplication
and division problems such as the one about

Hannah. They use the schema of one-to-many
correspondence.

Different researchers have investigated the use of
one-to-many correspondences by children to solve
multiplication and division problems before they are
taught about these operations in school. Piaget's
work (1952), described in Paper 3, showed that
children can understand multiplicative equivalences:
they can construct a set A equivalentto aset Bby
putting the elements in A in the same ratio that B
has to a comparison set.

Frydman and Bryant (1988; 1994) also showed
that young children can use one-to-many
correspondences to create equivalent sets.

They used sharing in their study because young
children seem to have much experience with
correspondence when sharing. In a sharing situation,
children typically use a one-for-you one-for-me
procedure, setting the shared elements (sweets) into
one-to-one correspondence with the recipients
(dolls). Frydman and Bryant observed that children
in the age range five to seven years became
progressively more competent in dealing with one-
to-many correspondences and equivalences in this
situation. In their task, the children were asked to
construct equivalent sets but the units in the sets
were of a different value. For example, one doll only
liked her sweets in double units and the second doll
liked his sweets in single units. The children were
able to use one-to-many correspondence to share
fairly in this situation: when they gave a double to
the first doll, they gave two singles to the second.
This flexible use of correspondence to construct
equivalent sets was interpreted by Frydman and
Bryant as an indication that the children’s use of
the procedure was not merely a copy of previously
observed and rehearsed actions: it reflected an
understanding of how one-to-many
correspondences can result in equivalent sets. They
also replicated one of Piaget’s previous findings:
some children who succeed with the 2:1 ratio found
the 3:1 ratio difficult. So the development of the
one-to-many correspondence schema does not
happen in an all-or-nothing fashion.

Kouba (1989) presented young children in the
United States, in first, second and third grade

(aged about six to eight years), with multiplicative
reasoning problems that are more typical of those
used in school; for example: in a party, there were 6
cups and 5 marshmallows in each cup; how many
marshmallows were there?
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Kouba analysed the children’s strategies in great
detail, and classified them in terms of the types of
actions used and the level of abstraction. The level
of abstraction varied from direct representation
(i.e. all the information was represented by the
children with concrete materials), through partial
representation (i.e. numbers replaced concrete
representations for the elements in a group and the
child counted in groups) up to the most abstract
form of representation available to these children,
i.e. multiplication facts.

For the children in first and second grade, who

had not received instruction on multiplication and
division, the most important factor in predicting

the children’s solutions was which quantity was
unknown. For example, in the problem above, about
the 6 cups with 5 mar shmallows in each cup, when
the size of the groups was known (i.e. the number
of marshmallows in each cup), the children used
correspondence strategies: they paired objects (or
tallies to represent the objects) and counted or
added, creating one-to-many correspondences
between the cups and the mar shmallows. For
example, if they needed to find the total number of
marshmallows, they pointed 5 times to a cup (or its
representation) and counted to 5, paused, and then
counted from 6 to 10 as they pointed to the
second ‘cup’, until they reached the solution.
Alternatively, the may have added as they pointed
to the ‘cup’.

In contrast, when the number of elements in each
group was not known, the children used dealing
strategies: they shared out one mar shmallow (or its
representation) to each cup, and then another, until

they reached the end, and then counted the number

in each cup. Here they sometimes used trial-and-
error: they shared more than one at a time and
then might have needed to adjust the number per
cup to get to the correct distribution.

Although the actions look quite different, their
aims are the same: to establish one-to-many
correspondences between the marshmallows
and the cups.

Kouba observed that 43% of the strategies used
by the children, including first, second, and third
graders, were appropriate. Among the first and
second grade children, the overwhelming majority
of the appropriate strategies was based on
correspondences, either using direct representation
or partial representation (i.e. tallies for one variable

and counting or adding for the other); few used
recall of multiplication facts. The recall of number
facts was significantly higher after the children had
received instruction, when they were in third grade.

The level of success observed by Kouba among
children who had not yet received instruction is
modest, compared to that observed in two
subsequent studies, where the ratios were easier.
Becker (1993) asked kindergarten children in the
United States, aged four to five years, to solve
problems in which the correspondences were 2:1
or 3:1. As reported by Piaget and by Frydman and
Bryant, the children were more successful with 2:1
than 3:1 correspondences, and the level of success
improved with age. The overall level of correct
responses by the five-year-olds was 81%.

Carpenter, Ansell, Franke, Fennema and Weisbeck
(1993) also gave multiplicative reasoning problems
to U.S. kindergarten children involving
correspondences of 2:1, 3:1 and 4:1. They observed
71% correct responses to these problems.

The success rates leave no doubt that many young
children start school with some understanding of
one-to-many correspondence, which they can use
to learn to solve multiplicative reasoning problems
in school. These results do not imply that children
who use one-to-many correspondence to solve
multiplicative reasoning problems consciously
recognise that in a multiplicative situation there is

a fixed ratio linking the two variables. Their actions
maintain the ratio fixed but it is most likely that this
invariance remains, in Vergnaud's (1997) terminology,
as a ‘theorem in action’.

The importance of informal knowledge
Both Fischbein (1987) and Treffers (1987) assumed
that children’s informal knowledge is a starting
point for learning mathematics in school but it is
important to consider this assumption fur ther: If
children start school with some informal knowledge
that can be used for learning mathematics in school,
it is necessary to consider whether this kno wledge
facilitates their learning or, quite the opposite, is an
obstacle to learning. The action of establishing one-
to-many correspondences is not the same as the
concept of ratio or as multiplicative reasoning: ratio
may be implicit in their actions b ut it is possible that
the children are more aware of the methods that
they used to figure out the numerical values of the
quantities, i.e. they are aware of counting or adding.
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Children’s methods for solving multiplication
problems can be seen as a star ting point, if they
form a basis for further learning, but also an obstacle
1o learning, if children stick to their counting and
addition procedures instead of learning about ratio
and multiplicative reasoning in school. Resnick
(1983) and Kaput and West (1994) argue that an
important lesson from psychological and
mathematics education research is that, even after
people have been taught new concepts and ideas,
they still resort to their prior methods to solve
problems that differ from the textbook examples on
which they have applied their new knowledge. The
implementation of the one-to-many correspondence
schema to solve problems requires adding and
counting, and students have been reported to resort
to counting and adding even in secondary school,
when they should be multiplying (Booth, 1981). So

is this informal knowledge an obstacle to better
understanding or does it provide a basis for learning?

It is possible that a precise answer to this question
cannot be found: whether informal knowledge helps
or hinders children’s learning might depend on the
pedagogy used in their classroom. However, it is
possible to consider this question in principle by
examining the results of longitudinal and
intervention studies. If it is found in a longitudinal
study that children who start school with more
informal mathematical knowledge achieve better
mathematics learning in school, then it can be
concluded that, at least in a general manner, informal
knowledge does provide a basis for learning.
Similarly, if intervention studies show that increasing
children’s informal knowledge when they are in their
first year school has a positive impact on their
school learning of mathematics, there is further
support for the idea that informal knowledge can
offer a foundation for learning. In the case of the
correspondence schema, there is clear evidence
from a longitudinal study but intervention studies
with the appropriate controls are still needed.

Nunes, Bryant, Evans, Bell, Gardner, Gardner and
Carraher (2007) carried out the longitudinal study.
In this study, British children were tested on their
understanding of four aspects of logical-
mathematical reasoning at the start of school; one
of these was multiplicative reasoning. There were
five items which were multiplicative reasoning
problems that could be solved by one-to-many
correspondence. The children were also given the
British Abilities Scale (BAS-II; Elliott, Smith and
McCulloch, 1997) as an assessment of their general

cognitive ability and a Working Memory Test,
Counting Recall (Pickering and Gathercole, 2001),
at school entry. At the beginning of the study, the
children’s age ranged from five years and one month
1o six years and six months. About |4 months later,
the children were given a state-designed and
teacher-administered mathematics achievement test,
which is entirely independent of the researchers and
an ecologically valid measure of how much they
have learned in school. The children's performance
in the five items on correspondence at school entry
was a significant predictor of their mathematics
achievement, after controlling for: (1) age at the time
of the achievement test; (2) performance on the
BAS-Il excluding the subtest of their kno wledge of
numbers at school start; (3) knowledge of number
at school entry (a subtest of the B AS-II); (4)
performance on the working memory measure;

and (5) performance on the multiplicative reasoning,
one-to-many correspondence items. Nunes et dl.
(2007) did not report the analysis of longitudinal
prediction based separately on the items that assess
multiplicative reasoning; so these results are
reported here.The results are presented visually in
Figure 4.1 and described in words subsequently.

The total variance explained in the mathematics
achievement by these predictors was 66%; age
explained 2% (non significant), the BAS general
score (excluding the Number Skills subtest)
explained a further 49% (p < 0.001); the sub-test on
number skills explained a further 6% (p < 0.05);
working memory explained a further 4% (p < 0.05),
and the children’s understanding of multiplicative
reasoning at school entry explained a further 6%
(p = 0.005). This result shows that children’s
understanding of multiplicative reasoning at school
entry is a specific predictor of mathematics
achievement in the first two years of school. It
supports the hypothesis that, in a general way, this
informal knowledge forms a basis for their school
learning of mathematics: after |4 months and after
controlling for general cognitive factors at school
entry, performance on an assessment of
multiplicative reasoning still explained a significant
amount of variance in the children’s mathematics
achievement in school.

It is therefore quite likely that instruction will be an
important factor in influencing whether students
continue to use the one-to-many schema of action
to solve such problems, even if replacing objects
with numbers but still counting or adding instead of
multiplying, or whether they go on to adopt the use
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of the operations of multiplication and division.
Treffers (1987) and Gravemeijer (1997) argue that
students do and should use their informal
knowledge in the classroom when learning about
multiplication and division, but that it should be one
of the aims of teaching to help them f ormalise this
knowledge, and in the process develop a better
understanding of the arithmetic operations
themselves. We do not review this work here but
recognise the importance of their argument,
particularly in view of the strength of this inf ormal
knowledge and students’ likelihood of using it even
after having been taught other forms of knowledge
in school. However, it must be pointed out that
there is no evidence that teaching students about
arithmetic operations makes them more aware of
the invariance of the ratio when they use one-to-
many correspondences to solve problems. Kaput
and West (1994) also designed a teaching
programme which aimed at using students’ informal
knowledge of correspondences to promote their
understanding of multiplicative reasoning. In contrast
to the programme designed by Treffers for the
operation of multiplication and by Gravemeijer for
the operation of division, Kaput and West's
programme used simple calculations and tried to

Year 1

Age 3\

BAS score

60
Number skills %

Working memory |/

One-to-many
correspondences 6%

focus the students’ attention on the invariance of
ratio in the correspondence situations. They used
different sorts of diagrams which treated the
quantities in correspondence as composite units: for
example, a plate and six pieces of tableware formed
a single unit, a set-place for one person.The ideas
proposed in these approaches to instruction are
very ingenious and merit further research with the
appropriate controls and measures. The lack of
control groups and appropriate pre- and post-test
assessments in these intervention studies makes it
difficult to reach conclusions regarding the impact of
the programmes.

Park and Nunes (2001) carried out a brief
intervention study where they compared children’s
success in multiplicative reasoning problems after the
children had participated in one of two types of
intervention. In the first, they were taught about
multiplication as repeated addition, which is the
traditional approach used in British schools and is
based on the procedural connection between
multiplication and addition. In the second
intervention group, the children were taught

about multiplication by considering one-to-many
correspondence situations, where these

SATs Maths — Year 2

Maths achievement

Figure 4.1:A schematic representation of the degree to which individual differences in mathematics achievement are explained

by the first four factors and the additional amount of variance explained by children’s informal knowledge at school entry.
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correspondences were represented explicitly. A third
group of children, the control group, solved addition
and subtraction problems, working with the same
experimenter for a similar period of time. The
children in the one-to-many correspondence group
made significantly more progress in solving
multiplicative reasoning problems than those in the
repeated addition and in the control group. This
study does include the appropriate controls and
provides clear evidence for more successful learning
of multiplicative reasoning when instruction draws
on the children’s appropriate schema of action.
However, this was a very brief intervention with a
small sample and in one-to-one teaching sessions.

It would be necessary to replicate it with larger
numbers of children and to compare its level of
success with other interventions, such as those used
by Treffers and Gravemeijer; where the children’s
understanding of the arithmetic operations of
multiplication and division was strengthened by
working with larger numbers.

Summary

| Additive and multiplicative reasoning have their
origins in different schemas of action. There does
not seem to be an order of acquisition, with
young children understanding at first only additive
reasoning and only later multiplicative reasoning.
Children can use schemas of action appropr iately
both in additive and muiltiplicative reasoning
situations from an early age.

2 The schemas of one-to-many correspondence
and sharing (or dealing) allow young children
to succeed in solving multiplicative reasoning
problems before they are taught about
multiplication and division in school.

3 There is evidence that children’s knowledge of
correspondences is a specific predictor of their
mathematics achievement and, therefore, that their
informal knowledge can provide a basis for further
learning. However, this does not mean that they
understand the concept of ratio: the invariance of
ratio in these situations is likely to be known only
as a theorem in action.

4 Two types of programmes have been proposed
with the aim of bridging students’ informal and
formal knowledge. One type (Treffers, 1987,
Gravemeijer; 1997) focuses on teaching the
children more about the operations of

multiplication and division, making a transition
from small to large numbers easier for the
students. The second type (Kaput and West, 1994;
Park and Nunes, 2001) focused on making the
students more aware of the schema of one-to-
many correspondences and the theorems in
action that it represents implicitly. There is
evidence that, with younger children solving small
number problems, an intervention that focuses
on the schema of correspondences facilitates the
development of multiplicative reasoning.

Finally, it is pointed out that all the examples
presented so far dealt with problems in which the
children were asked questions about quantities.
None of the problems focused on the relation
between quantities. In the subsequent section, we
present a classification of multiplicative reasoning
problems in order to aid the discussion of ho w
quantities and relations are handled in the context
of multiplicative reasoning problems.

Different types of multiplicative

reasoning problems

We argued previously that many children solve
problems that involve additive relations, such as
compare problems, by thinking only about quantities.
In this section, we examine different types of
multiplicative reasoning problems and analyse
students’ problem solving methods with a view to
understanding whether they are considering only
quantities or relations in their reasoning. In order
to achieve this, it is necessary to think about the
different types of multiplicative reasoning problems.

Classifications of multiplicative reasoning situations
vary across authors (Brown, 1981; Schwartz, 1988;
Tourniaire and Pulos, 1985;Vergnaud, 1983), but
there is undoubtedly agreement on what
characterises multiplicative situations: in these
situations there are always two (or more) variables
with a fixed ratio between them. Thus, it is argued
that multiplicative reasoning forms the foundation
for children’s understanding of proportional relations
and linear functions (Kaput and West, 1994;
Vergnaud, 1983).

The first classifications of problem situations
considered distinct possibilities: for example, rate and
ratio problem situations were distinguished initially.
However, there seemed to be little agreement
amongst researchers regarding which situations
should be classified as rate and which as ratio. Lesh,
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Post and Behr (1988) wrote some time ago: ‘there
is disagreement about the essential characteristics
that distinguish, for example rates from ratios... In
fact, it is common to find a given author changing
terminology from one publication to another’ (p.
108). Thompson (1994) and Kaput and West (1994)
consider this distinction to apply not to situations,
but to the mental operations that the problem
solver uses. These different mental operations could
be used when thinking about the same situation:
ratio refers to understanding a situation in terms of
the particular values presented in the problem (e.g.
travelling 150 miles over 3 hours) and rate refers to
understanding the constant relation that applies to
any of the pairs of values (in theory, in any of the 3
hours one would have travelled 50 miles). ‘Rate is a
reflectively abstracted constant ratio’ (Thompson,
1994, p. 192).

In this research synthesis, we will work with the
classification offered by Vergnaud (1983), who
distinguished three types of problems.

* In isomorphism of measures problems, there is
a simple proportional relation between two
measures (i.e. quantities represented by numbers):
for example, number of cakes and price paid for
the cakes, or amount of corn and amount of corn
flour produced.

In product of measures problems, there is a
Cartesian composition between two measures to
form a third measure: for example, the number
of T-shirts and number of shorts a girl has can be
composed in a Cartesian product to give the
number of different outfits that she can wear;the
number of different coloured cloths and the
number of emblems determines the number

of different flags that you can produce.

In multiple proportions problems, a measure

is in simple proportion to (at least) two other
measures: for example, the consumption of cereal
in a Scout camp is proportional to number of
persons and the number of days.

Because this classification is based on measures, it
offers the opportunity to explore the difference
between a quantity and its measure . Although this
may seem like a digression, exploring the difference
between quantities and measures is helpful in this
chapter, which focuses on the quantification of
relations between measures. A quantity, as defined
by Thompson (1993) is constituted when we think

of a quality of an object in such a wa y that we
understand the possibility of measuring it.
‘Quantities, when measured, have numerical value,
but we need not measure them or kno w their
measures to reason about them’ (p. 166). Two
quantities, area and volume, can be used here to
illustrate the difference between quantities and
measures.

Hart (1981 a) pointed out that the square unit can
be used to measure area by different measurement
operations.We can attribute a number to the area
of a rectangle, for example, by covering it with
square units and counting them: this is a simple
measurement operation, based on iteration of the
units. If we don’t have enough bricks to do this (see
Nunes, Light and Mason, 1993), we can count the
number of square units that make a row along the
base, and establish a one-to-many correspondence
between the number of rows that fit along the
height and the number of square units in each row.
We can calculate the area of the rectangle by
conceiving of it as an isomor phism of measures
problem: | row corresponds to x units. If we
attribute a number to the area of the rectangle by
multiplying its base by its height, both measured with
units of length, we are conceiving this situation as a
product of measures: two measures, the length of
the base and that of its height, multiplied produce a
third measure, the area in square units. Thus a
quantity in itself is not the same as its measure , and
the way it is measured can change the complexity
(i.e. the number of relations to be considered) of
the situation.

Nunes, Light and Mason (1993) showed that
children aged 9 to 10 years were much more
successful when they compared the area of tw o
figures if they chose to use bricks to measure the
areas than if they chose to use a r uler. Because the
children did not have sufficient bricks to cover the
areas, most used calculations. They had three
quantities to consider — the number of rows that
covered the height, the number of bricks in each
row along the base, and the area, and the relation
between number of rows and number of bricks in
the row. These children worked within an
isomorphism of measures situation.

Children who used a ruler worked within a product
of measures situation and had to consider three
quantities — the value of the base, the value of the
height, and the area; and three relations to consider
— the relation between the base and the height, the
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relation between base and area, and the relation
between the height and the area (the area is
proportional to the base if the height is constant
and proportional to the height if the base is
constant).

The students who developed an isomorphism

of measures conception of area were able to use
their conception to compare a rectangular with

a triangular area, and thus expanded their
understanding of how area is measured. The
students who worked within a product of measures
situation did not succeed in expanding their
knowledge to think about the area of triangles.
Nunes, Light and Mason speculated that, after

this initial move, students who worked with an
isomorphism of measures model might subsequently
be able to re-conceptualise area once again and
move on to a product of measures approach, but
they did not test this hypothesis.

Hart (1981 a) and Vergnaud (1983) make a similar
point with respect to the measurement of v olume: it
can be measured by iteration of a unit (how many
litres can fit into a container) or can be conceived as
a problem situation involving the relations between
base, height and width, and described as product of
measures.Volume as a quantity is itself neither a uni-
dimensional nor a three-dimensional measure and
one measure might be useful for some purposes
(add 2 cups of milk to make the pancake batter)
whereas a different one might be useful for other
purposes (the volume of a trailer in a lorry can be
easily calculated by multiplying the base, the height
and the width). Different systems of representation
and different measurement operations allow us to
attribute different numbers to the same quantity, and
to do so consistently within each system.

Vergnaud's classification of multiplicative reasoning
situations is used here to simplify the discussion in

Measure | Measure 2
ab
A N
cd
————

this chapter. We will focus primarily on isomorphism
of measures situations, because the analysis of how
this type of problem is solved by students of
different ages and by schooled and unschooled
groups will help us understand the operations of
thought used in solving them.

A diagram of isomorphism of measures situations,
presented in Figure 4.2 and adapted from Vergnaud
(1983), will be used to facilitate the discussion.

This simple schema shows that there are two sets

of relations that can be quantified in this situation:

* the relation between a and c is the same as that
between b and d; this is the scalar relation, which
links two values in the same measure space

* the relation between g and b is the same as that
between ¢ and d; this is the functional relation, or
the ratio, which links the two measure spaces.

The psychological difference (i.e. the difference

that it makes for the students) between scalar and
functional relations is very important, and it has
been discussed in the literature by many authors
(e.g. Kaput and West, 1994; Nunes, Schliemann and
Carraher, 1993;Vergnaud, 1983). It had also been
discussed previously by Noelting (1980 a and b) and
Tourniaire and Pulos (1985), who used the terms
within and between quantities relations. This paper
will use only the terms scalar and functional relations
or reasoning.

‘For a mathematician, a proportion is a statement
of equality of two ratios, i.e., a/b = c¢/d’" (Tourniaire
and Pulos, 1985, p. 181). Given this definition, there
is no reason to distinguish betw een what has been
traditionally termed multiplication and division
problems and proportions problems. We think that
the distinction has been based, perhaps only
implicitly, on the use of a ratio with reference to the
unit in multiplication and division problems. So one

Figure 4.2: Schema of an isomorphism of measures situation. Measures | and 2 are connected by a proportional relation.
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should not be surprised to see that one-to-many
correspondences reasoning is used in the beginning
of primary school by children to solve simple
multiplicative reasoning problems and continues to
be used by older students to solve proportions
problems in which the unit ratio is not given in the
problem description. Many researchers (e.g. Hart,
1981 b; Kaput and West, 1994; Lamon, 1994; Nunes
and Bryant, 1996; Nunes, Schliemann and Carraher,
1993; Piaget, Grize, Szeminska and Bangh, 1977;
Inhelder and Piaget, 1958; 1975; Ricco, 1982; Steffe,
1994) have described students’ solutions based on
correspondence procedures and many different
terms have been used to refer to these, such as
building up strategies, empirical strategies, halving
or doubling, and replications of a composite unit. In
essence, these strategies consist of using the initial
values provided in the problem and changing them
in one or more steps to arrive at the desired value.
Hart's (1981 b) well known example of the onion
soup recipe for 4 people, which has to be
converted into a recipe for 6 people, illustrates this
strategy well. Four people plus half of 4 makes 6
people, so the children take each of the ingredients
in the recipe in turn, half the amount, and add this
to the amount required for 4 people.

Students used yet another method in solving
proportions problems, still related to the idea of
correspondences: they first find the unit ratio and
then use it to calculate the desired value . Although
this method is taught in some countries (see Lave,
[988: Nunes, Schliemann and Carraher; 1993; Ricco,
1982), it is not necessarily used by all students after
they have been taught; many students rely on
building up strategies which change across different
problems in terms of the calculations that are used,
instead of using a single algorithm that aims at
finding the unit ratio. Hart (1981 b) presented the
following problem to a large sample of students
(2257) aged I'l to 16 yearsin 1976 14 metres of
calico cost 63p; find the price of 24 metres. She
reported that no child actually quoted the unitary
method in their explanation, even though some
children did essentially seek a unitary ratio. Ricco
(1982), in contrast, found that some students
explicitly searched for the unit ratio (e.g. ‘First | need
to know how much one notebook will cost and
then we will see’, p. 299, our translation) but others
seem to search for the unit ratio without making
explicit the necessity of this step in their procedure .

Building up methods and finding the unit ratio may
be essentially an extension of the use of the one-to-

many correspondence schema, which maintains the
ratio invariant without necessarily bringing with it an
awareness of the fixed relation between the
variables. Unit ratio is a mathematical term but it is
not clear whether the children who w ere explicitly
searching for the price of one notebook in Ricco's
study were thinking of ratio as the quantification of
the relation between notebooks and money. When
the child says ‘| notebook costs 4 cents’, the child is
speaking about two quantities, not necessarily about
the relation between them. A statement about the
relation between the quantities would be ‘the
number of notebooks times 4 tells me the total cost.

The use of these informal strategies by students in the
solution of proportions problems is consistent with
the hypothesis that multiplicative reasoning develops
from the schema of one-to-many correspondences:
students may be simply using numbers instead of
objects when reasoning about the quantities in these
problems. In the same way that they build up the
quantities with objects, they can build up the quantities
with numbers. It is unlikely that students are thinking of
the scalar relation and quantifying it when they solv e
problems by means of building up strategies. Ve think
that it can be concluded with some certainty that
students realise that whatever transformation they
make, for example, to the number of people in Hart's
onion soup problem, they must also make to the
quantities of ingredients. It is even less likely that they
have an awareness of the ratio between the two
domains of measures and have reached an
understanding of a reflectively abstracted constant
ratio, in Thompson's terms.

These results provoke the question of the role of
teaching in developing students’ understanding of
functional relations. Studies of high-school students
and adults with limited schooling in Brazil throw some
light on this issue. They show that instruction about
multiplication and division or about propor tions per
se is neither necessary for people to be able to solve
proportions problems nor sufficient to promote
students’ thinking about functional relations. Nunes,
Schliemann and Carraher (1993) have shown that
fishermen and foremen in the construction industry,
who have little formal school instruction, can solve
proportions problems that are novel to them in three
ways: (a) the problems use values that depart from
the values they normally work with; (b) they are
asked to calculate in a direction which they normally
do not have to think about; or (c) the content of the
problem is different from the problems with which
they work in their everyday lives.
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Foremen in the construction industry have to work
with blue-prints as representations of distances in
the buildings under construction. They have
experience with a certain number of conventionally
used scales (e.g. 1:50, 1:100 and 1:1000). When they
were provided with a scale drawing that did not fit
these specifications (e.g. 1:40) and did not indicate
the ratio used (e.g. they were shown a distance on
the blue-print and its value in the b uilding), most
foremen were able to use correspondences to
figure out what the scale would be and then
calculate the measure of a wall from its measure on
the blueprint. They were able to do so even when
fractions were involved in the calculations and the
scale had an unexpected format (e.g. 3 cm:| m uses
different units whereas scales typically use the same
unit) because they have extensive experience in
moving across units (metres, centimetres and
millimetres). Completely illiterate foremen (N = 4),
who had never set foot in a school due to their life
circumstances, showed 75% correct responses to
these problems. In contrast, students who had been
taught the formal method known as the rule of
three, which involves writing an equation of the
form a/b = c/d and solving for the unknown value,
performed significantly worse (60% correct). Thus
schooling is not necessary for multiplicative
reasoning to develop and proportions problems to
be solved correctly, and teaching students a general
formula to solve the problem is not a guarantee that
they will use it when the oppor tunity arises.

These studies also showed that both secondary
school students and adults with relatively little

Measure | Measure 2

x 4

schooling were more successful when they could
use building up strategies easily, as in problems of
the type A in Figure 4.3. Problem B uses the same
numbers but arranged in a way that building up
strategies are not so easily implemented; the relation
that is easy to quantify in problem B is the functional
relation.

The difference in students’ rate of success across the
two types of problem was significant: they solved
about 80% of type A problems correctly and only
35% of type B problems. For the adults (fishermen),
there was a difference between the rate of correct
responses (80% correct in type A and 75% correct
in type B) but this was not statistically significant.
Their success, however, was typically a result of
prowess with calculations when building up a
quantity, and very few answers might have resulted
from a quantification of the functional relation.

These results suggest three conclusions.

* Reasoning about quantities when solving
proportional problems seems to be an extension
of correspondence reasoning; schooling is not
necessary for this development.

* Most secondary school students seem to use the
same schema of reasoning as younger students;
there is little evidence of an impact of instruction
on their approach to proportional problems.

* Functional reasoning is more challenging and is not
guaranteed by schooling; teaching students a

Measure | Measure 2

x 4

Figure 4.3: For someone who can easily think about scalar or functional relations, there should be no difference in the level of difficulty of

the two problems. For those who use building up strategies and can only work with quantities, problem A is significantly easier.
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formal method, which can be used as easily for
both problem types, does not make functional
reasoning easier (see Paper 6 for further
discussion).

The results observed with Brazilian students do
not differ from those observed by Vergnaud
(1983) in France, and Hart (1981 b; 1984) in the
United Kingdom. The novelty of these studies is
the demonstration that the informal knowledge
of multiplicative reasoning and the ability to solve
multiplicative reasoning problems through
correspondences develop into more abstract
schemas that allow for calculating in the absence
of concrete forms of representation, such as
maniputatives and tallies. Both the students and
the adults with low levels of schooling were able
to calculate, for example, what should the actual
distances in a building be from their size in
blueprint drawings. Relatively unschooled adults
who have to think about proportions in the
course of their occupations and secondary
school students seem to rely on these more
abstract schemas to solve proportions problems.
The similarity between these two groups, rather
than the differences, in the forms of reasoning
and rates of success is striking. These results
suggest that informal knowledge of
correspondences is a powerful thinking schema
and that schooling does not easily transform it
into a more powerful one by incorporating
functional understanding into the schema.

Different hypotheses have been considered in the
explanation of why this informal knowledge seems
so resistant to change. Hart (1981 b) considered the
possibility that this may rest on the difficulty of the
calculations but the comparisons made by Nunes,
Schliemann and Carraher (1993) rule out this
hypothesis: the difficulty of the calculations was held
constant across problems of type A and type B, and
quantitative reasoning on the basis of the functional
relation remained elusive.

An alternative explanation, explored by Vergnaud
(1983) and Hart (personal communication), is that
informal strategies are resistant to change because
they are connected to reasoning about quantities,
and not about relations. It makes sense to say that if
| buy half as much fish, | pay half as much money:
these are manipulations of quantities and their
representations. But what sense does it make to
divide kilos of fish by money?

There has been some discussion of the diff erence
between reasoning about quantities and relations in
the literature. However, we have not been able to
find studies that establish whether the difficulty of
thinking about relations might be at the root of
students' difficulties in transforming their informal into
formal mathematics knowledge. The educational
implications of these hypotheses are considerable but
there is, to our knowledge, no research that
examines the issue systematically enough to provide
a firm ground for pedagogical developments. The
importance of the issue must not be underestimated,
particularly in the United Kingdom, where students
seem do to well enough in the international
comparisons in additive reasoning but not in
multiplicative reasoning problems (Beaton, Mullis,
Martin, Gonzalez, Kelly AND Smith, 1996, p. 94-95).

Summary

We draw some educational implications from these
studies, which must be seen as hypotheses about
what is important for successful teaching of
multiplicative reasoning about relations.

| Before children are taught about multiplication
and division in school, they already have schemas
of action that they use to solve multiplicative
reasoning problems. These schemas of action
involve setting up correspondences between
two variables and do not appear to develop
from the idea of repeated addition. This informal
knowledge is a predictor of their success in
learning mathematics and should be drawn upon
explicitly in school.

2 Students’ schemas of multiplicative reasoning
develop sufficiently for them to apply these
schemas to numbers, without the need to use
objects or tallies to represent quantities. But they
seem to be connected to quantities, and it
appears that students do not focus on the
relations between quantities in multiplicative
reasoning problems. This informal knowledge
seems to be resistant to change under current
conditions of instruction.

3 In many previous studies, researchers drew the
conclusion that students’ problems in understanding
proportional relations were explained by their
difficutties in thinking multiplicatively. Today; it seems
more likely that students’ problems are based on
their difficulty in thinking about relations, and not
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about quantities, since even young children succeed
in multiplicative reasoning problems.

4 Teaching approaches might be more successful in
promoting the formalisation of students’ informal
knowledge if: (a) they draw on the students’
informal knowledge rather than ignore it; (b) they
offer the students a way of representing the
relations between quantities and promote an
awareness of these relations; and (c) they use a
variety of situational contexts to help students
extend their knowledge to new domains of
multiplicative reasoning.

We examine now the conceptual underpinnings of
two rather different teaching approaches to the
development of multiplicative reasoning in search
for more specific hypotheses regarding how greater
levels of success can be achieved by UK students.

The challenge in attempting a synthesis of results is
that there are many ways of classifying teaching
approaches and there is little systematic research that
can provide unambiguous evidence. The difficulty is
increased by the fact that by the time students are
taught about proportions, some time between their
third and their sixth year in school, they have
participated in a diversity of pedagogical approaches
to mathematics and might already have distinct
attitudes to mathematics learning. However, we
consider it plausible that systematic investigation of
different teaching approaches would prove invaluable
in the analysis of pathways to help children
understand functional relations. In the subsequent
section, we explore two different pathways by
considering the types of representations that are
offered to students in order to help them become
aware of functional relations.

Representing
functional relations

The working hypothesis we will use in this section
is that in order to become explicitly aware of
something, we need to represent it. This hypothesis
is commonplace in psychological theories: it is part
of general developmental theories, such as Piaget's
theory on reflective abstraction (Piaget, 1978;2001;
2008) and Karmiloff-Smith'’s theory of
representational re-descriptions in development
(Karmiloff-Smith, 1992; Karmiloff-Smith and Inhelder;
1977).1tis also used to describe development in
specific domains such as language and liter acy

(Gombert, 1992; Karmiloff-Smith, 1992), memory
(Flavell, 1971) and the understanding of others
(Flavell, Green and Flavell, 1990). It is beyond the
scope of this work to review the literature on
whether representing something does help us
become more aware of the represented meaning;
we will treat this as an assumption.

The hypothesis concerning the importance of
representations will be used in a different form here.
Duval (2006) pointed out that ‘the part played by
signs in mathematics, or more exactly by semiotic
systems of representation, is not only to designate
mathematical objects or to communicate but also to
work on mathematical objects and with them.” (p.
107).We have so far discussed the quantification of
relations, and in particular of functional relations, as if
the representation of functional relations could only be
attained through the use of numbers. Now we wish to
make explicit that this is not so. Relations, including
functional relations, can be represented by numbers
but there are many other ways in which relations can
be represented before a number is attributed to them;
to put it more forcefully, one could say that relations
can be represented in different ways in order to
facilitate the attribution of a number to them.

When students are taught to write an equation

of the form a/b = ¢/x, for example, to represent a
proportions problem in order to solve for x, this
formula can be used to help them quantify the
relations in the problem. Hart (1981 b) reports that
this formula was taught to 100 students in one
school where she carried out her investigations of
proportions problems but that it was only used by
20 students, |5 of whom were amongst the high
achievers in the school. This formula can be used

to explore both scalar and functional relations in a
proportions problem but it can also be taught as a
rule to solve the problem without any exploration
of the scalar or functional relations that it
symbolises. In some sense, students can learn to use
the formula without developing an awareness of the
nature of the relations between quantities that are
assumed when the formula is applied.

Researchers in mathematics education have been
aware for at least two decades that one needs to
explore different forms of representation in order to
seek the best ways to promote students’ awareness
of reasoning about the relations in a propor tions
problem. It is likely that the large amount of research
on proportional reasoning, which exposed students’
difficulties as well as their reliance on their own
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methods even after teaching, played a crucial role in
this process. It did undoubtedly raise teachers’ and
researchers’ awareness that the representation
through formulae (a/b = c¢/x) or algorithms did not
work all that well. In this section, we will seek to
examine the underlying assumptions of two very
different approaches to teaching students about
proportions.

Two approaches to the
representation of functional relations

Kieren (1994) suggested that there are two
approaches to research about, and to the teaching
of, multiplicative reasoning in school. The first is
analytic-functional: it is human in focus, and
investigates actions, action schemes and operations
used in giving meaning to multiplicative situations.
The second is algebraic: this focuses on mathematical
structures, and investigates structures used in this
domain of mathematics. Although the investigation
of mathematics structures is not incompatible with
the analytic-functional approach, these are
alternatives in the choice of star ting point for
instruction. They delineate radically distinct pathways
for guiding students' learning trajectories.

Most of the research carried out in the past about
students’ difficulties did not describe what sort of
teaching students had participated in; one of the
exceptions is Hart's (1981 b) description of the
teaching in one school, where students were taught
the a/b = c/d, algebraic approach: the vast majority of
the students did not use this formula when they were
interviewed about proportions in her study, and its
use was confined to the higher achievers in their tests.
It is most urgent that a research programme that
systematically compares these two approaches should
be carried out, so that U.K students can benefit from
better understanding of the consequences of how
these different pathways contribute to learning of
multiplicative reasoning. In the two subsequent
sections, we present one well developed programme
of teaching within each approach.

The analytic-functional approach:
from schematic representations of
quantities in correspondence to
quantifying relations

Streefland and his colleagues (Streefland, 1984; 1985
a and b; van den Brink and Streefland, 1979)

highlighted the role that drawing and visualisation
can play in making children aware of relations. In an
initial paper, van den Brink and Streefland (1979)
analysed a boy's reactions to proportions in
drawings and also primary school children’s
reactions in the classroom when visual propor tions
were playfully manipulated by their teacher.

The boy’s reactions were taken from a discussion
between the boy and his father. They saw a poster
for a film, where a man is bravely standing on a
whale and trying to harpoon it. The whale's size is
exaggerated for the sake of sensation. The father
asked what was wrong with the picture and the boy
eventually said: ‘I know what you mean. That whale
should be smaller. When we were in England we
saw an orca and it was only as tall as three men’
(van den Brink and Streefland, 1979, p.405). In line
with Bryant (1974), van den Brink and Streefland
argued that visual proportions are part of the basic
mechanisms of perception, which can be used in
learning in a variety of situations, and suggested that
this might be an excellent start for making children
aware of relations between quantities.

Van den Brink and Streefland then developed
classroom activities where six- to eight-year-old
children explored proportional relations in drawings.
Finally, the teacher showed the children a picture of
a house and asked them to mark their own height
on the door of the house . The children engaged in
measurements of themselves and the door of the
classroom in order to transpose this size relation to
the drawing and mark their heights on the door. This
activity generated discussions relevant to the
question of proportions but it is not possible to
assess the effect of this activity on their
understanding of proportions, as no assessments
were used. The lesson ended with the teacher
showing another part of the same picture: a girl
standing next to the house . The girl was much taller
than the house and the children concluded that this
was actually a doll house. Surprise and playfulness
were considered by Streefland an important factor
in children’s engagement in mathematics lessons.

Van den Brink and Streefland suggested that children
can use perceptual mechanisms to reflect about
proportions when they judge something to be out of
proportion in a picture. They argued that it is not only
of psychological interest but also of mathematical-
didactical interest to discover why children can reason
in ratio and proportion terms in such situations,
abstracting from perceptual mechanisms.
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Streefland (1984) later developed further activities
in a lesson series with the theme ‘with a giant’s
regard’, which started with activities that explored
the children’s informal sense of proportions and
progressively included mathematical representations
in the lesson. The children were asked, for example,
to imagine how many steps would a normal man
take to catch up with one of the giant’s steps; later,
they were asked to represent the man's and the
giant's steps on a number line and subsequently by
means of a table. Figure 4.4 presents one example
of the type of diagram used for a visual comparison.

In a later paper, Streefland (1985 a and b) pur sued
this theme further and illustrated how the diagrams
used to represent visual meanings could be used in
a progressively more abstract way, to represent
correspondences between values in other problems
that did not have a visual basis. This was illustrated
using, among others, Hart's (1981 b) onion soup
problem, where a recipe for onion soup for 8
people is to be adapted for 4 or 6 people.The
diagram proposed by Streefland, which the teacher
should encourage the pupils to construct, shows
both (a) the correspondences between the values,
which the children can find using their own, informal
building up strategies, and (b) the value of the scalar
transformation. See Figure 4.5 for an example.

Streefland suggested that these schematic
representations could be used later in Hart's onion
soup problem in a vertical orientation, more
common for tables than the above diagram, and
with all ingredients listed on the same table in
different rows. The top row would list the number
of people, and the subsequent rows would list each
ingredient. This would help students realise that the
same scalar transformation is applied to all the

the giant's steps

ingredients for the taste to be preserved when the
amounts are adjusted. Streefland argued that ‘the
ratio table is a permanent record of proportion as
an equivalence relation, and in this way contributes
to acquiring the correct concept. Applying the ratio
table contributes to the detachment from the
context... In this quality the ratio table is, as it were,
a unifying model for a variety of ratio contexts, as
well as for the various manifestations of ratio. ..

The ratio table can contribute to discovering,
making conscious and applying all properties that
characterise ratio-preserving mappings and to their
use in numerical problems’ (Streefland, 1985, a, p.
91). Ratio tables are then related to graphs, where
the relation between two variables can be discussed
in a new way.

Streefland emphasises that ‘mathematizing reality
involves model building’ (Streefland, 19854, p. 86); so
students must use their intuitions to develop a
model and then learn how to represent it in order
1o assess its appropriateness. He (Streefland, 1985 b;
in van den Heuvel-Panhuizen, 2003) argued that
children’s use of such schematic models of situations
that they understand well can become a model for
new situations that they would encounter in the
future. The representation of their knowledge in
such schematic form helps them understand what is
implied in the model, and make explicit a relation
that they had used only implicitly before.

This hypothesis is in agreement with psychological
theories that propose that reflection and
representation help make implicit knowledge explicit
(e.g. Karmiloff-Smith, 1992; Piaget, 2001). However,
the concept proposes a pedagogical strategy in
Streefland’s work: the model is chosen by the
teacher, who guides the student to use it and adds
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the man's steps

Figure 4.4:The giant’s steps and the man’s steps on a line; this drawing can be converted into a number line and a table which displays the

numerical correspondences between the giant’s and the man’s steps.
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elements, such as the explicit representation of the
scalar factor. The model is chosen because it can be
easily stripped of the specifics in the situation and
because it can help the students mo ve from thinking
about the context to discussing the mathematical
structures (van den Heuvel-Panhuizen, 2003). So
children’s informal knowledge is to be transformed
into formal knowledge through changes in
representation that highlight the mathematical
relations that remain implicit when students focus
on quantities.

Finally, Streefland also suggested that teaching
children about ratio and proportions could start
much earlier in primary school and should be seen
as a longer project than prescribed by current
practice. Starting from children’s informal knowledge
is a crucial aspect of his proposal, which is based

on Freudenthal's (1983) and Vergnaud's (1979)
argument that we need to know about children’s
implicit mathematical models for problem situations,
not just their arithmetic skills, when we want to
develop their problem solving ability. Streefland
suggests that, besides the visual and spatial relations
that he worked with, there are other concepts
which children aged eight to ten years can grasp in
primary school, such as comparisons between the
density (or crowdedness) of objects in space and
probabilities. Other concepts, such as percentages
and fractions, were seen by him as related to
proportions, and he argued that connections should
be made across these concepts. However, Streefland
considered that they merited their own analyses in
the mathematics classroom. He argued, citing
Vergnaud (1979) that ‘different properties, almost
equivalent to the mathematician, are not all
equivalent for the child (Vergnaud, 1979, p.264). So
he also developed programmes for the teaching of

percentages (Streefland and van den Heuvel-
Panhuizen, 1992; van den Heuvel-Panhuizen, 2003)
and fractions (Streefland, 1993; 1997). Marja van den
Heuvel-Panhuizen and her colleagues (Middleton
and van den Heuvel-Panhuizen, 1995; Middleton, van
den Heuvel-Panhuizen and Shew, 1998) detailed the
use of the ratio table in teaching students in their
3rd year in school about percentages and
connecting percentages, fractions and proportions.

In all these studies, the use of the ratio table is seen
as a tool for computation and also for discussion of
the different relations that can be quantified in the
problem situations. Their advice is that teachers
should allow students to use the table at their

own level of understanding but always encourage
students to make their reasoning explicit. In this way,
students can compare their own reasoning with
their peers’ approach, and seek to improve their
understanding through such comparisons.

Streefland’s proposal is consistent with many of the
educational implications that we drew from previous
research. It starts from the representation of the
correspondences between quantities and moves to
the representation of relations. It uses schematic
drawings and tables that bring to the fore of each
student’s activity the explicit representation of the
two (or more) measures that are involved in the
problem. It is grounded on students’ informal
knowledge because students use their building up
solutions in order to construct tables and schematic
drawings. It systematizes the students’ solutions in
tables and re-represents them by means of graphs.
After exploring students’ work on quantities,
students’ attention is focused on scalar relations,
which they are asked to represent explicitly using the
same visual records. It draws on a variety of contexts

=2 =2 X3
persons | 8 | 4 | 2 | 6
pints of water | 2 | 1 | s | 11,

Figure 4.5:A table showing the answers that the children can build up and the representation of the scalar transformations.
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that have been previously investigated and which
students have been able to handle successfully. Finally,
it uses graphs to explore the linear relations that are
implied in proportional reasoning.

To our knowledge, there is no systematic
investigation of how this proposal actually works
when implemented either experimentally or in

the classroom. The work by Treffers (1987) and
Gravemeijer (1997) on the formalisation of students’
understanding of multiplication and division focused
on the transition from computation with small to
large numbers. The work by van den Heuvel-
Panhuizen and colleagues focused on the use of
ratio tables in the teaching of percentages and
equivalence of fractions. In these papers, the authors
offer a clear description of how teachers can guide
students’ transition from their own intuitions to a
more formal mathematical representation of the
situations. However, there is no assessment of how
the programmes work and limited systematic
description of how students’ reasoning changes

as the programmes develop.

The approach by researchers at the Freudenthal
Institute is described as developmental research and
aims at constructing a curriculum that is designed

and improved on the basis of students’ responses
(Gravemeijer; 1994). This work is crucial to the
development of mathematics education. However; it
does not allow for the assessment of the effects of
specific teaching approaches, as more experimental
intervention research does. It leaves us with the sense
that the key to formalising students’ multiplicative
reasoning may be already to hand but we do not
know this yet. Systematic research at this stage would
offer an invaluable contribution to the understanding
of how students learn and to education.

Streefland was not the only researcher to propose
that teaching students about multiplicative relations
should start from their informal understanding of
the relations between quantities and measures.
Kaput and West (1994) developed an experimental
programme that took into account students’ building
up methods and sought to formalise them through
connecting them with tables. Their aim was to help
students create composite units of quantity, where
the correspondences between the measures were
represented iconically on a computer screen. For
example, if in a problem the quantities are 3
umbrellas for 2 animals, the computer screen would
display cells with images for 3 umbrellas and 2
animals in each cell, so that the group of umbrellas

and animals became a higher-level unit. The cells in
the computer screen were linked up with tables,
which showed the values corresponding to the cells
that had been filled with these composite units: for
example, if 9 cells had been filled in with the iconic
representations, the table displayed the values for |
through 9 of the composite units in columns headed
by the icons for umbrellas and animals. Subsequently,
students worked with non-integer values for the
ratios between the quantities: for example, they
could be asked to enlarge a shape and the
corresponding sides of the two figures had a non-
integer ratio between them (e.g. one figure had a
side 21 cm long and the other had the
corresponding side 35 cm long).

Kaput and West's programme was delivered over | |
lessons in two experimental classes, which included
31 students. Two comparison classes, with a total of
29 students, followed the instruction previously used
by their teachers and adopted from textbooks. One
comparison class had |3 lessons: the first five lessons
were based on a textbook and covered exercises
involving ratio and proportion; the last eight
consisted of computer-based activities using function
machines with problems about rate and profit. The
second comparison class had only three lessons; the
content of these is not described by the authors.
The classes were not assigned randomly to these
treatments and it is not clear how the teachers
were recruited to participate in the study.

At pre-test, the students in the experimental and
comparison classes did not differ in the percentage
of correct solutions in a multiplicative reasoning test.
At post-test, the students in the experimental group
significantly out-performed those in both comparison
classes. They also showed a larger increase in the
use of multiplicative strategies than students in the
comparison classes. It is not possible from Kaput and
West's report to know whether these were building
up, scalar or functional solutions, as they are
considered together as multiplicative solutions.

In spite of the limitations pointed out, the study
does provide evidence that students benefit from
teaching that develops their building up strategies
into more formalised approaches to solution, by
linking the quantities represented by icons of objects
to tables that represent the same quantities. This
result goes against the view that informal methods
are an obstacle to students’ learning in and of
themselves; it is more likely that they are an obstacle
if the teaching they are exposed to does not b uild
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on the students’ informal strategies and does not
help students connect what they know with the
new forms of mathematical representation that
the teacher wants them to learn.

The algebraic approach:
representing ratios and equivalences

In contrast to the functional approach to the
teaching of proportions that was described in the
previous section, some researchers have proposed
that teaching should not start from students’
understanding of multiplicative reasoning, but from a
formal mathematical definition of proportions as the
equality of two ratios. We found the most explicit
justification for this approach in a recent paper by
Adjiage and Pluvinage (2007). Adjiage and Pluvinage,
citing several authors (Hart, 1981 b); Karplus, Pulos
and Stage, 1983; Lesh, Post, and Behr, 1988), argue
that building up strategies are a weak indicator of
proportionality reasoning and that the link betw een
‘interwoven physical and mathematical
considerations, present in the build-up strategy’
(2007, p. I51)) should be the representation of
problems through rational numbers. For example, a
mixture that contains 3 parts concentrate and 2
parts water should be represented as 3/5, using
numbers or marks on a number line. The level I,
which corresponds to an iconic representation of the
parts used in the mixture, should be transformed
into a level 2, numerical representation, and students
should spend time working on such transformations.
Similarly, a scale drawing of a figure where one side is
reduced from a length of 5 cm to 3 cm should be
represented as 3/5, also allowing for the move from
an iconic to a numerical representation. Finally, the
representation by means of an equivalence of r atios,
as in 3/5 = 6/10, should be introduced, to transform
the level 2 into a level 3 representation. The same
results could be obtained by using decimals rather
than ordinary fractions representations.

In brief, level | allows for an articulation between
physical quantities: the students may realise that a
mixture with 3 parts concentrate and 2 parts water
tastes the same as another with 6 par ts concentrate
and 4 parts water. Level 2 allows for articulations
between the physical quantities and a mathematical
representation: students may realise that two different
situations are represented by the same number. Level
3 allows for articulations within the mathematical
domain as well as conversions from one system of
representation to another: 3/5 = 0.6 or é/10.

Adjiage and Pluvinage (2007) argue that it is
important to separate the physical from the
mathematical initially in order to articulate them
later; and propose that three rational registers
should be used to facilitate students’ attainment of
level 3: linear scale (a number line with resources
such as subdividing, sliding along the line, zooming),
fractional writing, and decimal writing should be
used in the teaching of ratio and proportions.

It seems quite clear to us that this proposal does
not start from students’ intuitions or strategies for
solving multiplicative reasoning problems, but rather
aims to formalise the representation of physical
situations from the start and to teach students how
to work with these formalisations. The authors
indicate that their programme is inspired by Duval's
(1995) theory of the role of representations in
mathematical thinking but we believe that there is
no necessary link between the theory and this
particular approach to teaching students about
ratio and proportions.

In order to convey a sense for the programme,
Adjiage and Pluvinage (2007) describe five moments
experienced by students. The researchers worked
with two conditions of implementation, which

they termed the full experiment and the partial
experiment. Students in the partial experiment

did not participate in the first moment using a
computer; they worked with pencil and paper tasks
in moments | and 2.

* Moment | The students are presented with three
lines, divided into equal spaces.They are told that
the lines are drawn in different scales. The lines
have different numbers of subdivisions — 5, 3 and 4,
respectively. Points equivalent to 3/5,2/3 and 1/4
are marked on the line. The students are asked to
compare the segments from the origin to the point
on the line. This is seen as a purely mathematical
question, executed in the computer by students in
the full experiment condition. The computer has
resources such as dividing the lines into equal
segments, which the students can use to execute
the task.

Moment 2 A similar task is presented with paper
and pencil.

Moment 3 The students are shown two pictures
that represent two mixtures: one is made with

3 cups of chocolate and 2 of milk (the cups are
shown in the pictures in different shades) and the
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other with 2 cups of chocolate and | of milk. The
students are asked which mixture tastes more
chocolaty. This problem aims to link the physical
and the mathematical elements.

Moment 4 The students are asked in what way are
the problems in moments 2 and 3 similar. Students
are expected to show on the segmented line
which portion corresponds to the cups of
chocolate and which to the cups of milk.

Moment 5 This is described as institutionalization in
Douady's (1984) sense: the students are asked to
make abstractions and express rules. For instance,
expressions such as these are expected:'/ divided
by 4 is equal to seven fourths (7 + 4 = 7/4)’;
‘Given an enlargement in which a 4 cm length
becomes a 7 cm length, then any length to be
enlarged has to be multiplied by 7/4. (Adjiage and
Pluvinage, 2007, pp. 160—161).

The teaching programme was implemented over
two school years, starting when the students were
in their 6t year (estimated age about | | years) in
school. A pre-test was given to them before they
started the programme; the post-test was carried
out at the end of the students’ 7t year (estimated
age about |2 years) in school.

Adjiage and Pluvinage (2007) worked with an
experienced French mathematics teacher, who
taught two classes using their experimental
programme. In both classes, the students solved

the same problems but in one class, referred to as
a partial experimental, the students did not use the
computer-based set of activities whereas in the
other one, referred to as full experimental, they

had access to the computer activities. The teacher
modified only his approach to teaching ratio and
proportions; other topics in the year were taught as
previously, before his engagement in the experiment.

The performance of students in these two
experimental classes was compared to results
obtained by French students in the same region (the
baseline group) in a national assessment and also to
the performance of non-specialist, prospective
school-teachers on a ratio and proportions task. The
tasks given to the three groups were not the same
but the researchers considered them comparable.

Adjiage and Pluvinage reported positive results
from their teaching programme. When the pupils in
the experimental classes were in grade 6 they had a

low rate of success in ratio and proportions
problems: about |3%. At the end of grade 7, they
attained 39% correct answers whereas the students
in the sample from the same region (baseline
group) attained 5% correct responses in the
national assessment. The students in the full
experimental classes obtained significantly better
results than those in the par tial experimental
classes but the researchers did not provide separate
percentages for the two groups. Prospective
teachers attained 83% on similar problems. The
researchers were not satisfied with these results
because, as they point out, the students performed
significantly worse than the prospective teachers,
who were taken to represent educated adults.

Although there are limitations to this study, it
documents some progress among the students

in the experimental classes. However, it is difficult
to know from their report how much time was
devoted to the teaching programme over the two
years and how this compares to the instruction
received by the baseline group.

In brief, this approach assumes that students’ main
difficutties in solving proportions problems result from
their inability to co-ordinate different forms of
mathematical representations and to manipulate them.
There is no discussion of the question of quantities
and relations and there is no attempt to mak e
students aware of the relations between quantities

in the problems. The aims of teaching are to:

* develop students’ understanding of how to use
number line and numerical representations
together in order to compare rational numbers

» promote students' reflection on how the numerical
and linear representations relate to problem
situations that involve physical elements
(3 cups of chocolate and 2 of milk)

* promote students' understanding of the relations
between the different mathematical
representations and their use in solving problems.

A comparison between this example of the
algebraic approach and the functional approach as
exemplified by Streefland's work suggests that this
algebraic approach does not offer students the
opportunity to distinguish between quantities and
relations. The three forms of representation offered
in the Adjiage and Pluvinage programme focus on
quantities; the relations between quantities are left
implicit. Students are expected to recognise that
mixtures of concentrate that are numerically
represented as 3/5 and 6/10 are equivalent. In the
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number line, they are expected to manipulate the
representations of quantities in order to compare
them. We found no evidence in the description of
their teaching programme that students were asked
1o think about their implicit models of the situations
and explicitly discuss the transformations that would
maintain the equivalences.

Summary

It is possible to identify in the literature two rather
different views of how students can best be taught
about multiplicative reasoning. Kieren identified

these as the functional and the algebr aic approach.

2 The functional approach proposes that teaching
should start from students’ understanding of
quantities and seek to make their implicit models
of relations between quantities explicit.

3 The algebraic approach seeks to represent
quantities with mathematical symbols and lead
students to work with symbols as soon as
possible, disentangling physical and mathematical
knowledge.

4 There is no systematic comparison between these
two approaches. Because their explicit description
is relatively recent, this paper is the first detailed
comparison of their characteristics and provides
a basis for future research.

Graphs and
functional relations

The previous sections focused on the visual

and numerical representations of relations. This
section will briefly consider the question of the
representation of relations in the Car tesian plane.
We believe that this is a form of representation that
merits further discussion because of the additional
power that it can add to students’ reflections, if
properly explored.

Much research on how students interpret graphs
has shown that graph reading has to be learned, just
as one must learn how to read words or numbers.
Similarly to other aspects of mathematics lear ning,
students have some ideas about reading graphs
before they are taught, and researchers agree that
these ideas should be considered when one designs
instruction about graph reading. Several papers can

be of interest in this context but this research is

not reviewed here, as it does not contribute to the
discussion of how graphs can be used to help
students understand functional relations (for
complementary reviews, see Friel, Curcio and Bright,
2001; Mevarech and Kramarsky, 1997). We focus
here on the possibilities of using graphs to help
students understand functional relations.

As reported earlier in this chapter, Lieven Verschaffel
and his colleagues have shown that students make
multiplicative reasoning errors in additive situations
as well as additive errors in multiplicative situations,
and so there is a need for students to be offered
opportunities to reflect on the nature of the relation
between quantities in problems.Van Dooren, Bock,
Hessels, Janssens and Verschaffel (2004) go as far as
suggesting that students fall prey to what they call an
illusion of linearity, but we think that they have
overstated their case in this respect. In fact, some of
the examples that they use to illustrate the so-called
illusion of linearity are indeed examples of linear
functions, but perhaps not as simple as the typical
linear functions used in school. In two examples of
their ‘illusion of linearity’ discussed here, there is a
linear function connecting the two variables but the
problem situation is more complex than many of
the problems used in schools when students are
taught about ratio and proportions. In our view,
these problems demonstrate the importance of
working with students to help them reflect about
the relations between the quantities in the
situations.

In one example, taken from Cramer, Post and
Currier (1993) and discussed earlier on in this
paper, two girls, Sue and Julie, are supposed to be
running on a track at the same speed. Sue started
first. When she had run 9 laps, Julie had run 3 laps.
When Julie completed 15 laps, how many laps had
Sue run? Although prospective teachers wrongly
quantified the relation between the number of laps
in a multiplicative way, we do not think that they fell
for the ‘illusion of linearity’, as argued by De Bock,
Verschaffel et al,, (2002; 2003). The function actually
is linear, as illustrated in Figure 4.6. However, the
intercept between Sue's and Julie’'s numbers of laps
is not at zero, because Sue must have run 6 laps
before Julie starts. So the prospective teachers’ error
is not an illusion of linearity but an inability to deal
with intercepts different from zero.

Figure 4.6 shows that three different curves would
be obtained: (1) if the girls were running at the
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same speed but one started before the other, as

in the Cramer, Post and Currier problem; (2) if

one were running faster than the other and this
difference in speed were constant; and (3) if they
started out running at the same speed b ut one girl
became progressively more tired whereas the other
was able to speed up as she war med up. Students
might hypothesise that this latter example is better
described by a quadratic than a linear function, if the
girl who was getting tired went from jogging to
walking, but they could find that the quadratic
function would exaggerate the difference between
the girls:how could the strong girl run 25 laps while
the weak one ran 57

The aim of this illustration is to show that relations
between quantities in the same context can vary and
that students can best investigate the nature of the
relation between quantities is if they have a tool to
do so. Streefland suggested that tables and graphs
can be seen as tools that allo w students to explore
relations between quantities; even though they could
be used to help students’ reasoning in this problem,
we do not know of research where it has been used.

Van Dooren, et al. (2004) used graphs and tables in
an intervention programme designed to help

student overcome the ‘illusion of linearity’ in a
second problem, which we argue also involve
mislabelling of the phenomenon under study. In
several studies, De Bock, Van Dooren and their
colleagues (De Bock, Verschaffel and Janssens, 1998;
De Bock,Van Dooren, Janssens and Verschaffel, 2002;
De Bock, Verschaffel and Janssens, 2002; De Bock,
Verschaffel, Janssens, Van Dooren and Claes, 2003)
claim to have identified this illusion in questions
exemplified in this problem: ‘Farmer Carl needs
approximately 8 hours to manure a square piece of
land with a side of 200 m. How many hours would
he need to manure a square piece of land with a
side of 600 m? De Bock, Van Dooren and colleagues
worked with relatively large numbers of Belgian
students across their many studies, in the age range
|2 to 16 years. They summarise their findings by
indicating that ‘the vast majority of students (even

| 6-year-olds) failed on this type of problem because
of their alarmingly strong tendency to apply linear
methods' (Van Dooren, Bock, Hessels, Janssens and
Verschaffel, 2004, p. 487) and that even with
considerable support many students were not

able to overcome this difficulty. Some students

who did become more cautious about o ver-using a
linear model, subsequently failed to use it when it
was appropriate.

T
(1] 2 4 5 |8 | T |8
Same speed, g | T | 8 10 |11 (12 | 13 | 14
differant starts
= = -Nultiplicative 0|3 |6 |9 |12 |15 |18 | 21
relation
= = Quadratic 1] 1 4 3 16 | 25 | 36 | 49 | 64
function

Same speed, different starts
= = =Nultiplicative relation
— = Quadratic function

Figure 4.6:Three graphs showing different relations between the number of laps run by two people over time
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We emphasise here that in this problem, as in the
previous one, students were not falling prey to an
illusion of linearity. The area of a rectangular figure is
indeed proportional to its side when the other side is
held constant; this is a case of m ultiple proportions
and thus the linear relation between the side and
the area can only be appreciated if the other side
does not change. Because the rectangle in their
problem is the particular case of a square, if one
side changes, so does the other; with both measures
changing at the same time, the area is not a simple
linear function of one of the measures.

Van Dooren et al. (2004) describe an intervention
programme, in which students used graphs and
tables to explore the relation between the measure
of the side of a square, its area and its perimeter. The
intervention contains interesting examples in which
students have the opportunity to examine diagrams
that display squares progressively larger by | cm, in
which the square units (| cmz) are clearly marked.
Students thus can see that when the side of a square
increases, for example, from | cmto 2 ¢cm, its area
increases from | cm? to 4 cm?, and when the
increase is from 2 cm to 3 cm, the area increases to
9 cm2.The graph associated with this table displays a
quadratic function whereas the graph associate with
the perimeter displays a linear function.

Their programme was not successful in promoting
students’ progress: the experimental group significantly
decreased the rate of responses using simple
proportional reasoning to the area problems but also
decreased the rate of correct responses to perimeter
problems, although the perimeter of a square is
connected to its sides by a simple propor tion.

We believe that the lack of success of their
programme may be due not to a lack of
effectiveness of the use of graphs and tables in
promoting students’ reasoning but from their use
of an inadequate mathematical analysis of the
problems. Because the graphs and tables used only
two variables, measure of the side and measure of
the area, the students had no opportunity to
appreciate that in the area problem there is a
proportional relation between area and each the
two sides. The two sides vary at the same time in
the particular case of the square but in other
rectangular figures there isn't a quadratic relation
between side and area. The relation between sides
and perimeter is additive, not multiplicative: it
happens to be multiplicative in the case of the
square because all sides are equal; so to each

increase by | cm in one side corresponds a 4 cm
increase in the perimeter.

We think that it would be surprising if the students
had made significant progress in understanding the
relations between the quantities through the
instruction that they received in these problems:
they were not guided to an appropriate model of
the situation, and worked with one measure, side,
instead of two measures, base and height. One of
the students remarked at the end of the
intervention programme, after ten experimental
lessons over a two week period: | really do
understand now why the area of a square increases
9 times if the sides are tripled in length, since the
enlargement of the area goes in two dimensions. But
suddenly | start to wonder why this does not hold
for the perimeter. The perimeter also increases in
two directions, doesn’t it?” (Van Dooren et al, 2004,
p. 496). This student seems to have understood that
the increase in one dimension of the square implies
a similar increase along the other dimension and
that these are multiplicatively related to the area but
apparently missed the opportunity to understand
that sides are additively related to the perimeter.

In spite of the shortcomings of this study, the
intervention illustrates that it is possible to relate
problem situations to tables and graphs
systematically to stimulate students’ reflection about
the implicit models. It is a current hypothesis by
many researchers (e.g. Carlson, Jacobs, Coe, Larsen
and Hsu, 2002; Hamilton, Lesh, Lester and Yoon,
2007; Lesh, Middleton, Caylor and Gupta, 2008)
that modelling data, testing the adequacy of models
through graphs, and comparing different model fits
can make an important contribution to students’
understanding of the relations between quantities. It
is consistently acknowledged that this process must
be carefully designed: powerful situations must be
chosen, clear means of hypothesis testing must be
available, and appropriate teacher guidance should
be provided. Shortcomings in any of these aspects
of teaching experiments could easily result in
negative results.

The hypothesis that modelling data, testing the
adequacy of models through graphs, and comparing
different model fits can promote student's
understanding of different types of relations
between quantities seems entirely plausible but, to
our knowledge, there is no research to provide clear
support to it. We think that there are now many
ideas in the literature that can be implemented to
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assess systematically how effective the use of
graphs and tables is as tools to support students’
understanding of the different types of relation that
can exist between measures. This research has the
potential to make a huge contribution to the
improvement of mathematics education in the
United Kingdom.

Conclusions
and implications

This review has identified results in the domain of
how children learn mathematics that have significant
implications for education. The main points are
highlighted here.

I Children form concepts about quantities from
their everyday experiences and can use their
schemas of action with diverse representations
of the quantities (iconic, numerical) to solve
problems. They often develop sufficient awareness
of quantities to discuss their equivalence and
order as well as how they can be combined.

2 It is significantly more difficult for them to become
aware of the relations between quantities and
operate on relations. Even after being taught how
to represent relations, they often interpret the
results of operations on relations as if they
were guantities. Children find both additive and
multiplicative relations significantly more difficult
than understanding quantities.

3 There is little evidence that the design of
instruction has so far taken into account the
importance of helping students become aware
of the difference between quantities and relations.
Some researchers have carried out experimental
teaching studies that suggest that it is possib le to
promote students’ awareness of relations. Further
research must be carried out to analyse how this
knowledge affects mathematics learning. If positive
results are found, there will be strong policy
implications.

4 Previous research had led to the conclusion that
students’ problems with proportional reasoning
stemmed from their difficulties with multiplicative
reasoning. However, there is presently much
evidence to show that, from a relatively early age
(about five to six years in the United Kingdom),
children already have informal knowledge that

allows them to solve multiplicative reasoning
problems. We suggest that students’ problems with
proportional reasoning stems from their difficulties
in becoming explicitly aware of relations between
quantities. This awareness would help them
distinguish between situations that involve different
types of relations: additive, proportional or
quadratic, for example.

5 Multiplicative reasoning problems are defined
by the fact that they involve two (or more)
measures linked by a fixed ratio. Students’ informal
knowledge of multiplicative reasoning stems from
the schema of one-to-many correspondence,
which they use both in multiplication and division
problems.When the product is unknown, children
set the elements in the tw o measures in
correspondence (e.g. | sweet costs 4p) and figure
out the product (how much 5 sweets will cost).
When the correspondence is unknown (e.g. if you
pay 20p for 5 sweets, how much does each sweet
cost), the children share out the elements (20p
shared in 5 groups) to find what the
correspondence is.

6 This informal knowledge is currently ignored in
UK. schools, probably due to the theory that
multiplication is essentially repeated addition and
division is repeated subtraction. However, the
connections between addition and multiplication,
on one hand, and subtraction and division, on the
other hand, are procedural and not conceptual.
So students’ informal knowledge of multiplicative
reasoning could be developed in school from an
earlier age.

7 A considerable amount of research carried out
independently in different countries has shown
that students sometimes use additive reasoning
about relations when the appropriate model is
a multiplicative one. Some recent research has
shown that students also use multiplicative
reasoning in situations where the appropriate
model is additive. These results suggest that
children use additive and multiplicative models
implicitly and do not make conscious decisions
regarding which model is appropriate in a specific
situation. The educational implication from these
findings is that schools should take up the task of
helping students become more aware of the
models that they use implicitly and of ways of
testing their appropriateness to particular
situations.
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8 Proportional reasoning stems from children’s use relations but much more research is needed to
of the schema of one-to-many correspondences, show how students’ thinking changes if they do
which is expressed in calculations as b uilding-up learn to use graphs in order to analyse the type
strategies. Evidence suggests that many students of relation that is most relevant in specific
who use these strategies are not aware of situations.

functional relations that characterises a linear
function. This result reinforces the importance of
the role that schools could play in helping students
become aware of functional relations in
proportions problems.

9 Two radically different approaches to teaching
proportions and linear functions in schools can be
identified in the literature. One, identified as
functional and human in focus, is based on the
notion that students’ schemas of action should be
the starting point for this teaching. Through
instruction, they should become progressively
more aware of the scalar and functional relations
that can be identified in such problems. Diagrams,
tables and graphs are seen as tools that could help
students understand the models that they are
using of situations and make them into models for
other situations later. The second approach,
identified as algebraic, proposes that there should
be a sharp separation between students’ intuitive
knowledge, in which physical and mathematical
knowledge are intertwined, and mathematical
knowledge. Students should be led to
formalisations early on in instruction and re-
establish the connections between mathematical
structures and physical knowledge at a later point.
Representations using fractions, ordinary and
decimal, and the number line are seen as the tools
that can allow students to abstract early on from
the physical situations. There is no unambiguous
evidence to show how either of these approaches
to teaching succeeds in promoting students’
progress, nor that either of them is more
successful than the less clearly articulated ideas
that are implicit in current teaching in the
classroom. Research that can clarify this issue is
urgently needed and could have a major impact by
promoting better learning in U.K. students.

10 Students need to learn to read graphs in order
to be able to use them as tools for thinking
about functions. Research has shown that
students have ideas about how to read graphs
before instruction and that these ideas should be
taken into account when graphs are used in the
classroom. It is possible to teach students to read
graphs and to use them in order to think about
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Summary of paper 5:
Understanding space
and its representation
in mathematics

Headlines

* Children come to school with a great deal of
knowledge about spatial relations. One of the most
important challenges in mathematical education is
how best to harness this implicit knowledge in
lessons about space.

* Children’s pre-school implicit knowledge of space is
mainly relational. Teachers should be aware of kinds
of relations that young children recognise and are
familiar with, such as their use of stable background
to remember the position and orientation of
objects and lines.

* Measuring of length and area poses particular
problems for children, even though they are
able to understand the underlying logic of
measurement. Their difficulties concern iteration
of standard units, which is a new idea for them,
and also the need to apply multiplicative reasoning
to the measurement of area.

From an early age children are able to extrapolate
imaginary straight lines, which allows them to learn
how to use Cartesian co-ordinates to plot specific
positions in space with no difficulty. However, they
need instruction about how to use co-ordinates to
work out the relation between different positions.

Learning how to represent angle mathematically is a
hard task for young children, even though angles are
an important part of their everyday life. There is
evidence that children are more aware of angle in the
context of movement (turns) than in other contexts
and learn about the mathematics of angle relatively
easily in this context. However, children need a great
deal of help from to teachers to understand how to
relate angles across different contexts.

* An important aspect of learning about geometry
is to recognise the relation between transformed
shapes (rotation, reflection, enlargement). This
also can be difficult, since children’s pre-school
experiences lead them to recognise the same
shapes as equivalent across such transformations,
rather than to be aware of the nature of the
transformation. However, there is very little
research on this important question.

Another aspect of the understanding of shape is the
fact that one shape can be transformed into another,
by addition and subtraction of its subcomponents.
For example, a parallelogram can be transformed
into a rectangle of the same base and height by the
addition and subtraction of equivalent triangles and
adding two equivalent triangles to a rectangle creates
a parallelogram. Research demonstrates that there is
a danger that children might learn about these
transformations only as procedures without
understanding their conceptual basis.

* There is a severe dearth of psychological research
on children’s geometrical learning. In particular we
need long-term studies of the effects of intervention
and a great deal more research on children’s
understanding of transformations of shape.

At school, children often learn formally about matters
that they already know a great deal about in an
informal and often quite implicit way. Sometimes their
existing, informal understanding, which for the most
part is based on experiences that they start to have
long before going to school, fits well with what they
are expected to learn in the classroom. At other
times, what they know already, or what they think
they know, clashes with the formal systems that they
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are taught at school and can even prevent them from
grasping the significance of these formal systems.

Geometry is a good and an obvious example.
Geometry lessons at school deal with the use of
mathematics and logic to analyse spatial relations and
the properties of shapes. The spatial relations and the
shapes in question are certainly a common part of
any child's environment, and psychological research
has established that from a very early age children are
aware of them and quite familiar with them. It has
been shown that even very young babies not only
discriminate regular geometric shapes but can recognise
them when they see them at a tilt, thus co-ordinating
information about the orientation of an object with
information about the pattern of its contours.

Babies are also able to extrapolate imaginary straight
lines (a key geometric skill) at any rate in social
situations because they can work out what someone
else is looking at and can thus constr uct that person’s
line of sight. Another major early achievement by
young children is to master the logic that under lies
much of the formal analysis of spatial relations that
goes on in geometry. By the time they first go to
school young children can make logical transitive
inferences (A > B,B > C,therefore A>C A=B,B
= C, therefore A = C), which are the logical basis of
all measurement. In their first few years at school
they also become adept at the logic of inversion (A
+ B — B), which is a logical move that is an essential
part of studying the relation betw een shapes.

Finally, there is strong evidence that most of the
information about space that children use and
remember in their everyday lives is relational in
nature. One good index of this is that children’s
memory of the orientation of lines is largely based
on the relation between these lines and the
orientation of stable features in the background. For
this reason children find it much easier to remember
the orientation of horizontal and vertical lines than
of diagonal lines, because horizontal and vertical
features are quite common in the child’s stable
spatial environment. For the same reason, young
children remember and reproduce right angles
(perpendicular lines) better than acute or obtuse
angles. The relational nature of children’s spatial
perception and memory is potentially a powerful
resource for learning about geometry, since spatial
relations are the basic subject matter of geometr .

With so much relevant informal knowledge about
space and shape to draw on, one might think that
children would have little difficulty in translating this

knowledge into formal geometrical understanding.
Yet, it is not always that easy. It is an unfortunate and
well-documented fact that many children have
persistent difficulties with many aspects of geometry.

One evidently successful link between young
children’s early spatial knowledge and their more
formal experiences in the classroom is their lear ning
how to use Cartesian co-ordinates to plot positions
in two-dimensional space. This causes schoolchildren
little difficulty, although it takes some time for them
to understand how to work out the relation
between two positions plotted in this way.

Other links between informal and formal knowledge
are harder for young children. The apparently simple act
of measuring a straight line, for example, causes them
problems even though they are usually perfectly able to
make the appropriate logical moves and understand
the importance of one-to-one correspondence, which
is an essential part of relating the units on a r uler to
the line being measured. One problem here is that
they find it hard to understand the idea of iteration:
iteration is about repeated measurements, so that a
ruler consists of a set of iterated (repeated) units like
centimetres. Iteration is necessary when a particular
length being measured is longer than the measur ing
instrument. Another problem is that the one-to-one
correspondence involved in measuring a line with a
ruler is asymmetrical. The units (centimetres, inches) are
visible and clear in the ruler but have to be imagined
on the line itself. It is less of a sur prise that it also takes
children a great deal of time to come to ter ms with
the fact that measurement of area usually needs some
form of multiplication, e.g. height x width with
rectangles, rather than addition.

The formal concept of angle is another serious
stumbling block for children even though they are
familiar enough with angles in their everyday spatial
environments. The main problem is that they find it
hard to grasp that two angles in very different contexts
are the same, e.g. themselves turning 90° and the
corner of a page in a book. Abstraction is an essential
part of geometry but it has very little to do with
children’s ordinary spatial perception and knowledge.

For much the same reason, decomposing a relatively
complex shape into several simpler component
shapes — again an essential activity in geometry —is
something that many children find hard to do. In their
ordinary lives it is usually more important for them to
see shapes as unities, rather than to be able to break
them up into other shapes. This difficulty makes it hard
for them to work out relationships between shapes.
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For example, children who easily grasp that a + b — b
= g, nevertheless often fail to understand completely
the demonstration that a rectangle and a
parallelogram with the same base and height are

equal in area because you can transform the
parallelogram into the rectangle by subtracting a
triangle from one end of the parallelogram and adding
an exactly equivalent triangle to the other end.

We know little about children’s understanding of
transformations of shape or of any difficulties that
they might have when they are taught about these
transformations. This is a serious gap in research on
children’s mathematical learning. It is well recognised,
however, that children and some adults confuse scale
enlargements with enlargements of area. They

think that doubling the length of the contour of a
geometric shape such as a square or a rectangle also
doubles its area, which is a serious misconception.
Teachers should be aware of this potential difficulty
when they teach children about scale enlar gements.

Researchers have been more successful in identifying
these obstacles than in showing us how to help
children to surmount them. There are some studies
of ways of preparing children for geometry in the
pre-school period or in the early years at school. This

Recommendations

research, however, concentrated on short-term gains
in children’s geometric understanding and did not
answer the question whether these early teaching
programmes would actually help children when they
begin to learn about geometry in the classroom.

There has also been research on teaching children
about angle, mostly in the context of computer-
based teaching programmes. One of the most
interesting points to come out of this research is that
teaching children about angle in terms of movements
(turning) is successful, and there is some evidence
that children taught this way are quite likely to
transfer their new knowledge about angle to other
contexts that do not involve movement.

However, there has been no concerted research

on how teachers could take advantage of children’s
considerable spatial knowledge when teaching them
geometry. We badly need long-term studies of
interventions that take account of children’s
relational approach to the spatial environment and
encourage them to grasp other relations, such as the
relation between shapes and the relation between
shapes and their subcomponent parts, which go
beyond their informal spatial knowledge.

Research about mathematical
learning

Recommendations for teaching
and research

Children’s pre-school knowledge of space
is relational. They are skilled at using stable
features of the spatial framework to
perceive and remember the relative
orientation and position of objects in the
environment. There is, however, no
research on the relation between this
informal knowledge and how well children
learn about geometry.

Teaching Teachers should be aware of the research on
children’s considerable spatial knowledge and skills and should
relate their teaching of geometrical concepts to this
knowledge.

Research There is a serious need for longitudinal research
on the possible connections between children’s pre-school
spatial abilities and how well they learn about geometry

at school.

Children already understand the logic of
measurement in their early school years.
They can make and understand transitive
inferences, they understand the inverse
relation between addition and subtraction,
and they can recognise and use one-to-
one correspondence. These are three
essential aspects of measurement.

Teaching The conceptual basis of measurement and not just
the procedures should be an important part of the teaching.
Teachers should emphasise transitive inferences, inversion of
addition and subtraction and also one-to-one correspondence
and should show children their importance.

Research Psychologists should extend their research

on transitive inference, inversion and one-to-one
correspondence to geometrical problems, such as
measurement of length and area.
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Recommendations (continued)

Research about mathematical
learning

Recommendations for teaching
and research

Many children have difficulties with the
idea of iteration of standard units in
measurement,

Teaching Teachers should recognise this difficulty and
construct exercises which involve iteration, not just with
standard units but with familiar objects like cups and hands.

Research Psychologists should study the exact cause of
children’s difficulties with iteration.

Many children wrongly apply additive
reasoning, instead of multiplicative
reasoning, to the task of measuring area.
Children understand this multiplicative
reasoning better when they first think of it
as the number of tiles in a row times the
number of rows than when they try to
use a base times height formula.

Teaching In lessons on area measurement, teachers can
promote children’s use of the reasoning ‘number in a row
times number of rows’ by giving children a number of tiles that
is insufficient to cover the area. They should also contrast
measurements which do, and measurements which do not,
rest on multiplication.

Even very young children can easily
extrapolate straight lines and
schoolchildren have no difficulty in learning
how to plot positions using Cartesian
co-ordinates, but it is difficult for them to
work out the relation between different
positions plotted in this way.

Teaching Teachers, using concrete material, should relate
teaching about spatial co-ordinates to children’s everyday
experiences of extrapolating imaginary straight lines.
Research There is a need for intervention studies on
methods of teaching children to work out the relation
between different positions, using co-ordinates.

Research on pre-school intervention
suggests that it is possible to prepare
children for learning about geometry by
enhancing their understanding of space
and shapes. However, this research has not
included long-term testing and therefore
the suggestion is still tentative.

Research There will have to be long-term predictive and
long-term intervention studies on this crucial, but neglected,
question

Children often learn about the relation
between shapes (e.g. between a
parallelogram and a rectangle) as a
procedure without understanding the
conceptual basis for these transformations.

Teaching Children should be taught the conceptual reasons
for adding and subtracting shape components when studying
the relation between shapes.

Research Existing research on this topic was done a very
long time ago and was not very systematic. We need well-
designed longitudinal and intervention studies on children’s
ability to make and understand such transformations.

There is hardly any research on children’s
understanding of the transformation of
shapes, but there is evidence of confusion
in many children about the effects of
enlargement: they consider that doubling
the length of the perimeter of a square,
for example, doubles its area.

Teaching Teachers should be aware of the risk that children
might confuse scale enlargements with area enlargements.
Research Psychologists could easily study how children
understand transformations like reflection and rotation but
they have not done so.We need this kind of research.



Key understandings in mathematics lear ning

Understanding space
and 1ts representation
in mathematics

From informal understanding to
formal misunderstanding of space

This paper is about children's informal knowledge of
space and spatial relations and about their f ormal
learning of geometry. It also deals with the
connection between these two kinds of knowledge.
This connection is much the same as the one
between knowledge about quantitative relations on
the one hand and about number on the other hand,
which we described in Papers | and 2. We shall show
how young children build up a large and impressive,
but often implicit, understanding of spatial relations
before they go to school and how this knowledge
sometimes matches the relations that they learn in
geometry very well and sometimes does not.

There is a rich vein of research on children’s

spatial knowledge — knowledge which they acquire
informally and, for the most part, long before they go
to school — and this research is ob viously relevant to
the successes and the difficulties that they have when
they are taught about geometry at school. Yet, with a
few honourable exceptions, the most remarkable of
which is a recent thorough review by Clements and
Sarama (2007 b), there have been very few attempts
indeed to link research on children’s informal, and
often implicit, knowledge about spatial relations to
their ability to carry out the explicit analyses of
space that are required in geometry classes.

The reason for this gap is probably the striking
imbalance in the contribution made by psychologists
and by maths educators to research on geometrical
learning. Although psychologists have studied
children’s informal understanding of space in detail
and with great success, they have virtually ignored
children’s learning about geometry, at any rate in
recent years. Despite Wertheimer's (1945) and

Piaget, Inhelder and Szeminska's (1960) impressive
pioneering work on children’s understanding of
geometry, which we shall describe later, psychologists
have virtually ignored this aspect of children’s
education since then. In contrast, mathematics
educators have made steady progress in studying
children’s geometry with measures of what children
find difficult and studies of the effects of different
kinds of teaching and classroom experience.

One effect of this imbalance in the contribution of
the two disciplines to research on learning about
geometry is that the existing research tells us
more about educational methods than about the
underlying difficulties that children have in learning
about geometry. Another result is that some
excellent ideas about enhancing children’s
geometrical understanding have been proposed by
educationalists but are still waiting for the kind of
empirical test that psychologists are good at
designing and carrying out.

The central problem for anyone trying to make the
link between children’s informal spatial knowledge
and their understanding of geometry is easy to state.
It is the stark contrast between children’s impressive
everyday understanding of their spatial environment
and the difficulties that they have in learning how

to analyse space mathematically. We shall start

our review with an account of the basic spatial
knowledge that children acquire informally long
before they go to school.
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Early spatial knowledge:
perception

Shape, size, position and extrapolation
of imagined straight lines

Spatial achievements begin early. Over the last 30
years, experimental work with young babies has
clearly shown that they are born with, or acquire
very early on in their life, many robust and effective
perceptual abilities. They can discriminate objects by
their shape, by their size and by their orientation and
they can perceive depth and distinguish differences in
distance (Slater, 1999; Slater and Lewis 2002; Slater,
Field and Hernadez-Reif, 2002; Bremner, Bryant and
Mareschal, 2006).

They can even co-ordinate information about size and
distance (Slater; Mattock and Brown, 1990), and they
can also co-ordinate information about an object’s
shape and its orientation (Slater and Morrison, 1985).
The first co-ordination makes it possible for them to
recognise a particular object, which they first see close
up, as the same object when they see it again in the
distance, even though the size of the visual impression
that it now makes is much smaller than it was before.
With the help of the second kind of co-ordination,
babies can recognise particular shapes even when
they see them from completely different angles: the
shape of the impression that these objects mak e on
the visual receptors varies, but babies can still
recognise them as the same by taking the change in
orientation into account.

We do not yet know how children so young are
capable of these impressive feats, but it is quite likely
that the answer lies in the relational nature of the
way that they deal with size (and, as we shall see
later, with orientation), as Rock (1970) suggested
many years ago. A person nearby makes a larger
visual impression on your visual system than a
person in the distance but, if these two people are
roughly the same size as each other, the relation
between their size and that of familiar objects near
each of them, such as cars and bus-stops and
wheelie-bins, will be much the same.

The idea that children judge an object’s size in terms
of its relation to the size of other objects at the
same distance receives some support from work

on children’s learning about relations. VWWhen four-
year-old children are asked to discriminate and
remember a particular object on the basis of its size,

they do far better when it is possib le to solve the
problem on the basis of size relations (e.g. it is
always the smaller one) than when they have to
remember its absolute size (e.g. it is always exactly
so large) (Lawrenson and Bryant, 1972).

Another remarkable early spatial achievement by
infants, which is also relational and is highl y relevant
to much of what they later have to learn in
geometry lessons, is their ability to extrapolate
imaginary straight lines in three dimensional space
(Butterworth, 2002). Extrapolation of imagined
straight lines is, of course, essential for the use of
Cartesian co-ordinates to plot positions in graphs
and in maps, but it also is a basic ingredient of very
young children’s social communication (Butterworth
and Cochrane, 1980; Butterworth and Grover; 1988).
Butterworth and Jarrett (1991) showed this in a
study in which they asked a mother to sit opposite
her baby and then to stare at some predeter mined
object which was either in front and in full view of
the child or was behind the child, so that he had to
turn his head in order to see it. The question was
whether the baby would then look at the same
object, and to do this he would have to extrapolate
a straight line that represented his mother's line of
sight. Butterworth and Jarrett found that babies
younger than |12 months manage to do this most of
the time when the object in question was in front of
them. They usually did not also turn their heads to
look at objects behind them when these apparently
caught their mothers’ attention. But | 5-month-old
children did even that: they followed their mother's
line of sight whether it led them to objects already
in full view or to ones behind them. A slightly later
development that also involves extrapolating
imaginary straight lines is the ability to point and to
look in the direction of an object that someone else
is pointing at, which infants manage do with great
proficiency (Butterworth and Morisette, 1996;
Butterworth and Itakura, 2000).

Orientation and position

The orientation of objects and surfaces are a
significant and highly regular and predictable part of
our everyday spatial environments. Walls usually are,
and usually have to be, vertical: objects stay on
horizontal surfaces but tend to slide off sloping
surfaces. The surface of still liquid is horizontal: the
opposite edges of many familiar manufactured
objects (doors, windows, television sets, pictures,
book pages) are parallel: we ourselves are vertical
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when we walk, horizontal when we swim. Yet,
children seem to have more difficulty distinguishing
and remembering information about orientation than
information about other familiar spatial variables.

Horizontals and verticals are not the problem.
Five-year-old children take in and remember the
orientation of horizontal and vertical lines extremely
well (Bryant 1969, 1974; Bryant and Squire, 2001). In
contrast, they have a lot of difficulty in remembering
either the direction or slope of ob liquely oriented
lines. There is, however, an effective way of helping
them over this difficulty with oblique lines. If there are
other obliquely oriented lines in the background that
are parallel to an oblique line that they are asked to
remember, their memory of the slope and direction
for this oblique line improves dramatically (see Figure
5.1). The children use the parallel relation between
the line that they have to remember and stable
features in the background framework to store and
recognise information about the oblique line.

This result suggests a reason for the initial radical
difference in how good their memory is for vertical
and horizontal features and how poor it is for
obliquely oriented ones. The reason, again, is about

Child sees a line Short delay Child shown two

lines and judges

relations. It is that that there are usually ample stable
horizontal and vertical features in the background to
relate these lines to. Stable, background features that
parallel particular lines which are not either vertical
or horizontal are much less common. If this idea is
right, young children are already relying on spatial
relations that are at the heart of Euclidean geometry
to store information about the spatial environment
by the time that they begin to be taught f ormally
about geometry.

However, children do not always adopt this excellent
strategy of relating the orientation of lines to
permanent features of the spatial environment.
Piaget and Inhelder’s (1963) deservedly famous and
often-repeated experiment about children drawing
the level of water in a tilted container is the best
example. They showed the children tilted glass
containers (glasses, bottles) with liquid in them
(though the containers were tilted, the laws of
nature dictated that the level of the liquid in them
was horizontal). They also gave the children a picture
of an empty, tilted container depicted as just abo ve
a table top which was an obvious horizontal
background feature. The children’s task was to draw
in the level of the liquid in the drawing so that it was

—
A

Easy
Difficult
o Easy

Figure 5.1: Children easily remember horizontal or vertical lines but not oblique lines unless they can relate oblique lies to a

stable background feature.
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exactly like the liquid in the experimenter’s hand. The
question that Piaget and Inhelder asked was whether
they would draw the liquid as parallel to the table
top or, in other words, as horizontal.

Children below the age of roughly eight years did
not manage to do this. Many of them drew the liquid
as perpendicular to the sides (when the sides were
straight) and parallel to the bottom of the container.
It seems that the children could not tak e advantage
of the parallel relation between the liquid and the
table top, probably because they were preoccupied
with the glass itself and did not manage to shift their
attention to an external feature.

Piaget and Inhelder treated the young child's
difficulties in this drawing task as a failure on the
child’s part to notice and take advantage of a basic
Euclidean relation, the parallel relation between
two horizontal lines. They argued that a child who
makes this mistake does not have any idea about
horizontality: he or she is unaware that horizontal
lines and surfaces are an impor tant part of the
environment and that some surfaces, such as still
liquid, are constantly horizontal.

Piaget and Inhelder then extended their ar gument to
verticality. They asked children to copy pictures of

objects that are usually vertical, such as trees and
chimneys. In the pictures that the children had to
copy, these objects were positioned on obliquely
oriented surfaces: the trees stood vertically on the
side of a steeply sloping hill and vertical chimneys
were placed on sloping roofs. In their copies of
these pictures, children younger than about eight
years usually drew the trees and chimneys as
perpendicular to their baselines (the side of the hill
or the sloping roof) and therefore with an oblique
orientation. Piaget and Inhelder concluded that
children of this age have not yet realised that the
space around them is full of stable vertical and
horizontal features.

There is something of a conflict betw een the two sets
of results that we have just presented. One (Bryant
1969, 1974; Bryant and Squire, 2001) suggests that
young children detect, and indeed rely on, parallel
relations between objects in their immediate
perception and stable background features. The other
(Piaget and Inhelder, 1963) leads to the conclusion
that children completely disregard these relations.
However; this is not a serious problem. In the first set
of experiments the use that children made of parallel
relations was probably implicit. The second set of
experiments involved drawing tasks, in which the
children had to make explicit judgements about such

When children see 2-line figure A and are asked to copy in the missing line on B either by placing

or drawing a straight wire, they represent the line as nearer to the perpendicular than it is
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Figure 5.2:The perpendicular bias
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relations. Children probably perceive and make use of
parallel relations without being aware of doing so.The
implication for teaching children is an interesting one .
It is that one important task for the teacher of
geometry is to transform their implicit knowledge
into explicit knowledge.

There is another point to be made about the
children’s mistakes in Piaget and Inhelder’s studies.
One possible reason, or partial reason, for these
mistakes might have been that in every case (the
liquid in a tilted container, trees on the hillside,
chimneys on the sloping roofs) the task was to draw
the crucial feature as non-perpendicular in relation
1o its baseline. There is plenty of evidence (Ibbotson
and Bryant, 1976) that, in copying, children find it
quite difficult to draw one straight line that meets
another straight line, the baseline, when the line that
they have to draw is obliquely oriented to that
baseline (see Figure 5.2).

They tend to misrepresent the line that they are
drawing either as perpendicular to the baseline or
as closer to the perpendicular than it should be.
There are various possible reasons for this
‘perpendicular error’, but at the very least it shows
that children have some difficulty in representing
non-perpendicular lines. The work by Piaget et dl.
establishes that the presence of stable, background
features of the spatial environment, like the table
top, does not help children surmount this bias.

Early spatial knowledge:
logic and measurement

Inferences about space and
measurement

The early spatial achievements that we have
described so far are, broadly speaking, perceptual
ones. Our next task is to consider how young
children reason about space.We must consider
whether young children are able to make logical
inferences about space and can understand other
people’s inferential reasoning about space by the
age when they first go to school.

We can start with spatial measurements. These
depend on logical inferences about space.
Measurement allows us to make comparisons between
quantities that we cannot compare directly.VWe can
work out whether a washing line is long enough to

stretch between posts by measuring the line that we
have and the distance between the posts. We compare
the two lengths, the length of the line and the distance
from one post to the other indirectly, by comparing
both directly to the same measuring instrument — a
tape measure or ruler We combine two direct
comparisons to make an indirect comparison.

When we put two pieces of information together in
this way in order to produce a new conclusion, we
are making a logical inference. Inferences about
continua, like length, are called transitive inferences.
We, adults, know that if A = B in length and B = C,
then A is necessarily the same length as C, even
though we have never seen A and C together and
therefore have not been able to compare them
directly. We also know, of course, that if A > B and B
> C (in length), then A > C, again without making a
direct comparison between A and C. In these
inferences B is the independent measure through
which A and C can be compared.

Piaget, Inhelder and Szeminska (1960) were the first
to discuss this link between understanding logic and
being able to measure in their well-known book on
geometry. They argued that the main cause of the
difficulties that children have in learning about
measurement is that they do not understand
transitive inferences. These authors’ claim about the
importance of transitive inferences in learning about
measurement is indisputable and an extremely
important one. However, their idea that young
children cannot make or understand transitive
inferences has always been a controversial one, and
it is now clear that we must make a fundamental
distinction between being able to make the inference
and knowing when this inference is needed and how
to put it into effect.

There are usually two consecutive parts to a
transitive inference task. In the first, the child is given
two premises (A = B, B = C) and in the second he
or she has to try to draw an inference from these
premises. For example, in Piaget's first study of
transitive inferences, which was not about length b ut
about the behaviour of some fictional people, he first
told the children that ‘Mary is naughtier than Sarah,
and Sarah is naughtier than Jane” and then asked then
‘Who was the naughtier, Mary or Jane? Most children
below the age of roughly nine years found, and still
do find, this an extremely difficult question and often
say that they cannot tell. The failure is a dramatic one,
but there are at least tw o possible reasons for it.
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One, favoured by Piaget himself, that the failure is a
logical one — that children of this age simply cannot
put two premises about quantity together logically.

It is worth noting that Piaget thought that the reason
that young children did not make this logical move
was that they could not conceive that the middle
term (B when the premises are A > Band B > C)
could simultaneously have one relation to A and
another, different, relation to C.

The second possible reason for children not making
the transitive inference is about memory. The
children may be unable to make the inference simply
because they have forgotten, or because they did
not bother to commit to memory in the first place,
one or both of the premises. The implication here is
that they would be able to make the inference if
they could remember both premises at the time that
they were given the inferential question.

One way to test the second hypothesis is to make
sure that the children in the study do remember
the premises, and also to take the precaution of
measuring how well they remember these premises
at the same time as testing their ability to draw a
transitive inference. Bryant and Trabasso (1971) did
this by repeating the information about the premises
in the first part of the task until the children had
learned it thoroughly, and then in the second

part checking how well they remembered this
information and testing how well they could answer
the inferential questions at the same time. In this
study even the four-year-olds were able remember
the premises and they managed to put them
together successfully to make the correct transitive
inference on 80% of the trials. The equivalent figure
for the five-year-olds was 89%.

Young children’s success in this inferential task
suggests that they have the ability to make the
inference that underlies measurement, but we still
have to find out how well they apply this ability to
measurement itself. Here, the research of Piaget et
al. (1960) on measurement provides some
interesting suggestions. These researchers showed
children a tower made of bricks of different sizes.
The tower was placed on a small table and each
child was

asked to build another tower of the same height
on another lower table that was usually, though
not always, on the other side of the other side of a
partition, so that the child had to create the replica
without being able compare it directly to the original
tower. Piaget et al. also provided the child with

various possible measurement instruments, such as
strips of paper and a straight stick, to help her with
the task, and the main question that they ask ed was
whether the child would use any of these as
measures to compare the two towers.

Children under the age of (roughly) eight years did
not take advantage of the measuring instruments.
Either they tried to do the task by remembering the
original while creating the replica, which did not
work at all well, or they used their hands or their
body as a measuring instrument. For example, some
children put one hand at the bottom and the other
at the top of the original tower and then walked to
the other tower trying at the same time to keep
their hands at a constant distance from each other.
This strategy, which Piaget et al. called ‘manual
transfer, tended not to be successful either, for the
practical reason that the children also had to use and
move their hands to add and subtract bricks to their
own tower. Older children, in contrast, were happy
to use the strips of paper or the dowel rod as a
makeshift ruler to compare the two towers. Piaget
et al. claimed that the children who did not use the
measuring instruments failed the task because they
were unable to reason about it logically. They also
argued that children’s initial use of their own body
was a transitional step on the way to true
measurement using an ‘independent middle term’.

This might be too pessimistic a conclusion. There is
an alternative explanation for the reactions of the
children who did not attempt to use a measure at
all. It is that children not only have to be able to
make an inference to do well in any measuring task:
they also have to realise that a direct comparison
will not do, and thus that instead they should make
an indirect, inferential, comparison with the help of a
reliable intervening measure.

There is some evidence to support this idea. If it is
right, children should be ready to measure in a task
in which it is made completely obvious that direct
comparisons would not work. Bryant and Kopytynska
(1976) devised a task of this sor t. First, they gave a
group of five- and six-year-old children a version of
Piaget et al.'s two towers task, and all of them failed.
Then, in a new task, they gave the children two
blocks of wood, each with a hole sunk in the middle
in such a way that it was impossible to see how
deep either hole was. They asked the children to find
out whether the two holes were as deep as each
other or not. The children were also given a rod with
coloured markings. The question was whether the
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children, who did not measure in Piaget et al’s task,
would start to use a measure in this new task in
which it was clear that a direct compar ison would be
useless.

Nearly all the children used the rod to measure

both holes in the blocks of wood at least once (they
were each given four problems) and over half the
children measured and produced the right answer in
all four problems. It seems that children of five years
or older are ready to use an inter vening measure to
make an indirect comparison of two quantities. Their
difficulty is in knowing when to distrust direct
comparisons enough to resort to measurement.

Iteration and measurement

One interesting variation in the study of measurement
by Piaget et al. (1960) was in the length of the straight
dowel rod, which was the main measuring tool in this
task. The rod's length equalled the height of the
original tower (R =T) in some problems but in others
the rod was longer (R > T) and in others still it was
shorter (R <T) than the tower.

The older children who used the rod as a measure
were most successful when R = T.They were slightly
less successful when R > T and they had to mark a
point on the rod which coincided with the summit
of the tower. In contrast, the R < T problems were
particularly difficult, even for the children who tried
to use the rod as a measure . The solution to such
problems is iteration which, in this case, is to apply
the rod more than once to the to wer: the child has
to mark a point to represent the length of the r uler
and then to start measuring again from this point.

It is worth noting that iteration also involves a great
deal of care in its execution.You must cover all the
surface that you are measuring, all its length in these
examples, but you must never overlap — never
measure any part of the surface twice.

lteration in measurement is interesting because

the people who do it successfully are actually
constructing their own measure and therefore
certainly have a strong and effective understanding
of measurement. Piaget et al. (1960) also argued that
children’s eventual realisation that iteration is the
solution to some measuring problems is the basis

for their eventual understanding of the role of
standardised units such as centimetres and metres.
We use these units, they argued, in an iterative way:

| metre is made up of 100 iter ations of |
centimetre, and one kilometre consists of 1000
iterations of | metre. Children’s first insight into this
iterative system, according to Piaget et al, comes
from their initial experiences with R < T problems.
This is an interesting causal hypothesis that has some
serious educational implications. It should be tested.

Conclusions about children’s early
spatial knowledge

* Children have a well-developed and effective
relational knowledge of shape, position, distance,
spatial orientation and direction long before they
go to school. This knowledge may be implicit and
non-numerical for the most part, but it is certainly
knowledge that is related to geometry.

* The mistakes that children make in drawing
horizontal and vertical lines are probably due to
preferring to concentrate on relations between
lines close to each other (liquid in a glass is
perpendicular to the sides of the glass) rather than
to separated lines (liquid in a glass is parallel to
horizontal surfaces like table tops). This is a mistake
not in relational perception, but in picking the right
relation.

Children are also able to understand and to make
transitive inferences, which are the basic logical
move that underlies measurement, several years
before being taught about geometry.

We do not yet know how well they can cope with
the notion of iteration in the school years.

There is no research on the possible causal links
between these impressive early perceptual and
logical abilities and the successes and difficulties that
children have when they first learn about geometry.
This is a serious gap in our knowledge about
geometrical learning.
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The connections between
children’s knowledge of space
before being taught geometry
and how well they learn when
they are taught about geometry

To what extent does children’s early spatial
development predict their success in geometry later on?
The question is simple, clear and overwhelmingly
important. If we were dealing with some other
school subject — say learning to read — we would
have no difficulty in finding an answer, perhaps more
than one answer, about the importance of early,
informal learning and experience, because of the
very large amount of work done on the subject.
With geometry, however, it is different. Having
established that young children do have a rich and
in many ways sophisticated understanding of their
spatial environment, psychologists seem to have
made their excuses and left the room. Literally
hundreds of longitudinal and inter vention studies
exist on what children already know about language
and how they learn to read and spell. Yet, as far as
we know, no one has made a systematic attempt, in
longitudinal or intervention research, to link what
children know about space to how they learn the
mathematics of spatial relations, even though there
are some extremely interesting and highly specific
questions to research.

To take one example, what connections are there
between children’s knowledge of measurement
before they learn about it and how well they learn
to use and understand the use of rulers? To take
another, we know that children have a bias towards
representing angles as more perpendicular than they
are: what connection is there between the extent of
this bias and the success that children have in
learning about angles, and is the relation a positive or
a negative one? These are practicable and immensely
interesting questions that could easily be answered in
longitudinal studies. It is no longer a matter of what

is to be done.The question that baffles us is: why are
the right longitudinal and intervention studies not
being done?

How can we intervene to prepare young children in
the pre-school period for geometry? If there is a
connection between the remarkable spatial
knowledge that we find in quite young children
and their successes and failures in lear ning about
geometry later on, it should be possible to work

on these early skills and enhance them in various
ways that will help them learn about geometry when
the time comes.

Here the situation is rather different. Educators have
produced systematic programmes to prepare
children for formal instruction in geometry. Some of
these are ingenious and convincing, and they deserve
attention. The problem in some cases is a lack of
empirical evaluation.

One notable programme comes from the highly
respected Freudenthal Institute in the Nether lands.
A team of educational researchers there (van den
Heuven-Panhuizen and Buys, 2008) have produced
an ingenious and original plan for enhancing
children’s geometric skills before the age when they
would normally be taught in a formal way about the
subject. We shall concentrate here on the
recommendations that van den Heuven-Panhuizen
and Buys make for introducing kindergarten children
to some basic geometrical concepts. However, we
shall begin with the remark that, though their
recommendations deserve our serious attention, the
Freudenthal team offer us no empirical evidence at
all that they really do work. Neither intervention
studies with pre-tests and post-tests and randomly
selected treatment groups, nor longitudinal predictive
projects, seem to have played any part in this
particular initiative.

The basic theoretical idea behind the Freudenthal
team'’s programme for preparing children for
geometry is that children’s everyday life includes
experiences and activities which are relevant to
geometry but that the geometric knowledge that
kindergarten children glean from these experiences
is implicit and unsystematic. The solution that the
team offers is to give these young children a
systematic set of enjoyable game-like activities with
familiar material and after each activity is finished to
discuss and to encourage the children to reflect on
what they have just done.

Some of these activities are about measurement
(Buys and Veltman, 2008). In one interesting example,
a teacher encourages the children to find out how
many cups of liquid would fill a particular bottle and,
when they have done that, to work out how many
cups of liquid the bottle would provide when the
bottle is not completely full. This leads to the idea of
putting marks on the bottle to indicate when it
contains one or more cups’ worth of liquid. Thus, the
children experience measurement units and also
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iteration. In another measurement activity children
use conventional measures. They are given three
rods each a metre long and are ask ed to measure
the width of the room. Typically the children start
well by forming the rods into a straight 3-metre line,
but then hit the problem of measuring the remaining
space: their first reaction is to ask for more rods, but
the teacher then provides the suggestion that instead
they try moving the first rod ahead of the third and
then to move the second rod: Buys and Veltman
report that the children readily follow this suggestion
and apparently understand the iteration involved
perfectly well.

Other exercises, equally ingenious, are about
constructing and operating on shapes (van

den Heuvel-Panhuizen, Veltman, Janssen and
Hochstenbach, 2008). The Freudenthal team use
the device of folding paper and then cutting out
shapes to encourage children to think about the
relationship between shapes: cutting an isosceles
triangle across the fold, for example, creates a
regular parallelogram when the paper is unfolded.
The children also play games that take the form of
four children creating a four-part figure between
them with many symmetries: each child produces
the mirror-image of the figure that the previous
child had made (see Figure 5.3). The aim of such
games is to give children systematic experience of
the transformations, rotation and reflection, and to
encourage them to reflect on these transformations.

If this group of researchers is right, children's early
knowledge of geometric relationships and
comparisons, though implicit and unsystematic, plays
an important part in their eventual learning about
geometry. It is a resource that can be enhanced by
sensitive teaching of the kind that the Freudenthal
group has pioneered. They may be right, but

someone has to establish, through empirical
research, how right they are.

There are a few empirical studies of ways of
improving spatial skills in pre-school children. In these
the children are given pre-tests which assess how
well they do in spatial tasks which are suitable for
children of that age, then go through inter vention
sessions which are designed to increase some of
these skills and finally, soon after the end of this
teaching, they are given post-tests to measure
improvement in the same skills.

Two well designed studies carried out by Casey and
her colleagues take this form (Casey, Erkut, Ceder
and Young, 2008; Casey, Andrews, Schindler; Kersh and
Young, 2008). In both studies the researchers were
interested in how well five- and six-year-old children
can learn to compose geometric shapes by
combining other geometric shapes and how well they
decompose shapes into component shapes, and also
whether it is easier to improve this particular skill
when it is couched in the context of a stor y than
when the context is a more formal and abstract one.

The results of these two studies showed that the
special instruction did, on the whole, help children to
compose and decompose shapes and did have an
effect on related spatial skills in the children who
were taught in this way. They also showed that the
narrative context added to the effect of teaching
children at this age. Recently, Clements and Sarama
(2007 a) reported a very different study of slightly
younger, nursery children. These researchers were
interested in the effects of a pre-school programme,
called Building Blocks, the aim of which is to prepare
children for mathematics in general including
geometry. This programme is based on a theory
about children’s mathematical development: as far as
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Figure 5.3:An activity devised by van den Heuvel-Panhuizen,Veltman, Janssen and Hochstenbach: four children devise a four-part

shape by forming mirror-images.
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geometry is concerned Clement and Sarama’s
strongest interest is in children’s awareness of the
composition of shapes and the relationship betw een
different shapes. They also believe that the actual
teaching given to individual children should be
determined by their developmental levels. Thus the
day-to-day instruction in their programme depends
on the children’s developmental trajectories.
Clements and Sarama report that the young children
taught in the Building Blocks programmes improved
from pre-test to post-test more rapidly than children
taught in other ways in tasks that involved
constructing or relating shapes.

These are interesting conclusions and a good star t.
However, research on the question of the eff ects
of intervention programmes designed to prepare
children for geometry need to go further than this.
We need studies of the effects of pre-school
interventions on the progress that children make
when they are eventually taught geometry at school
a few years later on. We cannot be sure that the
changes in the children’s skills that were detected in
these studies would have anything to do with their
successes and failures later on in geometry.

Summary

Children have a well-developed and effective
relational knowledge of shape, position, distance,
spatial orientation and direction long before they
go to school. This knowledge may be implicit and
non-numerical for the most part, but it is certainly
knowledge that is related to geometry.

2 The mistakes that children make in drawing
horizontal and vertical lines are probably due to
them preferring to concentrate on relations
between lines close to each other (liquid in a glass
is perpendicular to the sides of the glass) rather
than to separated lines (liquid in a glass is par allel
to horizontal surfaces like table tops). This is a
mistake not in relational perception, but in picking
the right relation.

3 Children are also able to understand and to make
transitive inferences, which are the basic logical
move that underlies measurement, several years
before being taught about geometry.

4 We do not yet know how well they can cope with
the notion of iteration in the school years.

5 There is little research on the possib le causal links
between these impressive early perceptual and
logical abilities and the successes and difficulties
that children have when they first learn about
geometry. This is a serious gap in our knowledge
about geometrical learning.

Learning about geometry

The aim of teaching children geometry is to show
them how to reason logically and mathematically
about space, shapes and the relation between
shapes, using as tools conventional mathematical
measures for size, angle, direction, orientation and
position. In geometry classes children learn to
analyse familiar spatial experiences in entirely new
ways, and the experience of this novel and explicit
kind of analysis should allow them to perceive and
understand spatial relationships that they knew
nothing about before.

In our view the aspects of anal ysing space
geometrically that are new to children coming to
the subject for the first time are:

* representing spatial relations which are already
familiar to them, like length, area and position, in
numbers

* learning about relations that are new to them, at
any rate in terms of explicit knowledge, such as
angle

* forming new categories for shapes, such as
triangles, and understanding that the properties of
a figure depends on its geometric shape

* understanding that there are systematic relations
between shapes, for instance between rectangles
and parallelograms

* understanding the relation between shapes across
transformations, such as rotation, enlargement and
changes in position.

Applying numbers to
familiar spatial relations
and forming relations
between different shapes

Length measurement

Young children are clearly aware of length. They
know that they grow taller as they grow older, and
that some people live closer to the school than
others. However, putting numbers on these changes
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and differences, which is one of their first geometric
feats, is something new to them.

Standard units of measurement are equal subdivisions
of the measuring instrument, and this means that
children have to understand that this instrument, a
ruler or tape measure or protractor, is not just a
continuous quantity but is also subdivided into units
that are exactly the same as each other.The child has
1o understand, for example, that by using a ruler, she
can represent an object’s length through an iteration
of measurement units, like the centimetre.

When children measure, for example, the length of a
straight line, they must relate the units on the ruler to
the length that they are measuring, which is a one-to-
one correspondence, but of a relatively demanding
form. In order to see that the measured length is, for
example, 10 cm long, they have to understand that
the length that they are measuring can also be
divided into the same unit and that ten of the units
on the ruler are in one-to-one correspondence with
ten imaginary but exactly similar units on what is
being measured. This is an active form of one-to-one
correspondence, since it depends on the children
understanding that they are converting a continuous
into a discontinuous quantity by dividing it into
imaginary units. Here, is a good example of how even
the simplest of mathematical analysis of space makes
demands on children’s imagination: they must imagine
and impose divisions on undivided quantities in order
to create the one-to-one correspondence which is
basic to all measurement of length.

Measuring a straight line with a ruler is probably the
simplest form of measurement of all, but children
even make mistakes with this task and their mistak es
suggest that they do not at first grasp that measuring
the line takes the form of imposing one-to-one
correspondence of the units on the measure with
imagined units on the line. This was certainly
suggested by the answers that a large number of
children who were in their first three years of
secondary school (I 1-, 12-, I3- and [4-year-olds)
gave to a question about the length of a straight line,
which was part of a test devised by Hart, Brown,
Kerslake, Kichemann and Ruddock (1985). The
children were shown a picture of straight line beside
a ruler that was marked in centimetres. One end of
the line was aligned with the | cm mar k on the ruler
and the other end with the 7 cm mar k. The children
were asked how long the line was and, in the
youngest group, almost as many of them (46%) gave
the answer 7 cm as gave the right answer (49%)

which was 6 cm. Thus even at the comparatively late
age of || years, after several years experience of
using rulers, many children seemed not to
understand, or at any rate not to understand
perfectly, that it is the number of units on the ruler
that the line corresponded to that decided its length.

A study by Nunes, Light and Mason (1993) gives us
some insight into this apparently persistent difficulty.
These experimenters asked pairs of six- to eight-
year-old children to work together in a measuring
task. They gave both children in each pair a piece of
paper with a straight line on it, and the pair’s task
was to find out whether their lines were the same
length or, if not whose was longer and whose
shorter. Neither child could see the other's line
because the two children did the task in separate
rooms and could only talk to each other over a
telephone. Both children in each pair were given a
measure to help them compare these lines and the
only difference between the pairs was in the
measures that the experimenters gave them.

The pairs of children were assigned to three groups.
In one group, both children in each pair were given a
string with no markings: this therefore was a measure
without units. In a second group, each child in every
pair was given a standard ruler, marked in centimetres.
In the third group the children w ere also given rulers
marked in centimetres, but, while one of the children
had a standard ruler, the other child in the pair was
given a ‘broken’ ruler: it started at four centimetres.
The child with the broken ruler could not produce
the right answer just by reading out the number from
the ruler which coincided with the end of the line. If
the line was, for example, 7 cm long, that number
would be || cm. The children in these pairs had to
pay particular attention to the units in the ruler.

The pairs in the second group did well. They came
up with the correct solution 84% of the time. The
few mistakes that they made were mostly about
placing the ruler or counting the units. Some children
aligned one endpoint with the | cm point on the
ruler rather than the O cm point and thus
overestimated the length by | cm. This suggests that
they were wrongly concentrating on the boundaries
between units rather than the units themselves.
Teachers should be aware that some children have
this misconception. Nevertheless the ruler did, on
the whole, help the children in this study since those
who worked with complete rulers did much better
than the children who were just given a string to
measure with.
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However, the broken ruler task was more difficult.
The children in the standard ruler group were right
84%, and those in the broken ruler group 63%, of
the time. Those who got it right despite having a
broken ruler either counted the units or read off the
last number (e.g. I'| cm fora 7 cm line) and then
subtracted 4, and since they managed to do this
more often than not, their performance established
that these young children have a considerable
amount of understanding of how to use the units in
a measuring instrument and of what the units mean.
However, on 30% of the trials the children in this
group seemed not to understand the significance of
the missing first four centimetres in the ruler. Either
they simply read off the number that matched the
line’s endpoint (I | cm for 7 ¢cm) or they did not
subtract the right amount from it.

A large-scale American study (Kloosterman, Warfield,
Wearne, Koc, Martin and Strutchens, 2004; Sowder,
Wearne, Martin and Strutchens, 2004) later confirmed
this striking difficulty. In this study, the children had to
judge the length of an object which was pictured just
above a ruler, though neither of its endpoints was
aligned with the zero endpoint on that ruler: Less than
25% of the 4t graders (nine-year-olds) solved the
problem correctly and only about 60% of the gth
graders managed to find the correct answer: This
strong result, combined with those reported by Nunes
et al, suggests that many children may know how to
use a standard ruler, but do not fully understand the
nature or structure of the measurement units that they
are dealing with when they do measure . Their mistake,
we suggest, is not a misunder standing of the function
of aruler:itis a failure in an active form of one-to-one
correspondence — in imagining the same units on the
line as on the ruler and then counting these units.

Summary

| Measuring a straight line with a ruler is a procedure
and it is also a considerable intellectual feat.

2 The procedure is to place the zero point of the
ruler at one end of the straight line and to read off
the number of standardised units on the ruler that
corresponds to the other end of this line . There is
no evidence that this procedure causes y oung
children any consistent difficulty.

3 The intellectual feat is to understand that the ruler
iterates a standardised unit (e.g. the centimetre)
and that the length of the line being measured is

the number of units in the part of the ruler that is
in correspondence to the line. Thus measurement
of length is a one-to-one correspondence
problem, and the correspondence is between units
that are displayed on the ruler but have to be
imagined on the line itself. This act of imagination
seem obvious and easy to adults but may not be
so for young children.

4 Tests and experiments in which the line being
measured is not aligned with zero show that
initially children do not completely understand
how measurement is based on imagining one-to-
one correspondence of iterated units.

Measurement of area: learning about
the relationship between the areas of
different shapes

There is a striking contrast between young children’s
apparently effortless informal discriminations of size
and area and the difficulties that they have in learning
how to analyse and measure area geometrically.
Earlier in this chapter we reported that babies are
able to recognise objects by their size and can do so
even when they see these objects at diff erent
distance on different occasions. Yet, many children find
it difficult at first to measure or to understand the
area of even the simplest and most regular of shapes.

All the intellectual requirements for understanding
how to measure length, such as knowing about
transitivity, iteration, and standardised units, apply as
well to measuring area. The differences are that:

area is necessarily a more complex quantity to
measure than length because now children have to
learn to consider and measure two dimensions and
to co-ordinate these different measurements. The
co-ordination is always a multiplicative one (e.g.
base x height for rectangles; nur? for circles etc.).

the standardised units of area — square centimetres
and square metres or square inches etc. — are new
to the children and need a great deal of
explanation. This additional step is usually quite a
hard one for children to take.

Rectangles

Youngsters are usually introduced to the
measurement of area by being told about the



19 Key understandings in mathematics lear ning

base x height rule for rectangles. Thus, rectangles
provide them with their first experience of square
centimetres. The large-scale study of | |- to |4-year
old children by Hart et al. (1985), which we have
mentioned already, demonstrates the difficulties that
many children have even with this simplest of area
measurements. In one question the children were
shown a rectangle, drawn on squared paper, which
measured 4 squares (base) by 2/2 squares (height)
and then were asked to draw another rectangle of
the same area with a base of 5 squares. Only 44% of
the | I-year-old children got this right: many judged
that it was impossible to solve this problem.

We have to consider the reason for this difficulty.
One reason might be that children find it hard to
come to terms with a new kind of measuring unit,
the square. In order to explain these new units
teachers often give children ‘covering’ exercises. The
children cover a rectangle with squares, usually | cm
squares, arranged in columns and rows and the
teacher explains that the total number of squares is
a measure of the rectangle’s area. The arrangement
of columns and rows also provides a way of
introducing children to the idea of m ultiplying height
by width to calculate a rectangle’s area. If the
rectangle has five rows and four columns of squares,
which means that its height is 5 cm and its width 4
cm, it is covered by 20 squares.

This might seem like an easy transition, but it has its
pitfalls. These two kinds of computation are based on
completely different reasoning: counting is about
finding out the number that represents a quantity
and involves additive reasoning whereas multiplying
the base by the height involves understanding that
there is a multiplicative relation between each of
these measures and the area. Therefore, practice on
one (counting) will not necessarily encourage the
child to adopt the other formula (multiplying).
Another radical difference is that the covering
exercise provides the unit, the square centimetre,
from the start but when the child uses a ruler to
measure the sides and then to multiply height by
width, she is measuring with one unit, the
centimetre, but creating a new unit, the square
centimetre (for further discussion, see Paper 3).

This could be an obstacle. The French psychologist,
Gerard Vergnaud (1983), rightly distinguishes
problems in which the question and the answ er are
about the same units (‘A plant is 5 cm high at the
beginning of the week and by the end of the week
it is 2 cm higher. How high is it at the end of the

week?") and those in which the question is couched
in one unit and the answer in another ("The page on
your book is |5 cm high and 5 cm wide. What is
the area of this page?). The answer to the second
question must be in square centimetres even though
the question itself is couched only in terms of
centimetres.Vergnaud categorised the first kind of
problem as ‘isomorphism of measures’ and the
second as ‘product of measures’. His point was that
product of measures problems are intrinsically the
more difficult of the two because, in order to solve
such problems, the child has to under stand how one
kind of unit can be used to create another.

At first, even covering tasks are difficult for many
young children. Outhred and Mitchelmore (2000)
gave young children a rectangle to measure and just
one | cm< square tile to help them to do this. The
children also had pencils and were encouraged to
draw on the rectangle itself. Since the children had
one tile only to work with, they could only ‘cover’ the
area by moving that tile about. Many of the younger
children adopted this strategy but carried it out
rather unsuccessfully. They left gaps between their
different placements of the tile and there were also
gaps between the squares in the drawings that they
made to represent the different positions of the tiles.

These mistakes deserve attention, but they are hard
1o interpret because there are two quite different
ways of accounting for them. One is that these
particular children made a genuinely conceptual
mistake about the iteration of the measuring unit.
They may not have realised that gaps are not allowed
— that the whole area must be covered by these
standardised units. The alternative account is that

this was an executive, not a conceptual, failure. The
children may have known about the need for
complete covering, and yet may have been unable

to carry it out. Moving a tile around the rectangle

so that the tile covers every part of it without any
overlap, is a complicated task, and children need a
great deal of dexterity and a highly organised
memory to carry it out, even if they know exactly
what they have to do.These ‘executive’ demands may
have been the source of the children’s problems.
Thus, we cannot say for sure what bearing this study
has on Vergnaud's distinction between isomorphism
and product of measures until we know whether the
mistakes that children made in applying the measure
were conceptual or executive ones.

Vergnaud's analysis, however, fits other data that we
have on children's measurement of area quite well.
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Nunes et al. (1993) asked pairs of eight- and
nine-year-old children to work out whether two
rectangles had the same area or not. The dimensions
of the two rectangles were always different, even
when their areas were the same (e.g. 5 x 8 and

|0 x 4 cm). The experimenters gave all the children
standard rulers, and also | cm3 bricks to help them
solve the problem.

The experimenters allowed the pairs of children to
make several attempts to solve each problem until
they agreed with each other about the solution.
Most pairs started by using their rulers, as they had
been taught to at school, but many of them then
decided to use the bricks instead. Overall the
children who measured with bricks were much more
successful than those who relied entirely on their
rulers. This clear difference is a demonstration of
how difficult it is, at first, for children to use one
measurement unit (centimetres) to create another
(square centimetres). At this age they are happier
and more successful when working just with direct
representation of the measurement units that they
have to calculate than when they have to use a ruler
to create these units.

The success of the children who used the br icks was
not due to them just counting these bricks. They
hardly ever covered the area and then laboriously
counted all the bricks. Much more often, they
counted the rows and the columns of bricks and
then either multiplied the two figures or used
repeated addition or a mixture of the tw o to come
up with the correct solution (A: ‘Eight bricks in a row.
And 5 rows. What's five eights? B: “Two eights is |6 and
6 is 32. Four eights is 32. 32. 40"). In fact, the children
who used bricks multiplied in order to calculate the
area more than three times as often as the children
who used the ruler. Those who used rulers often
concentrated on the perimeter: they measured the
length of the sides and added lengths instead.

This confusion of area and perimeter is a serious
obstacle. It can be traced back in time to a
systematic bias in judgements that young children
make about area long before they are taught the
principles of area measurement. This bias is towards
judging the area of a figure by its perimeter.

The bias was discovered independently in studies by
Wilkening (1979) in Germany and Anderson and
Cuneo (1978) and Cuneo (1983) in America. Both
groups of researchers asked the same two questions
(Wilkening and Anderson, 1982).

| If you ask people to judge the area of different
rectangles that vary both in height and in width,
will their judgement be affected by both these
dimensions? In other words, if you hold the width
of two rectangles constant will they judge the
higher of the two as larger, and if you hold their
height constant will they judge the wider one as
the larger? It is quite possible that young children
might attend to one dimension only, and indeed
Piaget's theory about spatial reasoning implies that
this could happen.

2 If people take both dimensions into account, do
they do so in an additive or a multiplicative way?
The correct approach is the multiplicative one,
because the area of a rectangle is its height
multiplied by its width. This means that the
difference that an increase in the rectangle’s height
makes to the area of the rectangle depends on its
width, and vice versa. An increase of 3 cm in the
height of a 6 cm wide rectangle adds another |8
cm< to its area, but the same increase in height to
an 8 cm wide rectangle adds another 24 cm <. The
additive approach, which is wrong, would be to
judge that an equal change in height to tw o
rectangles has exactly the same effect on their
areas, even if their widths differ: This is not true of
area, but it is true of perimeter. To increase the
height of a rectangle by 3 cm has exactly the same
effect on the perimeter of a 6 cm and an 8 cm
wide rectangle (and increase of 6 cm) and the
same goes for increases to the width of rectangles
with different heights. Also, the same increase in
width has exactly the same effect on the two
rectangles’ perimeters, but very different effects on
their area. It follows that anyone who persistently
makes additive judgements about area is probably
confusing area with perimeter.

The tasks that these two teams of experimenters
gave to children and adults in their studies were
remarkably similar, and so we will describe only
Wilkening's (1979) experiment. He showed 5-, 8-
and | I-year-old children and a group of adults a
series of rectangles that varied both in height (6, 12
and 18 cm) and in width (again 6, 12 and 18 cm). He
told the participants that these could be broken into
pieces of a particular size, which he illustrated by
showing them also the size of one of these pieces.
The children’s and adults’ task was to imagine what
would happen if each rectangle was broken up and
the pieces were arranged in a row. How long would
this row be?



21 Key understandings in mathematics lear ning

The most striking contrast in the pattern of these
judgments was between the five-year-old children
and the adults. To put it briefly, five-year-old children
made additive judgements and adults made
multiplicative judgements.

The five-year-olds plainly did take both height and
width into account, since they routinely judged
rectangles of the same height b ut different widths as
having different areas and they did the same with
rectangles of the same widths b ut different heights.
This is an important result, and it must be reassuring
to anyone who has to teach young schoolchildren
about how to measure area. They are apparently
ready to take both dimensions into account.

However, the results suggest that y oung children
often co-ordinate information about height and
width in the wrong way. The typical five-year-old
judged, for example, that a 6 cm difference in height
would have the same effect on |2 cmand 18 cm
wide rectangles. In contrast, the adults’ judgements
showed that they recognised that the effect would
be far greater on the 18 cm than on the 12 cm wide
figures. This is evidence that young children rely on
the figures' perimeters, presumably implicitly, in order
1o judge their area. As have already seen, when
children begin to use rulers many of them fall into
the trap of measuring a figure’s perimeter in order to
work out its area, (Nunes, Light and Mason, 1993).
Their habit of concentrating on the perimeter when
making informal judgements about area may well be
the basis for this later mistake. The existence among
schoolchildren of serious confusion between area
and perimeter was confirmed in later research by
Dembo, Levin and Siegler (1997).

We can end this section with an interesting question.
One obvious possible cause of the radical difference
in the patterns of 5-year-olds' and adults’ judgements
might be that the 5-year-olds had not learned how
to measure area while the adults had. In other
words, mathematical learning could alter this aspect
of people’s spatial cognition. The suggestion does not
seem far-fetched, especially when one also considers
the performance of the older children in Wilkening's
interesting study. The 5-year-olds had not been
taught about measurement at all: the 8-year-olds had
had some instruction, but not a great deal: the |2-
year-olds were well-versed in measurement, but
probably still made mistakes. Wilkening found some
signs of a multiplicative pattern in the responses of
the 8-year-olds, but this was slight: he found stronger
signs of this pattern among the |2-year-olds, though

not as pronounced as in the adult group . These
changes do not prove that being taught how

to measure and then becoming increasingly
experienced with measuring led to this difference
between the age groups, but they are certainly
consistent with that idea. There is an alternative
explanation, which is that adults and older children
have more informal experience than 8-year-olds do
of judging and comparing areas, as for example when
they have to judge how much paint they need to
cover different walls. Here is a significant and
interesting question for research: do teachers alone
change our spatial understanding of area or does
informal experience play a part as well?

Summary

| Measuring area is a multiplicative process: we
usually multiply two simple measurements (e.g.
base by height for rectangles) to produce a total
measure of an area. The process also produces a
different unit (i.e. product of measures): measuring
the base and height in centimetres and then
multiplying them produces a measure in terms of
square centimetres.

2 Producing a new measure is a difficult step for
children to make. They find it easier to measure a
rectangle when they measure with units which
directly instantiate square centimetres than when
they use a ruler to measure its base and height in
centimetres.

3 The multiplicative aspect of area measurement is
also a problem for young children who show a
definite bias to judge the area of a rectangle by
adding its base and height rather than by
multiplying them. They confuse, therefore,
perimeter and area.

Parallelograms: forming relations
between rectangles and
parallelograms

The measurement of parallelograms takes us into

one of the most exciting aspects of lear ning about
geometry. The base-by-height rule applies to these
fisures as well as to rectangles. One way of justifying
the base by height rule for parallelograms is that any
parallelogram can be transformed into a rectangle with
the same base and height measurements by adding
and subtracting congruent areas to the parallelogram.
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Figure 5.4 presents this justification which is a
commonplace in geometry classes. It is based on the
inversion principle (see Paper 2). Typically the teacher
shows children a parallelogram and then creates two
congruent triangles (A and S) by dropping vertical
lines from the top two corners of the parallelogram
and then extending the baseline to reach the new
vertical that is external to the parallelogram. Triangle
A falls outside the original parallelogram, and
therefore is an addition to the figure. Triangle S falls
inside the original parallelogram, and the nub of the
teacher's demonstration is to point out that the
effect of adding Triangle A and subtracting Triangle S
would be to transform the figure into a rectangle
with the same base and height as the or iginal
parallelogram. Triangles A and S are congruent and
so their areas are equal. Therefore, adding one and
subtracting the other triangle must produce a new
figsure (the rectangle) of exactly the same size as the
original one (the parallelogram).

This is a neat demonstration, and it is an impor tant
one from our point of view, because it is our first
example of the importance in geometry of
understanding that there are systematic relations
between shapes. Rectangles and parallelograms are
different shapes but they are measured by the same
base-by-height rule because one can transform any
rectangle into any parallelogram, or vice versa, with
the same base and height without changing the
figure's area.

Some classic research by the well-known Austrian
psychologist Max Wertheimer (1945) suggests that
many children learn the procedure for transforming
parallelograms into rectangles quite easily, but apply it
inflexibly. Wertheimer witnessed a group of | |-year-
old children learning from their teacher why the
same base-by-height rule applied to parallelograms
as well. The teacher used the justification that we
have already described, which the pupils appeared to
understand. However, Wertheimer was not certain
whether these children really had understood the
underlying idea. So, he gave them another
parallelogram whose height was longer than its base
(diagram 3 in Figure 5.4). When a parallelogram is
oriented in this way, dropping two vertical lines from
its top two corners does not create two congruent
triangles. Wertheimer found that most of the
children tried putting in the two vertical lines, but
were at a loss when they saw the results of doing so.
A few, however, did manage to solve the problem by
rotating the new figure so that the base was longer
than its height, which made it possible for them to
repeat the teacher's demonstration.

The fact that most of the pupils did not cope with
Wertheimer's new figure was a clear demonstration
that they had learned more about the teacher's
procedure than about the underlying idea about
transformation that he had hoped to convey.
Wertheimer argued that this was probably because
the teaching itself concentrated too much on the
procedural sequence and too little on the idea of

Figure 5.4: Demonstrating by transforming a parallelogram into a rectangle that the base-by-height rule applies to

parallelograms as well as to rectangles.
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transformation. In later work, that is only reported
rather informally (Luchins and Luchins, 1970),
Wertheimer showed children two figures at a time,
one of which could be easily transformed into a
measurable rectangle while the other could not
(for example, the A and B figures in Figure 5.5).
Wertheimer reported that this is an effective way
of preparing children for understanding the relation
between the area of parallelograms and rectangles.

It is a regrettable irony that this extraordinarily
interesting and ingenious research by a leading
psychologist was done so long ago and is so widel y
known, and yet few researchers since then have
studied children’s knowledge of how to transform
one geometric shape into another to find its area.

In fact, Piaget et al. (1960) did do a relevant study,
also a long time ago.They asked children to measure

the area of an irregular polygon (Figure 5.6).

One good way to solve this difficult problem is

to partition the figure by imaging the divisions
represented by the dotted lines in the right hand
figure. This creates the Triangle x and also a rectangle
which includes another Triangle y. Since the two
triangles are congruent and Triangle x is part of the
original polygon while Triangle y is not, the area of
the polygon must add up to the area of the
rectangle (plus Triangle x minus Triangle y).

Piaget et al. report that the problem flummoxed
most of the children in their study, but report that
some | 0-year-olds did come up with the solution
that we have just described. They also tell us that
many children made no attempt to break up the
figure but that others, more advanced, were ready to
decompose the figure into smaller shapes, but did
not have the idea of in effect adding to the figure by

S

A

B

Figure 5.5:An example of VWertheimer’s A and B figures.A figures could be easily transformed into a simple rectangle. B figures could not.

Figure 5.6: Piaget et al’s irregular polygon whose area could be measured by decomposition.
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imagining the BD line which was exter nal to the
figure. Thus, the stumbling block for these relatively
advanced children was in adding to the figure. This
valuable line of research, long abandoned, needs to
be restarted.

Triangles: forming relations between
triangles and parallelograms

Other transformations from one shape to another
are equally important. Triangles can be transformed
into parallelograms, or into rectangles if they are
right-angle triangles, simply by being doubled (see
Figure 5.7). Thus the area of a triangle is half that of
a parallelogram with the same base and height.

Hart et al’s (1985) study shows us that | |- to

| 4-year-old children’s knowledge of the (base x
height)/2 rule for measuring triangles is distinctly
sketchy. Asked to calculate the area of a right-angle
triangle with a base of 3 cm and a height of 4 cm,
only 48% of the children in their third y ear in
secondary school (13- and |4-year-olds) gave the
right answer. Only 31% of the first year secondary
school children (I |-year-olds) succeeded, while
almost an equal number of them — 29% — gave the
answer |2, which means that they correctly
multiplied base by height but forgot to halve the
product of that multiplication.

Children are usually taught about the relationship
between triangles, rectangles and parallelograms quite
early on in their geometry lessons. However, we know
of no direct research on how well children understand
the relationships between different shapes or on the
best way to teach them about these relations.

Summary

| Learning about the measurement of the area of
different shapes is a cumulative affair which is
based not just on formulas for measuring particular
shapes but on grasping the relationships, through
transformations, of different shapes to each other.
Parallelograms can be transformed into rectangles
by adding and subtracting congruent triangles:
triangles can be transformed into parallelograms
by being doubled.

2 There is little direct research on children’s
understanding of the importance of the
relationships between shapes in their
measurement. Wertheimer's observations suggest
very plausibly that their understanding depends
greatly on the quality of the teaching.

3 We need more research on what are the most
effective ways to teach children about these
relationships.

NV

NN

Figure 5.7:A demonstration that any two congruent triangles add up to a measurable

parallelogram and any two congruent right angle triangles add up to a measurable rectangle.
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Understanding new
relationships: the case
of angle

Angle is an abstract relation. Sometimes it is the
difference between the orientations of two lines or
rays, sometimes the change in your orientation from
the beginning of a turn that you are making to its
end, and sometimes the relation between a figure or
a movement to permanent aspects of the
environment: the angle at which an aeroplane rises
after take-off is the relation between the slope of its
path and the spatial horizontal. Understanding that
angles are a way of describing such a variety of
contexts is a basic part of learning plane geometry.
Yet, research by psychologists on this important and
fascinating topic is remarkably thin on the ground.

Most of the relatively recent studies of children’s and
adults’ learning about angles are about the
effectiveness of computer-based methods of
teaching. This is estimable and valuable work, but we
also need a great deal more information about
children’s basic knowledge about angles and about
the obstacles, which undoubtedly do exist, to
forming an abstract idea of what angles are.

In our everyday lives we experience angles in many
different contexts, and it may not at first be easy for
children to connect information about angles
encountered in different ways. The obvious distinction
here is between perceiving angles as configurations,
such as the difference between perpendicular and
non-perpendicular lines in pictures and diagrams, and
as changes in movement, such as changing direction
by making a turn.These forms of experiencing angles
can themselves be subdivided: it may not be obvious
to school children that we make the same angular
change in our movements when we walk along a
path with a right-angle bend as when we turn a
doorknob by 90° (Mitchelmore, 1998).

Another point that children might at first find hard to
grasp is that angles are relational measures. When we
say that the angles in some of the figures in Figure
5.8a are 90° ones and in others 45°, we are making a
statement about the relation between the
orientations of the two lines in each figure and not
about the absolute orientation of any of the
individual lines, which vary from each other. Also,
angles affect the distance between lines, but only in
relation to the distance along the lines: in Figure 5.8b
the distance between the lines in the figure with the
larger angle is greater than in the other figure when

e
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Figure 5.8:Angles as relations
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the distance is measured at equivalent points along
lines in the two figures, but not necessarily otherwise.

A third possible obstacle is that children might find
some representations of angle more understandable
than others. Angles are sometimes formed by the
meeting of two clear lines, like the peak of a roof or
the corner of a table. With other angles, such as the
inclination of a hill, the angle is clearly represented by
one line — the hill itself, but the other, a notional
horizontal, is not so clear. In still other cases, such as
the context of turning, there are no clearly defined
lines at all: the angle is the amount of tur ning.
Children may not see the connection between these
very different perceptual situations, and they may
find some much easier than others.

There are few theories of how children learn

about angles, despite the importance of the topic.
The most comprehensive and in many ways the
most convincing of the theories that do exist was
produced by Mitchelmore and White (2000). The
problem that these researchers tried to solve is how
children learn to abstract and classify angles despite
the large variety of situations in which they
experience them. They suggest that children’s
knowledge of angles develops in three steps:

| Situated angle concepts Children first register
angles in completely specific ways, according to
Mitchelmore and White. They may realise that a
pair of scissors, for example, can be more open or
less open, and that some playground slides have
steeper slopes than others but they make no link
between the angles of scissors and of slides, and
would not even recognise that a slide and a roof
could have the same slope.

2 Contextual angle concepts The next step that
children take is to realise that there are similar ities
in angles across different situations, but the
connections that they do make are always
restricted to particular, fairly broad, contexts. Slope,
which we have mentioned already, is one of these
contexts; children begin to be able to compare the
slopes of hills, roofs and slides, but they do not
manage to make any connection between these
and the angles of, for instance, turns in a road. They
begin to see the connection between angles in
very different kinds of turns — in roads and in a
bent nail, for example — but they do not link these
to objects turning round a fixed point, like a door
or a door-knob.

3 Abstract angle concepts Mitchelmore and
White's third step is itself a series of steps. They
claim that children begin to compare angles across
contexts, for example, between slopes and turns,
but that initially these connections across contexts
are limited in scope; for example, these
researchers report that even at the age of ||
years many children cannot connect angles in
bends with angles in turns. So, children form one
or more restricted abstract angle ‘domains’ (e.g. a
domain that links intersections, bends, slopes and
turns) before they finally develop this into a
completely abstract concept of standard angles.

To test this theoretical framework, Mitchelmore and
White gave children of 7, 9 and | | years pictures of
a wide range of situations (doors, scissors, bends in
roads etc.) and asked them to represent the angles
in these, using a bent pipe cleaner to do so, and also
to compare angles in pairs of different situations. The
study certainly showed different degrees of
abstraction among these children and provided some
evidence that abstraction about angles increases with
age. This is a valuable contribution,

but we certainly need more evidence about this
developmental change for at least two reasons.

One is methodological. The research that we have just
described was cross-sectional: the children in the
different age groups were different children. A much
better way of testing any hypothesis about a series of
developmental cognitive changes is to do a
longitudinal study of the ideas that the same children
hold and then change over time as they get older. If
the hypothesis is also about what makes the changes
happen, one should combine this longitudinal research
with an intervention study to see what provokes the
development in question. We commented on the
need for combining longitudinal and inter vention
studies in Paper 2. Once again, we commend this all-
too-rarely adopted design to anyone planning to do
research on children’s mathematics.

The second gap in this theory is its concentration on
children learning what is irrelevant rather than what
is relevant to angle. The main claim is that children
eventually learn, for example, that the same angles
are defined by two clear lines in some cases b ut not
in others, that some angular information is about
static relations and some about movement, but that
it is still exactly the same kind of information. This
claim is almost certainly right, but it does not tell us
what children learn instead.
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One possibility, suggested by Piaget, Inhelder and
Szeminska (1960), is that children need to be ab le to
relate angles to the surrounding Euclidean framework
in order to reproduce them and compare them to
other angles. In one study they asked children to copy
a triangle like the one in Figure 5.9.

They gave the children some rulers, strips of paper
and sticks (but apparently no protractor) to help
them do this. Piaget et al. wanted to find out how
the children set about reproducing the angles CAB,
ABC and ACB. In the experimenters’ view the best
solution was to measure all three lines, and also
introduce an additional vertical line (KB in Figure 5.9)
or to extend the horizontal line and then introduce
a new vertical line (CK in Figure 5.9). It is not at all
surprising that children below the age of roughly ten
years did not think of this Euclidean solution. Some
tried to copy the triangle perceptually. Others used
the rulers to measure the length of the lines b ut did
not take any other measures. Both strategies tended
to lead to inaccurate copies.

The study is interesting, but it does not establish that
children have to think of angles in terms of their
relationship to horizontal and vertical lines in order
to be able to compare and reproduce par ticular
angles. The fact that the children were not given the
chance to use the usual conventional measure for
angles — the protractor — either in this study orin
Mitchelmore and White’s study needs to be noted.
This measure, despite being quite hard to use , may
play a significant and possibly even an essential part
in children’s understanding of angle.

Another way of approaching children’s understanding
of angles is through what Mitchelmore and White

called their situated angle concepts. Magina and
Hoyles (1997) attempted to do this by investigating
children’s understanding of angle in the context of
clocks and watches. They asked Brazilian children,
whose ages ranged from 6 to |4 years, to show
them where the hands on a clock w ould be in half
an hour's time and also half an hour bef ore the time
it registered at that moment. Their aim was to find
out if the children could judge the cor rect degree
of turn. Magina and Hoyles report that the younger
children’s responses tended to be either quite
unsystematic or to depend on the initial position

of the minute hand: these latter children, mostly 8-
to | I-year-olds, could move the minute hand to
represent half an hour's difference well enough when
the hand's initial position was at 6 (half past) on the
clock face, but not when it was at 3 (quar ter past).
Thus, even in this highly familiar situation, many
children seem to have an incomplete understanding
of the angle as the degree of a tur n.This rather
disappointing result suggests that the origins of
children’s understanding may not lie in their informal
spatial experiences.

One way in which children may learn about angles is
through movement. The idea of children learning
about spatial relations by monitoring their own actions
in space fits well with Piaget's framework, and it is the
basis for Logo, the name that Papert (1980) gave to
his well-known computer-system that has often been
used for teaching aspects of geometry.In Logo,
children learn to write programmes to move a ‘turtle’
around a spatial environment. These programmes
consist of a series of instructions that determine a
succession of movements by the turtle. The
instructions are about the length and direction of
each movement, and the instructions about direction
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Figure 5.9:The triangle (represented by the continuous lines) that Piaget, Inhelder and Szeminska asked children to copy,

with the vertical and horizontal (dotted) lines which some of the children created to help them to solve this problem.
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take the form of angular changes e.g. L90 is an
instruction for the turtle to make a 90° turn to the
left. Since the turtle's movements leave a trace,
children effectively draw shapes by writing these
programmes.

There is evidence that experience with Logo does
have an effect on children’s learning about angles,
and this in turn supports the idea that
representations of movement might be one effective
way of teaching this aspect of geometry. Noss
(1988) gave a group of 8- to | I-year-old children,
some of whom had attended Logo classes o ver a
whole school year, a series of problems involving
angles. On the whole the children who had been to
the Logo classes solved these angular problems
more successfully than those who had not. The
relative success of the Logo group was par ticularly
marked in a task in which the children had to
compare the size of the turn that people would have
to make at different points along a path, and this is
not surprising since this specific task resonated

with the instructions that children make when
determining the direction of the turtle’s movements
(see Figure 5.10).

However, the Logo group also did better than the
comparison in more static angular problems. This is
an interesting result because it suggests that the
children may have generalised what they learned
about angles and movement to other angular tasks

which involve no movement at all. We need more
research to be sure of this conclusion and, as far as
studies of the effects of Logo and other computer-
based programmes are concerned, we need studies
in which pre-tests are given before the children go
through these programmes as well as post-tests that
follow these classes.

Children do not just learn about single angles in
isolation from each other. In fact, to us, the most
interesting question in this area is about their
learning of the relations between different angles.
These relations are a basic part of geometry lessons:
pupils learn quite early on in these lessons that, for
example, when two straight lines intersect opposite
angles are equal and that alternate angles in a Z-
shape figure are equal also, but how easily this
knowledge comes to them and how effectively they
use it to solve geometric problems are interesting
but unanswered guestions (at any rate, unanswered
by psychologists). Some interesting educational
research by Gal and Vinner (1997) on 14-year-old
students’ reaction to perpendicular lines suggests that
they have some difficulties in understanding the
relation between the angles made by intersecting
lines when the lines are perpendicular to each other.
Many of the students did not realise at first that if
one of the four angles made by two intersecting
lines is a right angle the other three must be so as
well. The underlying reason for this difficulty needs
investigation.

You are walking along this path.You start at point A and you finish at point G.

* At which point would you have to turn most?
* At which point would you have to turn least?

A

E

qnish

Figure 5.10:The judgement about relative amount of turns in Noss’s study.
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Summary

I Although young children are aware of orientation,
they seem to know little about angle (the relation
between orientations) when they start on
geometry.

2 The concept of angle is an abstract one that cuts
across very different contexts. This is difficult for
children to understand at first.

3 There is some evidence, mainly from work on
Logo, that children can learn about angle through
movement.

4 Children’s understanding of the relation between
angles within figures (e.g. when straight lines intersect,
opposite angles are equivalent) is a basic par t of
geometry lessons, but there seems to be no research
on their understanding of this kind of relation.

Spatial frameworks

Horizontal and vertical lines

Most children’s formal introduction to geometry is
a Euclidean one. Children are taught about straight
lines, perpendicular lines, and parallel lines, and they
learn how a quite complex system of geometry can
be derived from a set of simple, comprehensible,
axioms. It is an exercise in logic, and it must, for
most children, be their first experience of a formal
and explicit account of two-dimensional space.

The principal feature of this account is the relation
between lines such as parallel and perpendicular and
intersecting lines.

These fundamental spatial relations are probably
quite familiar, but in an implicit way, to the seven- and
eight-year-old children when they start classes in
geometry. In spatial environments, and particularly in
‘carpentered’ environments, there are obvious
horizontal and vertical lines and surfaces, and these
are at right angles (perpendicular) to each other.We
reviewed the evidence on children’s awareness of
these spatial relations in an earlier part of this paper,
when we reached the following two conclusions.

I Although quite young children can relate the
orientation of lines to stable background features and
often rely on this relation to remember orientations,
they do not always do this when it would help them

to do so.Thus, many young children and some adults
too (Howard, 1978) do not recognise that the level
of liquid is parallel to horizontal features of the
environment like a table top.

2 Part of the difficulty that they have in Piaget's
horizontality and verticality tasks is that these
depend on children being able to represent acute
and obtuse angles (i.e. non-perpendicular lines). They
tend to do this inaccurately, representing the line
that they draw as closer to perpendicular than it
actually is. This bias towards the perpendicular may
get in the way of children’s representation of angle.

The role of horizontal and vertical
axes in the Cartesian system

The Euclidean framework makes it possible to pinpoint
any position in a two-dimensional plane. We owe this
insight to René Descartes, the |7t century French
mathematician and philosopher, who was interested in
linking Euclid's notions with algebra. Descartes devised
an elegant way of plotting positions by representing
them in terms of their position along two axes in a
two dimensional plane. In his system one axis was
vertical and the other horizontal, and so the two axes
were perpendicular to each other. Descartes pointed
out that all that you need to know in order to find a
particular point in two-dimensional space s its position
along each of these two axes. With this information
you can plot the point by extrapolating an imaginary
straight perpendicular line from each axis. The point at
which these two lines intersect is the position in
question. Figure 5.1 | shows two axes, x and y, and
points which are expressed as positions on these axes.

This simple idea has had a huge impact on science
and technology and on all our daily lives: for
example, we rely on Cartesian co-ordinates to
interpret maps, graphs and block diagrams. The
Cartesian co-ordinate system is a good example of
a cultural tool (Vygotsky, 1978) that has transformed
all our intellectual lives.

To understand and to use the Car tesian system to
plot positions in two-dimensional space, one has to
be able to extrapolate two imaginary perpendicular
straight lines, and to co-ordinate the two in order to
work out where they intersect. Is this a difficult or
even an impossible barrier for young children?
Teachers certainly need the answer to this question
because children are introduced to graphs and block
diagrams in primary school, and as we have noted
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these mathematical representations depend on the
use of Cartesian co-ordinates.

Earlier in this section we mentioned that, in social
contexts, very young children do extrapolate
imaginary straight lines. They follow their mother's
line of sight in order, apparently, to look at whatever
it is that is attracting her attention at the time
(Butterworth, 1990). If children can extrapolate
straight lines in three-dimensional space, we can
quite reasonably expect them to be able to do so
in two-dimensional space as well. The Cartesian
requirement that these extrapolated lines are
perpendicular to their baselines should not be a
problem either, since, as we have seen already,
children usually find it easier to create per pendicular
than non-perpendicular lines. The only requirement
that this leaves is the ability to work out where the
paths of the two imaginary straight lines intersect.

A study by Somerville and Bryant (1985) established
that children as young as six years usually have this
ability. In the most complex task in this study, young
children were shown a fairly large square space on a
screen and |6 positions were clearly marked within
this space, sometimes arranged in a regular grid and
sometimes less regularly than that. On the edge of

| B

-3, 5

5

the square waited two characters, each just about to
set off across the square. One of these characters
was standing on a vertical edge (the right or left side
of the square) and the other on a horizontal edge
of the square. The children were told that both
characters could only walk in the direction they
were facing (each character had a rather prominent
nose to mark this direction, which was perpendicular
to the departure line, clear), and that the two would
eventually meet at one particular position in the
square. It was the child's task to say which position
that would be.

The task was slightly easier when the choices were
arranged in a grid than when the arrangement was
irregular; but in both tasks all the children chose the
right position most of the time. The individual
children’s choices were compared to chance (if a
child followed just one extrapolated line instead of
co-ordinating both, he or she would be right by
chance 25% of the time) and it turned out that

the number of correct decisions made by every
individual child was significantly above chance. Thus,
all of these 6-year-old children were able to plot the
intersection of two extrapolated, imaginary straight
lines, which means that they were well equipped to
understand Cartesian co-ordinates.

[
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Figure 5.11: Descartes’ co-ordinates: three points (8, 8), (-3, 5) and (-9, -4) are plotted by their positions on the x- and y-axes
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Piaget et al. (1960) were less optimistic about
children’s grasp of co-ordinates, which they tested
with a copying task. They gave each child two
rectangular sheets of paper, one with a small circle
on it and the other a complete b lank. They also
provided the children with a pencil and a r uler and
strips of paper, and then they asked them to put a
circle on the blank sheet in exactly the same position
as the circle on the other sheet. Piaget et al.’s
question was whether any of the children would use
a co-ordinate system to plot the position of the
existing circle and would then use the co-ordinates
to position the circle that they had to dr aw on the
other sheet. This was a difficult task, which children
of six and seven years tended to fail. Most of them
tried to put the new circle in the right place simply
by looking from one piece of paper to the other, and
this was a most unsuccessful strategy.

There is no conflict between the success of all the
children in the Somerville and Bryant study, and the
grave difficulties of children of the same age in the
Piaget et al. task. In the Piaget et al. task the children
had to decide that co-ordinates were needed and
then had to measure in order to estab lish the
appropriate position on each axis. In the Somerville
and Bryant study, the co-ordinates were given and all
that the child had to do was to use them in order to
find the point where the two extrapolated lines met.
So, six- and seven-year-old children can establish a
position given the co-ordinates but often cannot set
up these co-ordinates in the first place.

Some older children in Piaget et al.’s study (all the
successful children given as examples in the book
were eight- or-nine-years-old) did apparently
spontaneously use co-ordinates. It seems unlikely

to us that these children managed to in vent the
Cartesian system for themselves. How could eight-
and nine-year-old children come up, in one
experimental session, with an idea for which mankind
had had to wait till Descar tes had his brilliant insight
in the middle of the |7th century?

A more plausible reason for these children’s success
is that, being among the older children in Piaget et
al’s sample, they had been taught about the use of
Cartesian co-ordinates in maps or graphs already.

It appears that this success is not universal. Many
children who have been taught about Car tesian co-
ordinates fail to take advantage of them or to use
them properly. Sarama, Clements, Swaminathan,
McMillen and Gomez (2003) studied a group of
nine-year-old children while they were being given

intensive instruction, which the researchers
themselves designed. In the tasks that they gave to
the children Sarama et al. represented the x and y
co-ordinates as numbers, which was a good thing
to include because it is a fundamental par t of the
Cartesian system, and they also imposed a
rectangular grid on many of the spaces that they
gave the children to work with. Thus, one set of
materials was a rectangular grid, presented as a map
of a grid-plan city with ‘streets’ as the vertical and
‘avenues’ as the horizontal lines.

The children were given various tasks before, during
and after the instruction. Some of these involved
relating locations to x and y co-ordinates: the
children had to locate positions given the co-
ordinates and also to work out the co-ordinates of
particular positions. Sarama et al. reported that most
of the children learned about this relation quickly
and well, as one might expect given their evident
ability to co-ordinate extrapolated lines in a
rectangular context (Somerville and Bryant, 1985).
However, when they had to co-ordinate information
about two or more locations, they were in greater
difficulty. For example, some children found it hard to
work out the distance between two locations in the
grid-like city, because they thought that the number
of turns in a path affected its distance, and some did
not realise that the numerical differences in the x
and y co-ordinate addresses between the two
locations represents the distance between them.

Thus, the children understood how to find two
locations, given their coordinates, but struggled with
the idea that a comparison between the two pairs
of co-ordinates told them about the spatial relation
between these locations. Further observations
showed that the problem that some of the children
had in working out the relations between two co-
ordinate pairs was created by a certain tension
between absolute and relative information. The

two co-ordinate pairs 10,30 and 5,0 represent two
absolute positions: however, some children, who
were given first 10,30 and then 5,0 and asked to
work out a path between the two, decided that 5,0
represented the difference between the first and the
second location and plotted a location five blocks to
the right of 10,30. They treated absolute information
about the second position as relative information
about the difference between the two positions.
However, most of the children in this ingenious and
important study seem to have overcome this
difficulty during the period of instruction, and to
have learned reasonably well that co-ordinate pairs
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represent the relation between positions as well as
the absolute positions themselves.

Finally, we should consider children’s understanding of
the use of Cartesian co-ordinates in graphs. Here,
research seems to lead to much the same conclusion
as we reached in our discussion of the use of co-
ordinates to plot spatial positions. With graphs, too,
children find it easy to locate single positions, but
often fail to take advantage of the information that
graphs provide that is based on the relation between
different positions. Bryant and Somerville (1986)

gave six- and nine-year-old children a graph that
represented a simple linear function. Using much

the same technique as in their previous research on
spatial co-ordinates, these researchers measured the
children’s ability to plot a position on x-axis given the
position on the y-axis and vice versa.This was quite an
easy task for the children in both age groups, and so
the main contribution of the study was to estab lish
that children can co-ordinate extrapolated straight
lines in a graph-like task fairly well even before they
have had any systematic instruction about graphs.

The function line in a graph is formed from a series
of positions, each of which is determined by
Cartesian co-ordinates. As in the Sarama et al. study,
it seems to be hard for children to grasp what the
relation between these different positions means. An
interesting study by Knuth (2000) showed that
American students ‘enrolled in |St-year algebra’
(Knuth does not say how old these students were)
are much more likely to express linear functions as
equations than graphically. VWe do not yet know the
reasons for this preference

Summary

| Cartesian co-ordinates seem to pose no basic
intellectual difficulty for young children. They are
able to extrapolate imaginary straight lines that are
perpendicular to horizontal and vertical axes and
to work out where these imaginary lines would
meet in maps and in graphs.

2 However, it is harder for children to work out the
relation between two or more positions that are
plotted in this way, either in an map-like orin a
graph-like task.

3 Students prefer expressing functions as equations
to representing them graphically.

4 Thus, atthough children have the basic abilities to
understand and use co-ordinates well, there seem
to be obstacles that prevent them using these
abilities in tasks which involve two or more plotted
positions. We need research on how to teach
children to surmount these obstacles.

Categorising, composing and
decomposing shapes

We have chosen to end this chapter on lear ning
about space and geometry with the question of
children’s ability to analyse and categorise shapes, but
we could just as easily have started the section with
this topic, because children are in many ways experts
on shape from a very early age. They are born,
apparently, with the ability to distinguish and
remember abstract, geometric shapes, like squares,
triangles, and circles, and with the capacity to
recognise such shapes as constant even when they
see them from different angles on different occasions
so that the shape of the retinal image that they mak e
varies quite radically over time. We left shape to the
end because much of the learning that we have
discussed already, about measurement and angle and
spatial co-ordinates, undoubtedly affects and changes
schoolchildren’s understanding of shape.

There is nearly complete agreement among those
who study mathematics education that children’s
knowledge about shapes undergoes a series of
radical changes during their time at school. Different
theories propose different changes but many of
these apparent disagreements are really only
semantic ones. Most claim, though in different terms,
that school-children start by being able to distinguish
and classify shapes in a perceptual and implicit wa y
and eventually acquire the ability to analyse the
properties of shapes conceptually and explicitly.

The model developed by the Dutch educationalist
van Hiele (1986) is currently the best known
theoretical account of this kind of lear ning. This is a
good example of what we called a ‘pragmatic theory’
in our opening paper.Van Hiele claimed that children
have to take a sequence of steps in a fixed order in
their geometric learning about shape.There are five
such steps in van Hiele’s scheme, but he agreed that
not all children get to the end of this sequence:
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Level I:Visualization/recognition Students
recognise and learn to name certain geometric
shapes but are usually only aware of shapes as a
wholes, and not of their proper ties or of their
components.

Level 2: Descriptive/analytic Students begin to
recognise shapes by their properties.

Level 3: Abstract/relational Students begin to form
definitions of shapes based on their common
properties, and to understand some proofs.

Level 4: Formal deduction Students understand the
significance of deduction as a way of establishing
geometric theory within an axiomatic system, and
comprehend the interrelationships and roles of
axioms, definitions, theorems, and formal proof.

Level 5: Rigour Students can themselves reason
formally about different geometric systems.

There have been several attempts to elaborate and
refine this system. For example, Clements and Sarama
(2007 b) argue that it would better to rename the
Visual/recognition stage as Syncretic, given its
limitations. Another development was Guttierez's
(1992) sustained attempt to extend the system to 3-
D figures as well as 2-D ones. However, afthough van
Hiele's steps provide us with a useful and interesting
way of assessing improvements in children’s
understanding of geometry, they are descriptive. The
theory tells us about changes in what children do and
do not understand, but not about the underlying
cognitive basis for this understanding, nor about the
reasons that cause children to move from one level
to the next. We shall turn now to what is known and
what needs to be known about these cognitive bases.

Composing and decomposing

If van Hiele is right, one of the most basic changes in
children’s analysis of shape is the realisation that
shapes, and particularly complex shapes, can be
decomposed into smaller shapes. We have already
discussed one of the reasons why children need to
be able to compose and decompose shapes, which is
that it is an essential part of understanding the
measurement of the area of different shapes.
Children, as we have seen, must learn, for example,
that you can compose a parallelogram by putting
together two identical triangles (and thus that you

can decompose any parallelogram into two identical
triangles) in order to understand how to measure
the area of triangles. As far as we know, there has
been no direct research on the relationship betw een
children’s ability to compose and decompose shapes
and their understanding of the rules for measuring
simple geometric figures, though such research
would be easy to do.

The Hart et al. (1985) study included two items
which dealt with shapes that were decomposed into
two parts and these parts were then re-arranged. In
one item the re-arranged parts were a rectangle and
two triangles, which are simple and familiar geometr ic
shapes, and in the other they w ere unfamiliar and
more complex shapes. In both cases the children
were asked about the effect of the re-arrangement
on the figure's total area: was the new figure's area
bigger or smaller or the same as the area of the
original one? A large proportion of the | |- to 4-
year-old students in the study (over 80% in each
group) gave the correct answer to the first of these
two questions but the second was far harder: only
60% of the | |-year-old group understood that the
area was the same after the rear rangement of parts
as before it. There are two reasons for being
surprised at this last result. The first is that it is hard
to see why there was such a lar ge difference in the
difficulty of the two problems when the logic for
solving both was exactly the same. The second is that
the mistakes which the children made in such
abundance with the harder problem are in effect
conservation failures, and yet these children are well
beyond the age when conser vation of area should
pose any difficulty for them. This needs further study.

The insight that understanding composition and
decomposition may be a basic part of children’s
learning about shapes has been investigated in
another way. Clements, Wilson and Sarama (2004)
looked at a group of three- to seven-year-old
children’s ability to assemble target patterns, like the
figure of a man, by assembling the right component
wooden shapes. This interesting study produced
evidence of some sharp developmental changes: the
younger children tended to create the figures bit by
bit whereas the older children tended to create units
made out of several bits (an arm unit for example)
and the oldest dealt in units made out of other units.
The next step in this research should be to find out
whether there is a link betw een this development
and the eventual progress that children make in
learning about geometry. Once again we have to
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make a plea for longitudinal studies (which are far
too rare in research on children’s geometry) and
intervention studies as well.

Summary

I Although young school children are already very
familiar with shapes, they have some difficulty with
the idea of decomposing these into parts, e.g. a
parallelogram decomposed into two congruent
triangles or an isosceles triangle decomposed into
two right-angle triangles, and also with the inverse
process of composing new shapes by combining
two or more shapes to make a different shape.

2 The barrier here may be that these are unusual
tasks for children who might learn how to carry
them out easily given the right experience. This is
a subject for future research.

Transforming shapes: enlargement,
rotation and reflection

We have already stressed the demands that
measurement of length and angle make on children'’s
imagination, and the same holds for their learning
about the basic transformations of shapes —
translation, enlargement, rotation and reflection.
Children have to learn to imagine how shapes would
change as a result of each of these tr ansformations
and we know that this is not always easy. The work
by Hart (1981) and her colleagues on children’s
solutions to reflection and rotation problems
suggests that these transformations are not always
easy for children to work out. They report that there
is a great deal of change in betw een the ages of | |
and 16 years in students’ understanding of what
changes and what stays constant as a result of these
two kinds of transformation.

One striking pattern reported by this research group
was that the younger children in the group being
studied were much more successful with rotation
and reflection problems that involved horizontal and
vertical figures than with sloping figures: this result
may be related to the evidence, mentioned earlier,
that much younger children discriminate and
remember horizontal and vertical lines much better
than sloping ones.

Psychologists, in contrast to educationalists, have not
thrown a great deal light on children’s learning about

transformations, even though some research on
perceptual development has come close to doing
so. They have shown that children remember
symmetrical figures better than asymmetrical figures
(Bornstein, Ferdinandsen and Gross, 1981), and
there are observations of pre-school children
spontaneously constructing symmetrical figures in
informal play (Seo and Ginsburg, 2004). However,
the bulk of the psychological work on rotation and
reflection has treated these transformations in a
negative sense. The researchers (Bomba, 1984;
Quinn, Sigueland and Bomba, 1985; Bryant,
1969,1974) were concerned with children’s
confusions between symmetrical, mirror-image
figures (usually reflections around a vertical axis):
they studied the development of children’s ability to
tell symmetrical figures apart, not to understand the
relation between them. Here is another bridge still
to be crossed between psychology and education.

Enlargement raises some interesting issues about
children’s geometric understanding. We know of no
direct research on teaching children or on children
learning about this transformation, at any rate in the
geometrical sense of shapes being enlarged by a
designated scale factor. These scale factors of course
directly affect the perimeter of the shapes: the
lengths of the sides of, for example, a right-angle
triangle enlarged by a factor of 2 are twice those of
the original triangle. But, of course, the relation
between the areas of the two triangles is different:
the area of the larger triangle is 4 times that of the
smaller one.

There is a danger that some children, and even some
adults, might confuse these different kinds of relation
between two shapes, one of which is an enlar gement
of the other. Piaget et al. (1960) showed children a 3
c¢m x 3 ¢m square which they said represented a
field with just enough grass for one cow, and then
they asked each child to draw a larger field of the
same shape which would produce enough for two
cows. Since this area measured 9 cm 2 the new
square would have to have an area of 18 cm.2 and
therefore sides of roughly 4.24 cm. since 4.24 is very
nearly the square root of I8. In this study most of
the children under the age of 10 y ears either acted
quite unsystematically or made the mistake of
doubling the sides of the original square in the new
figure that they drew, which meant that their new
square (an enlargement of the original square by a
scale factor of two) had 6 cm sides and an area of
around 36 cm? which is actually 4 times the area of
the first square. Older children, however, recognised
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the problem as a multiplicative one and calculated
each of the two squares’ areas my multiplying its
height by its width. The younger children’s difficulties
echoed those of the slave who, in Plato’s Meno, was
lucky enough to be instructed about measuring area
by Socrates himself.

The widespread existence of this apparently
prevailing belief that doubling the length of the sides
of a shape will double its area as well was recently
confirmed by a team of psychologists in Belgium
((De Bock, Verschaffel and Janssens, 1998, 2002; De
Bock,Van Dooren, Janssens and Verschaffel, 2002; De
Bock, Verschaffel, Janssens, Van Dooren and Claes,
2003). There could be an educational conflict here
between teaching children about scale factors on the
one hand and about proportional changes in area on
the other. It is possible that the misconceptions
expressed by students in the studies by Piaget et al.
(1960) and also by the Belgian team may actually
have been the result of confusion betw een the use
of scale factors in drawing and effect of doubling the
sides of figures. In Paper 4 we discussed in detail the
difficulties of the studies carried out by the Belgian
team but we still need to find out, by research,
whether scale drawing does provoke this confusion.
It would be easy to do such research.

Summary

I Understanding, and being able to work out, the
familiar transformations of reflection, rotation and
enlargement are a basic part of the geometry that
children learn at school. They are another instance
of the importance of grasping the relations
between shapes in learning geometry.

2 Psychology tells us little about children’s
understanding of these relations, though it would
be easy enough for psychologists to do empirical
research on this basic topic. The reason for
psychologists' neglect of transformations is that
they have concentrated on children distinguishing
between shapes rather than on their ability to
work out the relations between them.

3 There is the possibility of a clash betw een learning
about scale factors in enlargement and about the
measurement of area. This should be investigated.

General conclusions on
learning geometry

I Geometry is about spatial relations.

2 Children have become highly familiar with some of
these relations, long before they learn about them
formally in geometry classes: others are new to
them.

3 In the case of the spatial relations that they kno w
about already, like length, orientation and position
relations, the new thing that children have to learn
is to represent them numerically. The process of
making these numerical representations is not
always straightforward.

4 Representing length in standard units depends on
children using one-to-one correspondence
between the units on the ruler and imagined units
on the line being measured. This may seem to be
easy to do to adults, but some children find it
difficult to understand.

5 Representing the area of rectangles in standard
units depends on children understanding two
things: (a) why they have to multiply the base with
the height in centimetres (b) why this
multiplication produces a measure in different
units, square centimetres. Both ideas are difficult
ones for young children.

6 Understanding how to measure parallelograms and
triangles depends on children learning about the
relation between these shapes and rectangles.
Learning about the relations between shapes is a
significant part of learning about geometry and
deserves attention in research done by
psychologists.

7 The idea of angle seems to be new to most
children at the time that they begin to learn about
geometry. Research suggests that it takes children
some time to a form an abstract concept of angle
that cuts across different contexts. More research
is needed on children’s understanding of the
relations between angles in particular figures.

8 Children seem well-placed to learn about the
system of Cartesian co-ordinates since they are, on
the whole, able to extrapolate imaginary
perpendicular lines from horizontal and vertical co-
ordinates and to work out where they intersect.
They do, however, often find co-ordinate tasks
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which involve plotting and working out the
relationship between two or more positions quite
difficult. We need research on the reasons for this
particular difficulty.

9 There is a serious problem about the quality of the
research that psychologists have done on children
learning geometry. Although psychologists have
carried out good work on children’s spatial
understanding, they have done very little to extend
this work to deal with formal learning about the
mathematics of space. There is a special need for
longitudinal studies, combined with intervention
studies, of the link between informal spatial
knowledge and success in learning geometry.
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Summary of paper 6:
Algebraic reasoning

Headlines

* Algebra is the way we express generalisations
about numbers, quantities, relations and functions.
For this reason, good understanding of connections
between numbers, quantities and relations is
related to success in using algebra. In particular,
students need to understand that addition and
subtraction are inverses, and so are multiplication
and division.

To understand algebraic symbolisation, students
have to (a) understand the underlying operations
and (b) become fluent with the notational rules.
These two kinds of learning, the meaning and the
symbol, seem to be most successful when students
know what is being expressed and have time to
become fluent at using the notation.

Students have to learn to recognise the different
nature and roles of letters as: unknowns, variables,
constants and parameters, and also the meanings
of equality and equivalence. These meanings are
not always distinct in algebra and do not relate
unambiguously to arithmetical understandings,
Mapping symbols to meanings is not learnt in
one-off experiences.

Students often get confused, misapply, or
misremember rules for transforming expressions
and solving equations. They often try to apply
arithmetical meanings to algebraic expressions
inappropriately. This is associated with over-
emphasis on notational manipulation, or on
‘seneralised arithmetic’, in which they may try

to get concise answers.

Understanding symbolisation

The conventional symbol system is not merely an
expression of generalised arithmetic; to understand

it students have to understand the meanings of
arithmetical operations, rather than just be able to
carry them out. Students have to understand ‘inverse’
and know that addition and subtraction are inverses,
and that division is the inverse of multiplication.
Algebraic representations of relations between
quantities, such as difference and ratio, encapsulate
this idea of inverse. Using familiarity with symbolic
expressions of these connections, rather than thinking
in terms of generalising four arithmetical operations,
gives students tools with which to under stand
commutativity and distributivity, methods of solving
equations, and manipulations such as simplifying and
expanding expressions.

The precise use of notation has to be lear nt as well,
of course, and many aspects of algebraic notation
are inherently confusing (e.g. 2r and r ?). Over-
reliance on substitution as a method of doing this
can lead students to get stuck with arithmetical
meanings and rules, rather than being able to
recognise algebraic structures. For example, students
who have been taught to see expressions such as:

97 — 49 + 49

as structures based on relationships between
numbers, avoiding calculation, identifying variation, and
having a sense of limits of variability, are able to reason
with relationships more securely and at a younger age
than those who have focused only on calculation. An
expression such as 3x + 4 is both the answer to a
question, an object in itself and also an algorithm or
process for calculating a particular value. This has
parallels in arithmetic: the answerto 3 = 5 is 3/5.



Paper 6: Algebraic reasoning

Time spent relating algebraic expressions to
arithmetical structures, as opposed to calculations,
can make a difference to students’ understanding.
This is especially important when understanding that
apparently different expressions can be equivalent,
and that the processes of manipulation (often the
main focus of algebra lessons) are actually
transformations between equivalent forms.

Meanings of letters
and signs

Large studies of students’ interpretation and use of
letters have shown a well-defined set of possible
actions. Learners may, according to the task and
context:

* try to evaluate them using irrelevant information
* ignore them

* used as shorthand for objects, e.g. a = apple

* treat them as objects

* use a letter as a specific unknown

* use a letter as a generalised number

* use a letter as a variable.

Teachers have to understand that students may use

any one of these approaches and students need to

learn when these are appropriate or inappropriate.

There are conventions and uses of letters

throughout mathematics that have to be understood

in context, and the statement ‘letters stand for

numbers’ is too simplistic and can lead to confusion.

For example:

* it is not always true that different letters have
different values

* a letter can have different values in the same
problem if it stands for a variable

* the same letter does not have to have the same
value in different problems.

A critical shift is from seeing a letter as representing
an unknown, or ‘hidden’, number defined within a
number sentence such as:

3+x=8

1o seeing it as a variable,asin y =3 + x,0or 3 = y —x.
Understanding x as some kind of generalized
number which can take a range of values is seen by
some researchers to provide a bridge from the idea
of unknown to that of variables. The use of boxes

to indicate unknown numbers in simple ‘missing
number’ statements is sometimes helpful, but can
also lead to confusion when used for variables, or
for more than one hidden number in a statement.

Expressions linked by the ‘equals’ sign might be

not just numerically equal, but also equivalent, yet
students need to retain the ‘unknown’ concept when
setting up and solving equations which have finite
solutions. For example, 10x =5 =52x — 1) isa
statement about equivalence, and x is a variable, but
[0x —5 =2x + | defines a value of the variable for
which this equality is true. Thus x in the second case
can be seen as an unknown to be found, but in the
first case is a variable. Use of graphical software can
show the difference visually and powerfully because
the first situation is represented by one line, and the
second by two intersecting lines, i.e. one point.

Misuse of rules

Students who rely only on remembered rules often
misapply them, or misremember them, or do not
think about the meaning of the situations in which
they might be successfully applied. Many students
will use guess-and-check as a first resort when
solving equations, particularly when numbers are
small enough to reason about ‘hidden numbers’
instead of ‘undoing’ within the algebraic structure.
Although this is sometimes a successful strategy,
particularly when used in conjunction with graphs,
or reasoning about spatial structures, or practical
situations, over-reliance can obstruct the
development of algebraic understanding and
more universally applicable techniques.

Large-scale studies of U.K school children show
that, despite being taught the BIDMAS rule and its
equivalents, most do not know how to decide on
the order of operations represented in an algebraic
expression. Some researchers believe this to be due
to not fully understanding the underlying operations,
others that it may be due to misinter pretation of
expressions. There is evidence from Australia and
the United Kingdom that students who are taught
to use flow diagrams, and inverse flow diagrams, to
construct and reorganise expressions are better
able to decide on the order implied by expressions
involving combinations of operations. However, it is
not known whether students taught this way can
successfully apply their knowledge of order in
situations in which flow diagrams are inappropriate,
such as with polynomial equations, those involving
the unknown on ‘both sides’, and those with more
than one variable. To use algebra effectively,
decisions about order have to be fluent

and accurate.
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Misapplying arithmetical
meanings to algebraic
expressions

Analysis of children’s algebra in clinical studies with
|2- to |3-year-olds found that the main problems in
moving from arithmetic to algebra arose because:

* the focus of algebra is on relations rather than
calculations; the relation a + b = ¢ represents three
unknown quantities in an additive relationship

* students have to understand inverses as well as
operations, so that a hidden value can be found
even if the answer is not obvious from knowing
number bonds or multiplication facts; 7 + b = 4 can
be solved using knowledge of addition, but ¢ + 63
= 197 is more easily solved if subtraction is used as
the inverse of addition

* some situations have to be expressed algebraically

first in order to solve them.'My brother is two

years older than me, my sister is five years younger
than me; she is 12, how old will my brother be in
three years' time? requires an analysis and
representation of the relationships before solution.

‘Algebra’in this situation means constructing a

method for keeping track of the unknown as

various operations act upon it.

letters and numbers are used together; so that

numbers may have to be treated as symbols in a

structure, and not evaluated. For example, the

structure 2(3+b) is different from the structure of 6

+ 2b although they are equivalent in computational

terms. Learners have to understand that sometimes

it is best to leave number as an element in an
algebraic structure rather than ‘work it out’.

the equals sign has an expanded meaning; in

arithmetic it is often taken to mean ‘calculate’ but in

algebra it usually means ‘is equal to' or‘is equivalent
t0'. It takes many experiences to recognise that an
algebraic equation or equivalence is a statement
about relations between quantities, or between
combinations of operations on quantities. Students
tend to want ‘closure’ by compressing algebraic
expressions into one term instead of understanding
what is being expressed.

Expressing generalisations

In several studies it has been found that students
understand how to use algebra if they have

focused on generalizing with numerical and spatial
representations in which counting is not an option.
Attempts to introduce symbols to very young
students as tools to be used when they have a need

to express known general relationships, have been
successful both for aiding their understanding of
symbol use, and understanding the underlying
quantitative relations being expressed. For example,
some year | children first compare and discuss
quantities of liquid in different vessels, and soon
become able to use letters to stand for unknown
amounts in relationships, such as a > b;d = e;and so
on. In another example, older primary children could
generalise the well-known questions of how many
people can sit round a line of tab les, given that there
can be two on each side of each table and one at
each of the extreme ends. The ways in which
students count differ; so the forms of the general
statement also differ and can be compared, such as:
‘multiply the number of tables by 4 and add 2 or ‘it
is two times one more than the number of tables'.

The use of algebra to express known arithmetical
generalities is successful with students who have
developed advanced mental strategies for dealing
with additive, multiplicative and proportional
operations (e.g. compensation asin 82 — 17 =87 —
|7 —5). When students are allowed to use their
own methods of calculation they often find algebraic
structures for themselves. For example, expressing
13x7as 10x7 +3x7, oras2x7%-7,are
enactments of distributivity and learners can
represent these symbolically once they know that
letters can stand for numbers, though this is not
trivial and needs several experiences. Explaining a
general result, or structure, in words is often a
helpful precursor to algebraic representation.

Fortunately, generalising from experience is a natural
human propensity, but the everyday inductive
reasoning we do in other contexts is not al ways
appropriate for mathematics. Deconstruction of
diagrams and physical situations, and identification of
relationships between variables, have been found to
be more successful methods of developing a formula
than pattern-generalisation from number sequences
alone. The use of verbal descriptions has been shown
to enable students to bridge between observing
relations and writing them algebraically.

Further aspects of algebra arise in the companion
summaries, and also in the main body of Paper 6:
Algebraic reasoning.
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Recommendations

Research about mathematical
learning

Recommendations for teaching

The bases for using algebraic symbolisation
successfully are (2) understanding the
underlying operations and relations and
(b) being able to use symbolism correctly.

Emphasis should be given to reading numerical and algebraic
expressions relationally, rather than computationally. For
algebraic thinking, it is more important to understand how
operations combine and relate to each other than how they
are performed. Teachers should avoid emphasising symbolism
without understanding the relations it represents.

Children interpret ‘letter stands for
number'in a variety of ways, according to
the task. Mathematically, letters have
several meanings according to context:
unknown, variable, parameter, constant.

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of children’s possible
interpretations of letters, and also that when correctly used,
letters can have a range of meanings. Teachers should avoid
using materials that oversimplify this variety. Hands-on ICT can
provide powerful new ways to understand these differences in
several representations.

Children interpret '="to mean ‘calculate’;
but mathematically ‘="means either ‘equal
to’ or ‘equivalent to'.

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of the difficulties about
the ‘="sign and use multiple contexts and explicit language.
Hands-on ICT can provide powerful new ways to understand

these differences in several representations.

Students often forget, misremember,
misinterpret situations and misapply rules.

Developers of the curriculum, advisory schemes of work and
teaching methods need to take into account that algebraic
understanding takes time, multiple experiences, and clarity of
purpose. Teachers should emphasise situations in which
generalisations can be identified and described to provide
meaningful contexts for the use of algebraic expressions. Use
of software which carries out algebraic manipulations should
be explored.

Everyone uses ‘guess-&-check’ if answers
are immediately obvious, once algebraic
notation is understood.

Algebra is meaningful in situations for which specific arithmetic
cannot be easily used, as an expression of relationships. Focusing
on algebra as ‘generalised arithmetic, e.g. with substitution
exercises, does not give students reasons for using it.

Even very young students can use letters
to represent unknowns and variables in
situations where they have reasoned a
general relationship by relating properties.
Research on inductive generalisation from
pattern sequences to develop algebra
shows that moving from expressing simple
additive patterns to relating properties has
to be explicitly supported.

Algebraic expressions of relations should be a commonplace
in mathematics lessons, particularly to express relations and
equivalences. Students need to have multiple experiences of
algebraic expressions of general relations based in proper ties,
such as arithmetical rules, logical relations, and so on as well as
the well-known inductive reasoning from sequences.
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Recommendations for research

* The main body of Paper 6: Algebraic reasoning
includes a number of areas for which further
research would be valuable, including the following.

How does explicit work on understanding relations
between quantities enable students to move
successfully from arithmetical to algebraic thinking?

What kinds of explicit work on expressing
generality enable students to use algebra?

What are the longer-term comparative effects of
different teaching approaches to early algebra on
students’ later use of algebraic notation and
thinking?

How do learners’ synthesise their knowledge of
elementary algebra to understand polynomial
functions, their factorisation and roots, simultaneous
equations, inequalities and other algebraic objects
beyond elementary expressions and equations?

What useful kinds of algebraic expertise could be
developed through the use of computer algebra
systems in school?
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Algebraic reasoning

In this review of how students learn algebra we try
to balance an approach which focuses on what
learners can do and how their generalising and use
of symbols develop (a ‘bottom up' developmental
approach), and a view which states what is required
in order to do higher mathematics (a ‘top down'’
hierarchical approach). The ‘top down'’ view often
frames school algebra as a list of techniques which
need to be fluent. This is manifested in research
which focuses on errors made by learners in the
curriculum and small-scale studies designed to
ameliorate these. This research tells us about
development of understanding by identifying the
obstacles which have to be overcome, and also
reveals how learners think. It therefore makes sense
1o start by outlining the different aspects of algebra.
However, this is not suggesting that all mathematics
teaching and learning should be directed towards
preparation for higher mathematics.

By contrast a ‘bottom up’ view usually focuses on
algebraic thinking, taken to mean the expression

and use of general statements about relationships
between variables. Lins (1990) sought a definition of
algebraic thinking which encompassed the different
kinds of engagement with algebra that run through
mathematics. He concluded that algebraic thinking
was an intentional shift from context (which could
be ‘real’, or a particular mathematical case) to
structure. Thus ‘algebraic thinking arises when people
are detecting and expressing structure, whether in
the context of problem solving concerning numbers
or some modelled situation, whether in the context
of resolving a class of problems, or whether in the
context of studying structure more generally’ (Lins,
1990). Thus a complementary ‘bottom up’ view
includes consideration of the development of

students’ natural ability to discern patterns and
generalise them, and their growing competence in
understanding and using symbols; however this
would not take us very far in considering all the
aspects of school algebra. The content of school
algebra as the development of algebraic reasoning is
expressed by Thomas and Tall (2001) as the shifts
between procedure, process/concept, generalised
arithmetic, expressions as evaluation processes,
manipulation, towards axiomatic algebra. In this
perspective it helps to see manipulation as the
generation and transformation of equivalent
expressions, and the identification of specific
values for variables within them.

At school level, algebra can be described as:

* manipulation and transformation of symbolic
statements

* generalisations of laws about numbers and patterns

* the study of structures and systems abstracted
from computations and relations

* rules for transforming and solving equations

* learning about variables, functions and expressing
change and relationships

* modelling the mathematical structures of situations
within and outside mathematics.

Bell (1996) and Kaput (1998; 1999) emphasise the
process of symbolisation, and the need to operate
with symbolic statements and the use them within
and outside algebra, but algebra is much more than
the acquisition of a sign system with which to
express known concepts. Vergnaud (1998) identifies
new concepts that students will meet in algebra as:
equations, formulae, functions, variables and
parameters. What makes them new is that symbols
are higher order objects than numbers and become
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mathematical objects in their own right; arithmetic
has to work in algebraic systems, but symbol systems
are not merely expressions of general arithmetic.
Furthermore, ‘the words and symbols we use to
communicate do not refer directly to reality but to
represented entities: objects, properties, relationships,
processes, actions, and constructs, about which there
is no automatic agreement’ (p.167).

In this paper | draw on the research evidence about
the first five of the aspects above. In the next paper |
shall tackle modelling and associated issues, and their
relation to mathematical reasoning and application
more generally at school level.

It would be naive to write about algebraic reasoning
without reporting the considerable difficulties that
students have with adopting the conventions of
algebra, so the first part of this review addresses the
relationship between arithmetic and algebra, and the
obstacles that have to be overcome to understand
the meaning of letters and expressions and to use
them. The second part looks at difficulties which are
evident in three approaches used to develop
algebraic reasoning: expressing generalities; solving
equations; and working with functions. The third

part summarises the findings and makes
recommendations for practice and research.

Part 1: arithmetic, algebra,
letters, operations, expressions

Relationships between arithmetic
and algebra

In the United States, there is a strong commitment
to arithmetic, particularly fluency with fractions, to be
seen as an essential precursor for algebra: ‘Proficiency
with whole numbers, fractions, and particular aspects
of geometry and measurement are the Critical
Foundation of Algebra. ... The teaching of fractions
must be acknowledged as critically important and
improved before an increase in student achievement
in Algebra can be expected.” (NMAP, 2008). While
number sense precedes formal algebra in age-related
developmental terms, this one-way relationship is far
from obvious in mathematical terms. In the United
Kingdom where secondary algebra is not taught
separately from other mathematics, integration
across mathematics makes a two-way relationship
possible, seeing arithmetic as particular instances of
algebraic structures which have the added feature
that they can be calculated. For example, rather than
knowing the procedures of fractions so that they can
be generalised with letters and hence make algebraic
fractions, it is possible for fraction calculations to be
seen as enactments of relationships betw een rational
structures, those generalised enactments being
expressed as algorithms.

For this review we see number sense as preceding
formal algebra in students’ learning, but to imagine
that algebraic understanding is merely a
generalisation of arithmetic, or grows directly from it,
is a misleading over-simplification.

Kieran's extensive work (e.g. 1981, 1989, 1992)
involving clinical studies with ten |2- to |3-y ear-olds
leads her to identify five inherent difficulties in making
a direct shifts between arithmetic and algebra.

* The focus of algebra is on relations rather than
calculations; the relation a + b = ¢ represents two
unknown numbers in an additive relation, and while
3+ 5 =8 s such a relation it is more usually seen
as a representation of 8, so that 3 + 5 can be
calculated whereas a + b cannot.

* Students have to understand inverses as well as
operations, so that finding a hidden number can
be done even if the answer is not obvious from
knowing number bonds or multiplication facts; 7 +
b =4 can be done using knowledge of addition,
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but ¢ + 63 = 197 is more easily done if
subtraction is used as the inverse of addition'.
Some writers claim that understanding this
structure is algebraic, while others say that doing
arithmetic to find an unknown is arithmetical
reasoning, not algebraic reasoning.

Some situations have to be expressed algebraically
in order to solve them, rather than starting a
solution straight away.'| am 14 and my brother is 4
years older than me' can be solved by addition, but
‘My brother is two years older than me, my sister is
five years younger than me; she is |2, how old will
my brother be in three years' time?’ requires an
analysis and representation of the relationships
before solution. This could be with letters, so that
the answer is obtained by finding k where k — 5 =
12 and substituting this value into (k + 2) + 3.
Alternatively it could be done by mapping systems
of points onto a numberline, or using other
symbols for the unknowns.‘Algebra’ in this situation
means constructing a method for keeping track of
the unknown as various operations act upon it.

* Letters and numbers are used together, so that
numbers may have to be treated as symbols in
a structure, and not evaluated. For example, the
structure 2(a + b) is different from the structure
of 2a + 2b although they are equivalent in
computational terms.

* The equals sign has an expanded meaning; in
arithmetic it often means ‘calculate’ but in algebra
it more often means ‘is equal to' or even ‘is
equivalent to'.

If algebra is seen solely as generalised arithmetic

(we take this to mean the expression of gener al
arithmetical rules using letters), many problems arise
for learning and teaching, Some writers describe
these difficulties as manifestations of a ‘cognitive gap’
between arithmetic and algebra (Filloy and Rojano,
1989; Herscovics and Linchevski, 1994). For example,
Filloy and Rojano saw students dealing arithmetically
with equations of the form ax + b = ¢, where g,b
and ¢ are numbers, using inverse operations on the
numbers to complete the arithmetical statement.
They saw this as ‘arithmetical’ because it depended
only on using operations to find a ‘hidden’ number.
The same students acted algebraically with equations
such as ax + b = cx + d, treating each side as an
expression of relationships and using direct
operations not to ‘undo’ but to maintain the equation
by manipulating the expressions and equality. If such a

gap exists, we need to know if it is developmental or
epistemological, i.e. do we have to wait till learners
are ready, or could teaching make a difference? A
bottom-up view would be that algebraic thinking is
often counter-intuitive, requires good understanding
of the symbol system, and abstract meanings which
do not arise through normal engagement with
phenomena. Nevertheless the shifts required to
understand it are shifts the mind is ab le to make
given sufficient experiences with new kinds of object
and their representations. A top-down view would be
that students’ prior knowledge, conceptualisations and
tendencies create errors in algebra. Carraher and
colleagues (Carraher, Brizuela & Earnest, 2001;
Carraher, Schliemann & Brizuela, 2001) show that the
processes involved in shifting from an arithmetical
view to an algebraic view, that is from quantifying
expressions to expressing relations between variables,
are repeated for new mathematical structures at
higher levels of mathematics, and hence are
characteristics of what it means to lear n mathematics
at every level rather than developmental stages of
learners. This same point is made again and again by
mathematics educators and philosophers who point
out that such shifts are fundamental in mathematics,
and that reification of new ideas, so that they can be
treated as the elements for new levels of thought,

is how mathematics develops both historically and
cognitively. There is considerable agreement that
these shifts require the action of teachers and
teaching, since they all involve new ways of thinking
that are unlikely to arise naturally in situations (Filloy
and Sutherland, 1996).

Some of the differences reported in research rest on
what is, and what is not, described as algebraic. For
example, the equivalence class of fractions that
represent the rational number 3/5 is all fractions of
the form 3k/5k (k € N) It is a curriculum decision,
rather than a mathematical one, whether equivalent
fractions are called ‘arithmetic’ or ‘algebra’ but
whatever is decided, learners have to shift from seeing
3/5 as 'three cakes shared between five people’ to a
quantitative label for a general class of objects
structured in a particular quantitative relationship. This
is an example of the kind of shift lear ners have to
make from calculating number expressions to seeing
such expressions as meaningful structures.

Attempts to introduce symbols to very young
students as tools to be used when they have a need
to express general relationships, can be successful
both for them understanding symbol use, and
understanding the underlying quantitative relations
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being expressed (Dougherty, 1996;2001). In
Dougherty's work, students starting school
mathematics first compare and discuss quantities of
liquid in different vessels, and soon become able to
use letters to stand for unknown amounts. Arcavi
(1994) found that, with a range of students from
middle school upwards over several years, symbols
could be used as tools early on to express
relationships in a situation. The example he uses is the
well-known one of expressing how many people can
sit round a line of tables, given that there can be two
on each side and one at each of the extreme ends.
The ways in which students count differ; so the forms
of the general statement also differ; such as: ‘multiply
the number of tables by 4 and add two' or ‘it is two
times one more than the number of tables’. In Brown
and Coles' work (e.g. 1999, 2001), several years of
analysis of Coles’ whole-class teaching showed that
generalising by expressing structures was a powerful
basis for students to need symbolic notation, which
they could then use with meaning. For example, to
express a number such that ‘twice the number plus
three'is ‘three less’ than ‘add three and double the
number’ a student who has been in a class of 12-
year-olds where expression of general relationships is
a normal and frequent activity introduced N for
himself without prompting when it is appropr iate.

When students are allowed to use their own
methods of calculation they often find algebraic
structures for themselves. For example, expressing
[3x7as|10x7+3x7 oras2x7?%-7, are
enactments of distributivity (and, implicitly,
commutativity and associativity) and can be
represented symbolically, though this shift is not
trivial (Anghileri, Beishuizen and van Putten,2002;
Lampert, 1986). On the other hand, allowing
students to develop a mindset in which any method
that gives a right answer is as good as any other can
lock learners into additive procedures where
multiplicative ones would be more generalisable,
multiplicative methods where exponential methods
would be more powerful, and so on. But some
number=specific arithmetical methods do exemplify
algebraic structures, such as the transformation of
|3 x 7 described above. This can be seen either as
‘deriving new number facts from known number
facts’ or as an instance of algebraic reasoning.

The importance of a link between the kinds of
transformations necessary for mental arithmetic and
algebraic thinking is demonstrated in a three-year
longitudinal teaching and testing programme of | 16
students aged 12 to 14 (Britt and Irwin, 2007).

Students who had developed advanced mental
strategies, (e.g. compensation as in 82 — |7 = 87 —
|7 —5) for dealing with additive, multiplicative and
proportional operations, could use letters in
conventional algebra once they knew that they
‘stood for’ numbers. Those who did best at algebra
were those in schools where teachers had focused
on generalizing with numerical and spatial
representations in situations where counting was
not a sensible option.

There are differences in the meaning of notation as
one shifts between arithmetic and algebra. VWong
(1997) tested and interviewed four classes of
secondary students to see whether they could
distinguish between similar notations used for
arithmetic and algebra. For example, in arithmetic the
expression 3(4 + 5) is both a str ucture of operations
and an invitation to calculate, but in algebra a(b + ¢)
is only a structure of operations. Thus students get
confused when given mixtures such as 3(b + 5)
because they can assume this is an in vitation to
calculate. This tendency to confuse what is possib le
with numbers and letters is subtle and depends on
the expression. For example, Wong found that
expressions such as (2a")" are harder to simplify and
substitute than (hk)", possibly because the second
expression seems very clearly in the realm of algebra
and rules about letters. Where Booth and Kieran
claim that it is not the symbolic conventions alone
that create difficulties but more often a lack of
understanding of the underlying operations, WWong's
work helpfully foregrounds some of the inevitable
confusions possible in symbolic conventions. The
student has to understand when to calculate, when
to leave an expression as a statement about
operations, what particular kind of number
(unknown, general or variable) is being denoted, and
what the structure looks like with numbers and
letters in combination. As an example of the last
difficulty, 2¥ is found to be harder to deal with than x’
although they are visually similar in form.

The question for this review is therefore not whether
learners can make such shifts, or when they make
them, but what are the shifts they have to make, and
in what circumstances do they make them.

Summary

* Algebra is not just generalised arithmetic; there are
significant differences between arithmetical and
algebraic approaches.
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* The shifts from arithmetic to algebra are the
kinds of shifts of perception made throughout
mathematics, e.g. from quantifying to relationships
between quantities; from operations to structures
of operations.

Mental strategies can provide a basis for
understanding algebraic structures.

Students will accept letters and symbols standing
for numbers when they have quantitative
relationships to express; they seem to be able to
use letters to stand for ‘hidden’ numbers and also
for ‘any’ number.

Students are confused by expressions that combine
numbers and letters, and by expressions in which
their previous experience of combinations are
reversed. They have to learn to ‘read’ expressions
structurally even when numbers are involved.

Meaning of letters

Students’ understanding of the meaning of letters

in algebra, and how they use letters to express
mathematical relationships, are at the root of
algebraic development. Kuchemann (1981) identified
several different ways adolescent students used
letters in the Chelsea diagnostic test instr ument
(Hart, 1981). His research is based on test paper s of

2900 students between 12 and |6 (see Appendix ).

Letters were:

* evaluated in some way,e.g.a = |

* ignored, e.g. 3a taken to be 3

* used as shorthand for objects, e.g. a = apple
* treated as objects

* used as a specific unknown

* used as a generalised number

* used as a variable.

Within his categorisation there were correct and
incorrect uses, such as students who ascribed a value
to a letter based on idiosyncratic decisions or past
experience, e.g. x = 4 because it was 4 in the
previous question. These interpretations appear to
be task dependent, so learners had developed a
sense of what sorts of question were treated in
what kinds of ways, i.e. generalising (sometimes
idiosyncratically) about question-types through
familiarity and prior experience.

Booth (1984) interviewed 50 students aged |3 to
|5 years, following up with 17 further case study
students. She took a subset of Kuchemann's
meanings, ‘letters stand for numbers’, and further
unpicked it to reveal problems based on students’
test answers and follow-up interviews. She identified
the following issues which, for us, identify more
about what students have to learn.

* It is not always true that different letters have
different values; for example one solution to 3x +
Sy=8isthatx=y=1.

* A letter can have different values in the same
problem, but not at the same time, if it stands for a
variable (such as an equation having multiple roots,
or questions such as find the value of y = X2+ x +
2whenx=1,2,3...)

* The same letter does not have to have the same
value in different problems.

* Values are not related to the alphabet (a = 1,b =2
...;ory > p because of relative alphabetic position).

* Letters do not stand for objects (a for apples)
except where the objects are units (such as m for
metres).

* Letters do not have to be presented in alphabetical
order in algebraic expressions, although there are
times when this is useful’.

* Different symbolic rules apply in algebra and
arithmetic, e.g.:2 lots of x’is written “2x’ but two
lots of 7 are not written 27'.

As well as in Booth's study, paper and pencil tests
that were administered to 2000 students in aged | |
to 15 in 24 Australian secondary schools in 1992
demonstrated all the above confusions (MacGregor
and Stacey, 1997).

These problems are not resolved easily, because letters
are used in mathematics in var ying ways. There is no
single correct way to use them. They are used

as labels for objects that have no numerical value, such
as vertices of shapes, or for objects that do have
numerical value but are treated as general, such as
lengths of sides of shapes. They denote fixed constants
such as g, e or m, also non-numerical constants such as |,
and also they represent unknowns which have to be
found, and variables. Distinguishing between these
meanings is usually not taught explicitly, and this lack
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of instruction might cause students some difficufty. On
the other hand it is very hard to explain how to know
the difference between a parameter; a constant and a
variable (e.g.when asked to ‘vary the constant’ to
explore a structure), and successful students may

learn this only when it is necessary to make such
distinctions in particular usage. It is particularly hard to
explain that the O and Ein O + E = O (to indicate
odd and even numbers) are not algebraic, even though
they do refer to numbers. Interpretation is therefore
related to whether students understand the algebraic
context, expression, equation, equivalence, function or
other relation. It is not surprising that Furinghetti and
Paola (1994) found that only 20 out of 199 students
aged 12 to |7 could explain the diff erence between
parameters and variables and unknowns (see also
Bloedy-Vinner, 1994). Bills' (2007) longitudinal study of
algebra learning in upper secondary students noticed
that the letters x and y have a special status, so that
these letters trigger certain kinds of behaviour (e.g.
these are the variables; or (xy) denotes the general
point). Although any letter can stand for any kind of
number in practice there are conventions, such as x
being an unknown; x,y,z being variables; a,b,c being
parameters/coefficient or generalised lengths, and so on.

A critical shift is from seeing a letter as representing
an unknown, or ‘hidden’, number defined within a
number sentence such as:

3+x=8

to seeing it as a variable,asin y = 3 + x,or 3 =y —x.
While there is research to show how quasi-variables
such as boxes can help students understand the use
of letters in relational statements (see Carpenter and
Levi, 2000) the shift from unknown to variable when
similar letters are used to have different functions is
not well-researched. Understanding x as some kind of
generalised number which can take a range of values
is seen by some researchers to provide a bridge from
the idea of unknown to that of variables (Bednarz,
Kieran and Lee, 1996).

The algebra of unknowns is about using solution
methods to find mystery numbers; the algebra of
variables is about expressing and transforming relations
between numbers. These different lines of thought
develop throughout school algebra. The ‘variable’ view
depends on the idea that the expressions linked by the
‘equals’ sign might be not just n umerically equal, but
also equivalent, yet students need to retain the
‘unknown’ concept when setting up and solving
equations which have finite solutions. For example, |0x

—5=52x— 1) s a statement about equivalence, and
X is a variable,but [0x =5 = 2x + | defines a value of
the variable for which this equality is true. Thus x in the
second case can be seen as an unknown to be found.

It is possible to address some of the prob lems by giving
particular tasks which force students to sort out the
difference between parameters and variables (Drijvers,
2001). A parameter is a value that defines the structure
of a relation. For example, in y = mx + ¢ the variables
are x and y, while m and c define the relationship and
have to be fixed before we can consider the
covariation of x and y. In the United Kingdom this is
dealt with implicitly, and finding the gradient and
intercept in the case just described is seen as a special
kind of task. At A-level, however, students have to find
coefficients for partial fractions, or the coefficients of
polynomials which have given roots, and after many
years of finding x"they can find it hard to use par ticular
values for x to identify parameters instead. By that time
only those who have chosen to do mathematics need
to deal with it, and those who earlier could only find
the m and ¢ in y=mx =+ ¢ by using formulae without
comprehension may have given up maths. Fortunately,
the dynamic possibilities of ICT offer tools to fully
explore the variability of x and y within the constant
behaviour of m and ¢ and it is possible that more
extensive use of ICT and modelling approaches might
develop the notion of variable further.

Summary
* Letters standing for numbers can have many
meanings.

* The ways in which operations and relationships are
written in arithmetic and algebra differ:

* Learners tend to fall into well-known habits and
assumptions about the use of letters.

* A particular difficulty is the difference between
unknowns, variables, parameters and constants,
unless these have meaning.

* Difficulties in algebra are not merely about using
letters, but about understanding the underlying
operations and structures.

* Students need to learn that there are different uses
for different letters in mathematical conventions; for
example, g, b and c are often used as parameters,
or generalised lengths in geometry, and x, y and z
are often used as variables.
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Recognising operations

In several intervention studies and textbooks
students are expected to use algebraic methods for
problems for which an answer is required, and for
which ad hoc methods work perfectly well. This
arises when solving equations with one unknown on
one side where the answer is a positive integer (such
as 3x + 2 = 14); in word problems which can be
enacted or represented diagrammatically (such as ‘|
have |5 fence posts and 42 metres of wire; how far
apart must the fence posts be to use all the wire
and all the posts to make a straight fence?’); and in
these and other situations in which trial-and-
adjustment work easily. Students’ choice to use
non-algebraic methods in these contexts cannot

be taken as evidence of problems with algebra.

In a teaching experiment with |35 students age 12

to |3, Bednarz and Janvier (1996) found that a
mathematical analysis of the operations required for
solution accurately predicted what students would find
difficult, and they concluded that problems where one
could start from what is known and work towards
what is not known, as one does in arithmetical
calculations, were significantly easier than problems in
which there was no obvious bridge between knowns
and the unknown, and the relationship had to be
worked out and expressed before any calculations
could be made. Many students tried to work
arithmetically with these latter kinds of problem,
starting with a fictional number and working forwards,
generating a structure by trial and error rather than
identifying what would be appropriate. This study is
one of many which indicate that under standing the
meaning of arithmetical operations, rather than merely
being able to carry them out, is an essential precursor
not only to deciding what operation is the right one to
do, but also to expressing and under standing structures
of relations among operations (e.g. Booth, 1984). The
impact of weak arithmetical understanding is also
observed at a higher level, when students can confuse
the kinds of proportionality expressed in y = k/x and y
= kx, thinking the former must be linear because it
involves a ratio (Baker, Hemenway and Trigueros,2001).
The ratio of k to x in the first case is specific for each
value of x, but the ratio of y to x in the second case is
invariant and this indicates a propor tional relationship.

Booth (1984) selected 50 students from four schools
to identify their most common errors and to
interview those who made certain kinds of error This
led her to identify more closely how their weakness
with arithmetic limited their progress with algebra. The

methods they used to solve word problems were
bound by context, and depended on counting, adding,
and reasoning with whole and half numbers. They
were unable to express how to solve problems in
terms of arithmetical operations, so that algebraic
expressions of such operations were of little use,
being unrelated to their own methods. Similarly, their
methods of recording were not conducive to
algebraic expression, because the roles of different
numbers and signs were not clear in the layout. For
example, if students calculate as they go along, rather
than maintaining the arithmetical structure of a
question, much information is lost. For example, 4* —2*
becomes |6 —4 and the ‘difference between two
squares’ is lost; similarly, turning rational or irrational
numbers into decimal fractions can lose both accuracy
and structure.

In Booth's work it was not the use of letter s

that is difficult, but the underlying arithmetical
understanding. This again supports the view that it

is not until ad hoc, number fact and guess-and-test
methods fail that students are likely to see a need
for algebraic methods, and in a curriculum based on
expressions and equations this is likely occur when
solving equations with non-integer answers, where a
full understanding of division expressed as fractions
would be needed, and when working with the
unknown on both sides of an equation. Alternatively,
if students are trying to express general relationships,
use of letters is essential once they realise that
particular examples, while illustrating relationships, do
not fully represent them. Nevertheless students’
invented methods give insight into what they might
know already that is formalisable, as in the 13 x 7
example given above.

Others have also observed the persistence of
arithmetic (Kieran, 1992;Vergnaud, 1998). Vergnaud
compares two student protocols in solving a
distance/time problem and comments that the
additive approach chosen by one is not conceptually
similar to the multiplicative chosen by the other, even
though the answers are the same, and that this linear
approach is more natural for students than the
multiplicative. Kieran (1983) conducted clinical
interviews with six | 3-year-old students to find out
why they had difficulty with equations. The students
tended to see tasks as about ‘getting answers’ and
could not accept an expression as meaningful in
itself. This was also observed by Collis (1971) and
more recently by Ryan and Williams in their large
scale study of students’ mathematical understanding,
drawing on a sample of about 15 000 U K. students
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(2007). Stacey and Macgregor (2000, p. 159) talk of
the ‘compulsion to calculate’ and comment that at
every stage students’ thinking in algebraic problems
was dominated by arithmetical methods, which
deflected them from using algebra. Furthermore,
Bednarz and Janvier (1996) showed that even those
who identified structure during interviews were likely
to revert to arithmetical methods minutes later. It
seemed as if testing particular numbers was an
approach that not only overwhelmed any attempts
to be more analytical, but also prevented
development of a structural method.

This suggests that too much focus on substitution in
early algebra, rather than developing understanding
of how structure is expressed, might allow a
‘calculation’ approach to persist when working with
algebraic expressions. If calculation does persist, then
it is only where calculation breaks down that
algebraic understanding becomes crucial, or; as in
Bednarz and Janvier (1996), where word problems
do not yield to straightforward application of
operations. For a long time in Soviet education word
problems formed the core of algebra instruction.
Davydov (1990) was concerned that arithmetic does
not necessarily lead to awareness of generality,
because the approach degenerates into ‘letter
arithmetic’ rather than the expression of generality.
He developed the approach used by Dougherty
(2001) in which young students have to express
relationships before using algebra to generalize
arithmetic. For example, students in the first year

of school compare quantities of liquid (‘do y ou have
more milk than me?") and express the relationship
as, say, G < R They understand that adding the same
amount to each does not make them equal, but that
they have to add some to G to mak e them equal.
They do not use numbers until relationships
between quantities are established.

Substituting values can, however, help students to
understand and verify relationships: it matters if this
is for an unknown: 5 = 2x — 7 where only one value
will do; or for an equation where variables will be
related: y = 2x — 7; or to demonstrate equivalence:
eg does5(x +y)—3=5x+5y—3or5x+y— 3
But using substitution to understand what
expressions mean is not helpful. Furthermore the
choice of values offered in many textbooks can
exacerbate misunderstandings about the values
letters can have. They can reinforce the view that a
letter can only take one value in one situation, and
that different letters have to have different values,
and even thata = |, b = 2 etc.

Summary
* Learners use number facts and guess-and-check
rather than algebraic methods if possible.

* Doing calculations, such as in substitution and
guess-and-check methods, distracts from the
development of algebraic understanding.

* Substitution can be useful in exploring equivalence
of expressions.

* Word problems do not, on their own, scaffold a
shift to algebraic reasoning.

* Learners have to understand operations and their
inverses.

* Methods of recording arithmetic can scaffold a shift
to understanding operations.

What shifts have to be made
between arithmetic and algebra?

Changing focus slightly, we now turn to what the
learner has to see differently in order to overcome
the inherent problems discussed above. A key shift
which has to be made is from focusing on answers
obtained in any possible way, to focusing on
structure. Kieran (1989, 1992), reflecting on her long-
term work with middle school students, classifies
‘structure’ in algebra as (1) surface structure of
expression: arrangement of symbols and signs; (2)
systemic: operations within an expression and their
actions, order, use of brackets etc.; (3) structure of an
equation: equality of expressions and equivalence.

Boero (2001) identifies transformation and
anticipation as key processes in algebraic problem
solving, drawing on long-term research in authentic
classrooms, reconstructing learners’ meanings from
what they do and say. He observed two kinds of
transformation, firstly the contextual arithmetical,
physical and geometric transformations students do
to make the problem meaningful within their current
knowledge (see also Filloy, Rojano and Robio,2001);
secondly, the new kinds of transformation made
available by the use of algebra. If students’
anticipation is locked into arithmetical activity: finding
answers, calculating, proceeding step-by-step from
known to unknown (see also Dettori, Garutti, and
Lemut, 2001), and if their main experience of algebra
is to simplify expressions, then the shift to using the
new kinds of transformation afforded by algebra is
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hindered. Thus typical secondary school algebraic
behaviour includes reaching for a formula and
substituting numbers into it (Arzarello, Bazzini

and Chiappini, 1 994), as is often demonstrated in
students” meaningless approaches to finding areas
and perimeters (Dickson, 1989 a). Typically students
will multiply every available edge length to get

area, and add everything to get perimeter. These
approaches might also be manifestations of learners’
difficulties in understanding area (see Paper 5,
Understanding space and its representation in
mathematics) which cause them to rely on methods
rather than meaning.

The above evidence confirms that the relationship
between arithmetic and algebra is not a direct
conceptual hierarchy or necessarily helpful. Claims
that arithmetical understanding has to precede the
teaching of algebra only make sense if the focus is

on the meaning of operations and on arithmetical
structures, such as inverses and fractional equivalence,
rather than in correct calculation. A focus on answers
and ad hoc methods can be a distraction unless the
underlying structures of the ad hoc methods are
generalisable and expressed structurally. Booth (1984)
found that inappropriate methods were sometimes
transferred from arithmetic; students often did not
understanding the purpose of conventions and
notations, for example not seeing a need for brackets
when there are multiple operations. The possibilities of
new forms of expression and transformation have to
be appreciated, and the visual format of algebraic
symbolism is not always obviously connected to its
meanings (Wertheimer, 1960; Kirschner, 1989). For
example, the meaning of index notation has to be
learnt, and while y3 can be related to its meaning in
some way, y 172 is rather harder to interpret without
understanding abstract structure.

In the UK. context of an integrated curriculum, a non-
linear view of the shift between arithmetic and algebra
can be considered. Many researchers have shown

that middle-school students can develop algebraic
reasoning through a focus on relationships, rather
than calculations®. Coles, Dougherty and Arcavi have
already been mentioned in this respect, and Blanton
and Kaput (2005) showed in an intervention-and-
observation study of cohort of 20 primary teachers,
in particular one self-defined as ‘not a maths person’in
her second year of teaching, could integrate algebraic
reasoning into their teaching successfully, particularly
using ICT as a medium for providing bridges between
numbers and structures. Fujii and Stephens (2001,
2008) examined the role of quasi-variables (signs

indicating missing values in number sentences) as a
precursor to understanding generalization. Brown and
Coles (1999,2001) develop a classroom environment
in a UK secondary school in which relationships are
developed which need to be expressed structurally,
and algebraic reasoning becomes a tool to make new
questions and transformations possible. These studies
span ages 6 to lower secondary and provide school-
based evidence that the development of algebraic
reasoning can happen in deliberately-designed
educational contexts. In all these contexts, calculation
is deliberately avoided by focusing on, quantifiable but
not quantified, relationships, and using Kieran's first
level of structure, surface structure, to express
phenomena at her third level, equality of expressions.
A study with 105 |- and 12-y ear-olds suggests that
explaining verbally what to do in general terms is a
precursor to understanding algebraic structure
(Kieran's third level) (Reggiani 1994). In this section |
have shown that it is possible for students to make
the necessary shifts given certain circumstances, and
can identify necessary experiences which can support
the move.

Summary of what has to be learnt to

shift from arithmetic and algebra

* Students need to focus on relations and
expressions, not calculations.

* Students need to understand the meaning of
operations and inverses.

* Students need to represent general relations which
are manifested in situations

* In algebra letters and numbers are used together;
algebra is not just letters.

* The equals sigh means ‘has same value as"and is
equivalent to’ — not ‘calculate’.

* Arithmetic can be seen as instances of general
relationships between quantities.

* Division is a tool for constructing a rational
expression.

* The value of a number is less important than its
relation to other numbers in an expression.

* Guessing and checking, or using known number
facts, has to be put aside for more general
methods.
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* A letter does not always stand for a particular
unknown.

Without explicit attention to these issues, learners

will use their natural and quasi-intuitive reasoning to:

* try to match their use of letters to the way they
use numbers

* try to calculate expressions

* try to use '="to mean ‘calculate’

* focus on value rather than relationship

* try to give letters values, often based on
alphabetical assumptions.

Understanding expressions

An expression such as 3x + 4 is both the answer to
a question, an object in itself, and also an algorithm
or process for calculating a particular number This is
not a new way of thinking in mathematics that only
appears with algebra: it is also true that the answer to
3+ 5is 3/5, something that students are expected to
understand when they learn about intensive
quantities and fractions. Awareness of this kind of
dual meaning has been called proceptual thinking
(Gray and Tall, 1994), combining the process with its
outcome in the same way as a multiple is a number
in itself and also the outcome of m ultiplication. The
notions of ‘procept’ and ‘proceptual understanding’
signify that there is a need for flexibility in how we
act towards mathematical expressions.

Operational understanding

Many young students understand, at least under
some circumstances, the inverse relation between
addition and subtraction but it takes students
longer to understand the inverse relation

between multiplication and division®. This may

be particularly difficult when the division is not
symbolized by the division sign + but by means of
a fraction, as in 1/3. Understanding division when it
is symbolically indicated as a fraction would require
students to realise that a symbol such as 1/3
represents not only a quantity (e.g. the amount of
pizza someone ate when the pizza was cut into
three parts) but also as an operation. Kerslake
(1986) has shown that older primary and younger
secondary students in the United Kingdom rarely
understand fractions as indicating a division. A
further difficulty is that multiplication, seen as
repeated addition, does not provide a ready image
on which to build an understanding of the inverse
operation. An array can be split up vertically or

horizontally; a line of repeated quantities can

only be split up into commensurate lengths. The
language of division in schools is usually ‘sharing’
or ‘shared by’ rather than divide, thus triggering an
assignment metaphor. This is a long way from the
notion of number required in order to, for
example, find y when 6y = 7. There is evidence
that students understand some properties of
operations better in some contexts than in others
(e.g. Nunes and Bryant, 1995).

As well as knowing about operations and their
inverses, students need to know that only addition
and multiplication are commutative in arithmetic, so
that with subtraction and division it matters which
way round the numbers go. Also in subtraction and
multiplication it makes a difference if an unknown
number or variable is not the number being acted
on in the operation. For example, if 7 — p = 4, then
to find p the appropriate inverse operation is 7 — 4.
In other words ‘subtract from n'is self-inverse. A
similar issue arises with ‘divide into n'.

We are unconvinced by the U.S. National
Mathematics Advisory Panel's suggestion that fractions
must be understood before algebra is taught (NMAP
2008).Their argument is based on a ‘top-down’
curriculum view and not on research about ho w such
ideas are learnt. The problems just described are
algebraic, yet contribute to a full understanding of
fractions as rational structures. There is a strong
argument for seeing the mathematical structure of
fractions as the unifying concept which draws together
parts, wholes, divisions, ratio, scalings and muiltiplicative
relationships, but it may only be in such situations as
solving equations, algebraic fractions, and so on that
students need to extend their view of division and
fractions, and see these as related.

To understand algebraic notation requires an
understanding that terms made up of additive,
multiplicative and exponential operations, e.g.
(403b — 8a), are variables rather than instruction
to calculate, and have a structure and equivalent
forms. It has been suggested that spending time
relating algebraic terms to arithmetical structures
can provide a bridge between arithmetic and
algebra (Banerjee and Subramaniam, 2004). More
research is needed, but working this way round,
rather than introducing terms by reverting to
substitution and calculation, seems to have
potential.
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Summary

* Learners tend to persist in additive methods rather
than using multiplicative and exponential where
appropriate.

It is hard for students to learn the nature of
multiplication and division — both as inverse of
multiplication and as the structure of fractions and
rational numbers.

Students have to learn that subtraction and division
are non-commutative, and that their inverses are
not necessarily addition and multiplication.

Students have to learn that algebraic terms can
have equivalent forms, and are not instructions to
calculate. Matching terms to structures, rather than
using them to practice substitution, might be useful.

Relational reasoning

Students may make shifts between arithmetic and
algebra, and between operations and relations,
naturally with enough experience, but research
suggests that teaching can make a difference to the
timing and robustness of the shift. Carpenter and
Levi (2000) have worked substantially over decades
to develop an approach to early algebra based on
understanding equality, making generalisations
explicit, representing generalisations in various ways
including symbolically, and talking about justification
and proof to validate generalities. Following this
work, Stephens and others have demonstrated that
students can be taught to see expressions such as:

97 — 49 + 49

as structures, in Kieran's second sense of
relationships among operations (see also the

paper on natural numbers). In international studies,
students in upper primary in Japan generally tackled
these relationally, that is they did not calculate all the
operations but instead combined operations and
inverses, at a younger age than Australian students
made this shift. Chinese students generally appeared
to be able to choose between rapid computation
and relational thinking as appropriate, while |4-year-
old English students varied between teachers in their
treatment of these tasks (Fujii and Stephens, 2001,
2008; Jacobs, Franke, Carpenter, Levi and Battey,
2007).This ‘seeing’ relationally seems to depend on
the ability to discern details (Piaget, 1969 p.xxv)
and application of an intelligent sense of str ucture

(Wertheimer, 1960) and also to know when and
how to handle specifics and when to stay with
structure. The power of such approaches is
illustrated in the well-known story of the young
Gauss' seeing a structural way to sum an arithmetic
progression. In Fujii and Stephens’ work, seeing
patterns based on relationships between numbers,
avoiding calculation, identifying variation, having a
sense of limits of variability, were all found to be
predictors of an ability to reason with relationships
rather than numbers.

These are fundamental algebraic shifts. Seeing algebra
as ‘generalised arithmetic’ is not achieved by inductive
reasoning from special cases, but by developing a
structural perspective on number sentences.

Summary
* Learners naturally generalise, they look for patterns
and habits, and familiar objects.

* Inductive reasoning from several cases is a natural
way to generalise, but it is often more important to
look at expressions as a whole.

* Learners can shift from ‘seeing’ number expressions
as instructions to calculate to seeing them as
relationships.

* This shift can be scaffolded by teaching which
encourages students not to calculate but to identify
and use relations between numbers.

* Learners who are fluent in both ways of seeing
expressions, as structures or as instructions to
calculate, can choose which to use.

Combining operations

Problems arise when an expression contains more
than one operation, as can be seen in our paper on
functional relations where young children cannot
understand the notion of relations between
relations, such as differences of differences. In
arithmetical and algebraic expressions, some relations
between relations appear as combinations of
operations, and learners have to decide what has

to be ‘done’ first and how this is indicated in the
notation. Carpenter and Levi (2000), Fujii and
Stephens (2001, 2008), Jacobs et al. (2007), draw
attention to this in their work on how students read
number sentences. Linchevski and Herscovics (1996)
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studied how |2- and|3-year-olds decided on the
order of operations. They found that students tended
to overgeneralise the order, usually giving addition
priority over subtraction; or using operations in left
to right order; they can show lack of awareness of
possible internal cancellations; they can see brackets
as merely another way to write expressions rather
than an instruction to act first, for example: 926 —
167 — 167 and 926 — (167 + 167) yielded diff erent
answers (Nickson, 2000 p. 120); they also did not
understand that signs were somehow attached to
the following number.

Apart from flow diagrams, a common way to teach
about order in the United Kingdom is to offer
‘BODMAS®' and its variants as a rule. However, it is
unclear whether such an approach adequately
addresses typical errors made by students in their
use of expressions.

The following expression errors were manifested
in the APU tests (Foxman et al, 1985). These tests
involved a cohort of 12 500 students age || to I5
years. There is also evidence in more recent studies
(see Ryan and Williams, 2007) that these are
persistent, especially the first.

* Conjoiningieg.a+b=ab

* Powers are interpreted as multiplication, an error
made by 20% of |5-year-olds

» Not understanding that having no coefficient means
the coefficient is |

* Adding all three values when substituting in, say, u + gt

* Expressing the cost of a packet of sweets where x
packets cost 90p as x/90

The most obvious explanation of the conjoining error
is that conjoining is an attempt to express and ‘answer’
by constructing closure, or students may just not know
that letters together in this notation mean ‘multiply’.

Ryan and Williams (2007) found a significant number
of 14-year-olds did not know what to do with an
expression; they tried to ‘solve’ it as if it is an
equation, again possibly a desire for an ‘answer’. They
also treated subtraction as if it is comm utative, and
ignored signs associated with numbers and letters.
Both APU (Foxman et al, 1985) and Hart, (1981)
concluded that understanding operations was a
greater problem than the use of symbols to indicate

them, but it is clear from Ryan and Williams' study
that interpretation is also significantly problematic.
The prevalence of similar errors in studies 20 years
apart is evidence that these are due to students’
normal sense-making of algebra, given their previous
experiences with arithmetic and the inherent non-
obviousness of algebraic notation.

Summary

* Understanding operations and their inverses is a
greater problem than understanding the use of
symbols.

Learners tend to use their rules for reading and
other false priorities when combining operations,
i.e. interpreting left to right, doing addition first,
using language to construct expressions, etc. They
need to develop new priorities.

New rules, such as BODMAS (which can be
misused), do not effectively and quickly replace old
rules which are based on familiarity, habit, and
arithmetic.

Equals sign

A significant body of research reports on difficulties
about the meaning of the equals sign Sfard and
Linchevski (1994) find that students who can do 7 x
+ 157 =248 cannot do |12 = 12 x + 247, but
these questions include two issues: the position and
meaning of the equals sign and that algor ithmic
approaches lead to the temptation to subtract
smaller from larger, erroneously, in the second
example. They argue that the root problem is the
failure to understand the inverse relation between
addition and subtraction, but this research shows
how conceptual difficulties, incomplete
understandings and notations can combine to make
multiple difficulties. If students are taught to make
changes to both sides of an equation in order to
solve it (i.e. transform the equation y —5 = 8 into y
—5+4+5=8+5) and they do not see the need to
maintain equivalence between the values in the two
sides of the equation, then the method that they
are being taught is mysterious to them, particularly
as many of the cases they are offered at first can be
easily solved by arithmetical methods. Booth (1984)
shows that these errors combine problems with
understanding operations and inverses and
problems understanding equivalence.
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There are two possible ways to tackle these problems:
1o identify all the separate problems, treat them
separately, and expect learners to apply the relevant
new understandings when combinations occur; or to
treat algebraic statements holistically and semantically,
so that the key feature of the above examples is
equality. There is no research which shows conclusively
that one approach is better than the other (a
statement endorsed in NMAP's review (2008)).

There is semantic and syntactic confusion about the
meaning of ‘'="that goes beyond learning a notation
(Kieran, 1981; 1992). Sometimes, in algebra, it is used
to mean that the two expressions are equal in a
particular instance where their values are equal; other
times it is used to mean that tw o expressions are
equivalent and one can be substituted for another in
every occurrence. Strictly speaking, the latter is
equivalence and might be written as* ’but we are not
arguing for this to become a new ‘must do’ for

the curriculum as this would cut across so much
contextual and historical practice. Rather; the
understanding of algebraic statements must be
situational, and this includes learning when to use ‘==’
to mean ‘calculate’; when to use it to mean ‘equal in
special cases’ and when to mean ‘equivalent’; and when
to indicate that ‘these two functions are related in this
way' (Saenz-Ludlow and Walgamuth, 1998). These
different meanings have implications for how the letter
is seen: a quantitative placeholder in a structure; a
mystery number to be found to make the equality
work; or a variable which co-varies with others within
relationships. Saenz-Ludlow and Walgamuth showed,
over a year-long study with children, that the shift
towards seeing ‘="to mean ‘is the same as’ rather than
find the answer' could be made within arithmetic with
consistent, intentional, teaching. This was a teaching
experiment with eight-year-olds in which children were
asked to find missing sums and addends in addition
grids. The verb 'to be’ was used instead of the equals
sign in this and several other tasks. Another task
involved finding several binary calculations whose
answer was |2, this time using ‘=" Word problems,
including some set by the children, were also used.
Children also devised their own ways to represent and
symbolise equality. We do not have space here to
describe more of the experiment, but at the end the
children had altered their initial view that ‘="was an
instruction to calculate. They understood ‘="as giving
structural information. Fujii and Stephens’ (2001)
research can be interpreted to show that students do
get better at using ‘new’ meanings of the equals sign
and this may be a product of repeated experience of
what Boero called the ‘new transformations” made

possible by algebra, combined with ‘new anticipations’
also made possible by algebra.

Alibali and colleagues (2007) studied 81 middle school
students over three years to map their understanding
of equations. They found that those who had, or
developed, a sophisticated understanding of the equals
sign were able to deal with equivalent equations, using
equivalence to transform equations and solve for
unknowns. Kieran and Saldanha (2005) used a
Computer Algebra System to enable five classes of
upper secondary students to explore different
meanings of ‘="and found that given suitable tasks they
were able to understand equivalence, generating for
themselves two different understandings: equivalence
as meaning that expressions would give them equal
values for a range of input values of the var iables, and
equivalence as meaning that the expressions were
basically transformations of the same form. Both of
these understandings contribute to meaningful
manipulation from one form to another. Also focusing
on equivalence, Kieran and Sfard (1999) used a
graphical function approach and thus enabled students
1o recognise that equivalent algebraic representations of
functions would generate the same graphs, and hence
represent the same relationships between variables.

The potential for confusion between equality and
equivalence relates to confusion between finding
unknowns (such as values of variables when two
non-equivalent expressions are temporarily made
equal) and expressing relationships between
variables. Equivalence is seen when graphs coincide;
equality is seen when graphs intercept.

Summary
* Learners persist in using ‘="to mean ‘calculate’
because this is familiar and meaningful for them.

* The equals sign has different uses within
mathematics; sometimes it indicates equivalence
and sometimes equality; learners have to learn
these differences.

* Different uses of the equals sign carry different
implications for the meaning of letters: they can
stand for hidden numbers, or variables, or
parameters.

* Equivalence is seen when graphs coincide, and can
be understood either structurally or as generation
of equal outputs for every input; equality is seen
when graphs intercept.
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Equations and inequality

In the CMF study (Johnson, 1989), 25 classes in 2|
schools in United Kingdom were tested to find out
why and how students between 8 and |3 cling to
guess-and-check and number-fact methods rather
than new formal methods offered by teachers. The
study focused on several topics, including linear
equations. The findings, dependent on large scale
tests and additional interviews in four schools, are
summarised here and can be seen to include several
tendencies already described in other, related,
algebraic contexts. That the same tendencies emerge
in several algebraic contexts suggest that these are
natural responses to symbolic stimuli, and hence take
time to overcome.

Students tended to:

* calculate each side rather than operate on them

* not use inverse operations with understanding

* use ad hoc number-specific methods

* interpret a box or triangle to mean ‘missing

number’ but could not interpret a letter for this

purpose

not relate a method to the symbolic form of a

method

be unable to explain steps of their procedures

confuse a ‘changing sides’ method with a ‘balance’

metaphor, particularly not connecting what is said

to what is done, or to what is written

* test actual numbers rather than use an algebraic
method

* assume different letters had different values

e think that a letter could not have the value zero.

They also found that those who used the language
‘getting rid of " were more likely to engage in
superficial manipulation of symbols. They singled out
‘get rid of a minus' for particular comment as it has
no mathematical meaning. These findings have been
replicated in United Kingdom and elsewhere, and
have not been refuted as evidence of common
difficulties with equations.

In the same study, students were then taught using a
function machine’ approach and this led to better
understanding of what an equation is and the variable
nature of x. However, this approach only makes sense
when an input-output model is appropriate, i.e. not
for equating two functions or for higher order
functions (Vergnaud 1997). Ryan and Williams (2007)
found that function machines can be used by most
students age 12 to |4 to solve linear equations, but
only when provided. Few students chose to introduce

them as a method. Most |2-year-olds could reverse
operations but not their order when ‘undoing’ to find
unknowns in this approach. Booth (1984) and Piaget
and Moreau (2001) show that students who
understand inversion might not understand that,
when inverting a sequence of operations, the inverse
operations cannot just be carried out in any order:
the order in which they are carried out influences the
result. Robinson, Ninowski and Gray (2006) also
showed that coordinating inversion with associativity
is a greater challenge than using either inversion or
associativity by themselves in problem solving.
Associativity is the property that x + (y + z) is equal
to (x +y) + z so that we can add either the first
two terms, and then the last, or the last two and then
the first. This property applies to multiplication also.
(Incidentally, note that the automatic application of
BODMAS here would be unnecessary.) Students

get confused about how to ‘undo’ such related
operations, and how to undo other paired operations
which are not associative. As in all such matters,
teaching which is based on meaning has different
outcomes (see Brown and Coles, 1999, 2001).

Once learners understand the meaning of ‘="there is
a range of ‘intuitive’ methods they use to find
unknown numbers: using known facts, counting,
inverse operations, and trial substitution (Kieran,
1992). These do not generalize for situations in which
the unknown appears on both sides, so formal
methods are taught. Formal methods each carry
potential difficulties: function machines do not extend
beyond ‘one-sided’ equations; balance methods do not
work for negative signs or for non-linear equations;
change-side/change-sign tends to be misapplied rather
than seen as a special kind of tr ansformation.

Many errors when solving equations appear to
come from misapplication of rules and processes
rather than a flawed understanding of the equals
sign. Filloy describes several ‘cognitive tendencies’
observed over several studies of students
progressing from concrete to abstract
understandings (e.g. Filloy and Sutherland, 1996).
These tendencies are: to cling to concrete models;
to use sign systems inappropriately; to make
inappropriate generalizations; to get stuck when
negatives appear;to misinterpret concrete actions.
Problems with the balance metaphor could be a
manifestation of the general tendency to cling to
concrete models (Filloy and Rojano, 1989), and the
negative sign cannot be related to concrete
understandings or even to some syntactic rules
which may have been learnt (Vlassis, 2002). Another
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problem is that when the ‘unknown'’is on both sides
it can no longer be treated with simple in version
techniques as finding ‘the hidden number’; 3x = 12
entails answering the question ‘what number must |
multiply 3 by to get 12?7 But when balancing ‘“4m +
3" with 3m + 8’ the balance metaphor can suggest
testing and calculating each side until they match,
rather than solving by filling-in arithmetical facts.
Vlassis devised a teaching experiment with 40 lower
secondary students in two classes. The first task was
a word problem which would have generated two
equal expressions in one variable, and students only
applied trial-and-error to this. The second task was
a sequence of balance problems with diagrams
provided, and all students could solve these. The
final task was a sequence of similar prob lems
expressed algebraically, two of which used negative
signs. These generated a range of erroneous
methods, including failure to identify when to use an
inverse operation, misapplication of rules, syntactical
mistakes and manipulations whose meaning was
hard to identify. In subsequent exercises errors of
syntax and meaning diminished, but errors with
negative integers persisted. Eight months later, in a
delayed interview, Vlassis' students were still using
correctly the principles represented in the balance
model, though not using it explicitly, but still had
problems when negatives were included. In Filloy
and Rojano (1989) a related tendency is descr ibed,
that of students creating a personal sense of
concrete action (e.g.'l shall move this from here to
here) and using them as if they are algebr aic rules
(also observed by Lima and Tall, 2008). More insight
into how learners understand equations is given by
English and Sharry (1996) who asked students to
classify equations into similar types. Some classified
them according to superficial syntactic aspects, and
others to underlying algebraic structure. English and
Sharry draw attention to the need for students to
have experience of suitable structures in order to
reason analogically and identify deeper similarities.

There is little research in students’ understanding of
inequality in algebra. In number, children may know
about ranges of smaller, or larger;, or ‘between’
numbers from their position on a n umberline, and
children often know that adding the same quantity
to two unequal quantities maintains the inequality.
There are well-known confusions about relative size
of decimal numbers due to misunderstandings about
the notation, but beyond the scope of this review
(Hart, 1981). Research by Tsamir and others
describe common problems which appear to relate
to a tendency to act procedurally with unequal

algebraic expressions without maintaining an
understanding of the inequality (Linchevski and Sfard,
[991; Tsamir and Bazzini, 200 1; Tsamir and Almog,
2001). One of these studies compares the
performance of 170 ltalian students to that of 148
Israeli students in higher secondary school (Tsamir
and Bazzini, 2001). In both countries students had
been formally taught about a range of inequalities.
They were asked whether statement about the set
S ={ x e R x = 3} could be true or not:'S can be
the solution set of an equality and an inequality’.
Only half the students understood that it could be
the solution set of an inequality, and those few
ltalians who gave examples chose a quadratic
inequality that they already knew about. Some
students offered a linear inequality that could be
solved to include 3 in the answ er. The researchers
concluded that unless an inequality question was
answerable using procedural algebra it was too hard
for them. Another task asked if particular solution
sets satisfied 5x* < 0. Only half were able to say that
x = 0, the next most popular answer being x < 0.
The researchers compared students’ responses to
both tasks. It seems that the image of ‘imbalance’
often used with algebraic inequalities is abandoned
when manipulation is done. The ‘imbalance’ image
does not extend to quadratic inequalities, for which
a graphical image works better, but again a
procedural approach is preferred by many students
who then misapply it.

Summary
* Once students understand the equals sign, they are
likely to use intuitive number-rules as a first resort.

* The appearance of the negative sign creates need
for a major shift to abstract meanings of operations
and relations, as concrete models no longer
operate.

* The appearance of the unknown on both sides of
an equation creates the need for a major shift
towards understanding equality and variables.

* Students appear to use procedural manipulations
when solving equations and inequalities without a
mental image or understanding strong enough to
prevent errors.

* Students appear to develop action-based rules
when faced with situations which do not have
obvious concrete manifestations.
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* Students find it very hard to detach themselves
from concrete models, images and instructions and
focus on structure in equations.

Manipulatives

It is not only arithmetical habits that can cause
obstacles to algebra. There are other algebraic
activities in which too strong a memory for process
might create obstacles for future learning. For
example, a popular approach to teaching algebra

is the provision of materials and diagrams which
ascribe unknown numerical (dimensional) meaning
to letters while facilitating their manipulation to
model relationships such as commutativity and
distributivity. These appear to have some success in
the short term, but shifts from physical appearance
to mental abstraction, and then to symbolism, are
not made automatically by learners (Boulton-Lewis,
Cooper, Atweh, Pillay, Wilss and Mutch, 1997). These
manipulatives provide persistent images and
metaphors that may be obstructions in future
work. On the other hand, the original approach to
dealing with variables was to represent them as
spatial dimensions, so there are strong historical
precedents for such methods. There are reported
instances of success in teaching this, relating to
Bruner’s three perspectives, enactive-iconic-
symbolic (1966), where detachment from the
model has been understood and scaffolded by
teaching (Filloy and Sutherland, 1996; Simmt and
Kieren, 1999). Detachment from the model has to
be made when values are negative and can no
longer be represented concretely, and also with
fractional values and division operations. Spatial
representations have been used with success
where the image is used persistently in a range

of algebraic contexts, such as expressions and
equations and equivalence, and where teachers
use language to scaffold shifts between concrete,
numerical and relational perspectives.

Use of rod or bar diagrams as in Singapore (NMAP,
2008; Greenes and Rubenstein, 2007) to represent
part/whole comparisons, reasoning, and equations,
appears to scaffold thinking from actual numbers to
structural relationships, so long as they only involve
addition and/or repeated addition. Statements in the
problem are translated into equalities between
lengths. These equal lengths are constructed from
rods which represent both the actual and the
unknown numbers. The rod arrangements or values
can then be manipulated to find the value of the

unknown pieces. Equations with the variable on both
sides are taught to | | and |2 year-olds in Singapore
using such an approach. The introduction of such
methods into classrooms where teachers are not
experienced in its use has not been researched. It
has some similarities to the approach based on
Cuisenaire rods championed by Gattegno in Europe.
Whereas use for numbers was widespread in UK.
primary schools, use for algebra was not, possibly
because the curriculum focus on substitution and
simplification, rather than meaning and equivalence,
provided an obstacle to sustained use.

Summary
* Manipulatives can be useful for modelling algebraic
relationships and structures.

* Learners might see manipulatives as ‘just something
else to learn’.

* Teachers can help learners connect the use of
objects, the development of imagery and the use of
symbols through language.

* Students have to appreciate the limitations of
concrete materials and shift to mental imagery
and abstract understandings.

Application of formulae within
mathematics

Dickson'’s study with three classes of ten-y ear-olds
(1989 a) into students’ use of formulae and formal
methods is based on using the formula for area of
rectangle in various contexts. In order to be
successful in such tasks, students have to understand
what multiplication is and how it relates to area, e.g.
through an array model, how to use the formula by
substitution and how the measuring units for area
are applied. Some students can then work out a
formula for themselves without formal teaching.
From this study, Dickson (1989a, 1989b) and her
colleagues found several problems in how students
approach formal methods in early secondary school.
A third of her subjects did not use a f ormal method
at all; a third used it in a test b ut could not explain it
in interviews; a third used it and explained it. She
found that they:

* may not have underlying knowledge on which to
base formalisation (note that formalisation can
happen spontaneously when they do have such
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knowledge)
* base their reasoning on incorrect method
* have a sound strategy that may not match formal
method
may be taught methods leading up to formal, but
not matching the formal method
may retain other methods, which may have limited
application
may retain formalisation but lose meaning, then
misapply a formal method in  future
pre-formal enactive or iconic experiences may have
been forgotten
might be able to use materials to explain formal
method
may interpret formal notation inadequately.

The research described above, taken as a whole,
suggests that the problems students have with using
formulae in subjects other than mathematics are

due to: not being fluent with the notation; not
understanding the underlying operations; experience
of using such formulae in mathematics lessons being
limited to abstract or confusing situations, or even to
situations in which an algebraic formula is not
necessary. In addition, of course, they may not
understand the intended context.

Summary

* Learners are able to construct formulae for
themselves, at least in words if not symbols, if they
have sufficient understanding of the relationships
and operations.

* Learners’ problems using formulae have several

possible root causes.

I Underlying knowledge of the situation or
associated concepts may be weak.

2 Existing working strategies may not match the
formal method.

3 Notational problems with understanding how
to interpret and use the formula.

Part 2: problems arising in
different approaches to
developing algebraic reasoning

Since the CSMS study (Hart, 1981) there has been
an expansion of teaching approaches to develop
meaningful algebra as:

expressing generalities which the child already
knows, therefore is expressing something that has
meaning, and comparing equivalent expressions

* describing relationships between expressions as
equations, which can then be solved to find
unknown values (as in word problems)

a collection of techniques for transforming
equations to either find unknown values or
represent relationships between variables in
different ways

expressing functions and their inverses, in which
inputs become outputs according to a sequence
of operations; using multiple representations
modelling situations by identifying variables and
how they co-vary.

Each of these offers more success in some aspects
than an approach based on rules for manipulating
expressions, but also highlights further obstacles to
reasoning. Research is patchy, and does not examine
how students learn across contexts and materials
(Rothwell-Hughes, 1979). Indeed, much of the
research is specifically about learning in particular
contexts and materials.

Expressing generalisations
from patterns

One approach to address inherent difficulties in
algebra is to draw on our natural propensity to
observe patterns, and to impose patterns on
disparate experiences (Reed 1972). In this
approach, sequences of patterns are presented
and students asked to deduce formulae to
describe quantitative aspects of a general term

in the sequence. The expectation is that this
generates a need for algebraic symbolisation, which
is then used to state what the student can already
express in other ways, numerical, recursive,
diagrammatically or enactively.

This approach is prevalent in the United Kingdom,
Australia and parts of North America. The NMAP
(2008) review finds no evidence that expressing
generality contributes to algebraic understanding, yet
others would say that this depends on the definition
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of algebraic understanding. Those we offered at the
start of this chapter include expression of gener ality as
an indication of understanding. In Australia, there are
contradictory findings about the value of such tasks.

The following is an example of one of the items
which was used in the large scale test administered
to students by MacGregor and Stacey (reported in
Mason and Sutherland, 2002).

Look at the numbers in this table and answer the
questions:

X y
N
2 6
3 7
4 8
5 9
6

7 I
8

(i) When x is 2, what is y?

(i) When x is 8, what is y?

(i) When x is 800, what is y?

(iv) Describe in words how you would find y if you
were told that xis .........

(v) Use algebra to write a rule connecting x and y

MacGregor and Stacey found performance on these
items varied from school to school. The success of

| 4-year-old students in writing an algebraic rule
ranged from 8% in one school to 73% in another. In
general students searched for a term-to-term rule
(e.g. Stacey, 1989). They also tested the same students
with more traditional items involving substitution to
show the meaning of notation and transformation, to
show equivalence and finding unknowns. From this
study they concluded that students taught with a

pattern-based approach to algebra did no better and
no worse on traditional algebra items than students
taught with a more traditional approach (MacGregor
and Stacey, 1993, 1995).

Redden (1994) studied the work of 1400 10- to

| 3-year-olds to identify the stages through which
students must pass in such tasks. First they must
recognise the number pattern (which might be
multiplicative), then there must be a stimulus to
expression, such as being asked for the next term
and then the value of uncountable term; they must
then express the general rule and use symbols to
express it. Some students could only process one
piece of data, some could process more pieces of
data, some gave only a specific example, some gave
the term-to-term formula and a few gave a full
functional formula. A major shift of perception has to
take place to express a functional formula and this is
more to do with ‘seeing’ the functional relationship, a
shift of perception, than symbolising it. Rowland and
Bills (1996) describe two kinds of generalisation:
empirical and structural, the first being more
prevalent than the second. Amit and Neria (2007)
use a similar distinction and found that students who
had followed a pattern-generalisation curriculum
were able to switch representations meaningfully,
distinguish between variables, constants and their
relationships, and shift voluntarily from additive to
multiplicative reasoning when appropriate.

Moss, Beatty and Macnab (2006) worked with nine-
year-old students in a longitudinal study and found
that developing expressions for pattern sequences
was an effective introduction to understanding the
nature of rules in ‘guess the rule’ problems. Nearly
all of the 34 students were then able to articulate
general descriptions of functions in the classic
handshake problem’ which is known to be hard for
students in early secondary years. By contrast, Ryan
and Williams (2007) found in large-scale testing that
the most prevalent error in such tasks for 12- and

| 4-year-olds was giving the term-to-term formula
rather than the functional formula, and giving an
actual value for the nth term. Cooper and Warren
(2007, and Warren and Cooper, 2008), worked for
three years in five elementary classrooms, using
patterning and expressing patterns, to teach students
to express generalisations to use various
representations, and to compare expressions and
structures. Their students learnt to use algebraic
conventions and notations, and also understood that
expressions had underlying operational meanings.
Clearly, students are capable of learning these aspects
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of algebra in certain pedagogic conditions. Among
other aspects common to most such studies, Cooper
and Warren's showed the value of comparing
different but equivalent expressions that arise from
different ways to generalise the patterns, and also
introduced inverse operations in the context of
function machines, and a range of mental arithmetic
methods. If other research about generalising patterns
applies in this study, then it must be the combination
of pattern-growth with these other aspects of algebra
that made the difference in the learning of their
students. They point to ‘the importance of
understanding and communicating aspects of
representational forms which allowed commonalities
1o be seen across or betw een representations’.

As Carraher, Martinez & Schliemann (2007) show, it
is important to nurture the transition from empirical
(term-to-term) generalizations (called naive
induction by Radford, 2007), to generalisations that
follow from explicit statements about mathematical
relations between independent and dependent
variables, and which might not be ‘seen’in the data.
Steele (2007) indicates some of the ways in which a
few successful 12 to |13 year old students go about
this transition when using various forms of data,
pictorial, diagrammatic and numerical, but bigger
studies show that this shift is not automatic and
benefits from deliberate tuition. Radford further
points out that once a functional relation is
observed, expressing it is a fur ther process involving
integration of signs and meaning. Stephens’ work
(see Mason, Stephens and Watson, in press) shows
that the opportunity and ability to exemplify
relationships between variables as number pairs,
and to express the relationship within the pair's, are
necessary predictors of the ability to focus on and
express a functional relationship. This research also
illustrates that such abilities are developmental, and
hence indicates the kind of learning experiences
required to make this difficult shift.

Rivera and Becker (2007), looking longitudinally at
middle school students’ understanding of sequences
of growing diagrammatic patterns in a teaching
experiment, specify three forms of generalization
that students engage with: constructive standard,
constructive nonstandard, and deconstructive. It is
the deconstruction of diagrams and situations that
leads most easily to the functional formula, they
found, rather than reasoning inductively from
numbers. However, their students generally reverted
to arithmetical strategies, as reported in many other
studies of this and other shifts to wards algebra.

Reed (1972) hypothesised that classifying is a natural
act that enables us to make distinctions, clump ideas,
and hence deal with large amounts of new
information. It is therefore useful to think of what sort
of information learners are trying to classify in these
kinds of task. Reed found that people extract
prototypes from the available data and then see how
far other cases are from this prototype. Applying this
to pattern-growth and sequence tasks makes it
obvious that term-to-term descriptions are far easier
and likely to be dominant when the data is expressed
sequentially, such as in a table.We could legitimately
ask the question: is it worth doing these kinds of
activity if the shifts to seeing and then expressing
functional relationships are so hard to make? Does
this just add more difficulties to an already difficult
subject? To answer this, we looked at some studies in
which claims are made of improvements in seeing and
expressing algebraic relationships, and identifying
features of pedagogy or innovation which may have
influenced these improvements.Yeap and Kaur (2007)
in Singapore found a wider range of factors influencing
success in unfamiliar generalisation tasks than has been
reported in studies which focus on rehearsed
procedures. In a class of 38 ten-yearold students they
set tasks, then observed and interviewed students
about the way they had worked on them. Their aim
was to learn more about the strategies students had
used and how these contributed towards success. The
task was to find the sums of consecutive odd
numbers: | +3 +5+ ...+ (2n— 1). Students were
familiar with adding integers from | to 100, and also
with summing multiples. They were given a sequence
of subtasks: a table of values to complete, to find the
sumor | +3+ ... +99and to find the sum of 51 +
53+ ... + 99. The researchers helped students by
offering simpler versions of the same kinds of
summation if necessary. Nearly all students were able
to recognize and continue the pattern of sums (they
turn out to be the square numbers); two-thirds were
able to transfer their sense of structure to the ‘sum to
99’ task, but only one-third completed the ‘sum from
51"task — the one most dissimilar to the table-filling
tasks, requiring adaptation of methods and use of
previous knowledge to make an argument. The
researcher had a series of designed prompts to help
them, such as to find the sum from | to 49, and then
see what else they needed to get the sum to 99.
Having found an answer; students then had to find it
again using a different method. They found that
success depended on:

* the ability to see structures and relationships

* prior knowledge

* metacognitive strategies
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e critical-thinking strategies

* the use of organizing heuristics such as a table

* the use of simplifying heuristics such as trying out
simpler cases

* task familiarity

* use of technology to do the arithmetic so that large
numbers can be handled efficiently.

As with all mathematics teaching, limited experience
is unhelpful. Some students only know one way to
construct cases, one way to accomplish generalisation
(table of values and pattern spotting), and have only
ever seen simple cases used to start sequence
generation, rather than deliberate choices to aid
observations. Students in this situation may be
unaware of the necessity for critical, reflective thinking
and the value of simplifying and or ganising data.
Furthermore, this collection of studies on expressing
generality shows that construction, design, choice and
comparison of various representational means does
not happen spontaneously for students who are
capable of using them. Choosing when and why to
switch representations has long been known to be a
mark of successful mathematics students (Krutetskii,
1976) and therefore this is a strategy which needs to
be deliberately taught. Evidence from Blanton and
Kaput's intervention study with 20 teachers (2005) is
that many primary children were able to invent and
solve ‘missing number’ sentences using letters as
placeholders, symbolize quantities in patterns, devise
and use graphical representations for single variables,
and some could write simple relations using letters,
codes, ‘secret messages' or symbols. The intervention
was supportive professional development which
helped teachers understand what algebraic reasoning
entails, and gave them resources, feedback, and other
support over five years. Ainley (1996) showed that
supportive technology can display the purpose of
formal representations, and also remove the technical
difficulties of producing new representations. Ten-year-
old students in her study had worked for a few years
in a computer-rich environment and used
spreadsheets to collect data from pur poseful
experiments. They then generated graphs from the
data and studied these, in relation to the data, to
make conjectures and test them. One task was
designed to lead to a problematic situation so that
students would have to look for a shortcut, and she
observed that the need to ‘teach the computer' how
to perform a calculation led to spontaneous formal
representation of a variable.

So, if it is possible for students to learn to make
these generalizations only with a great deal of

pedagogic skill and technical know-how, why should
it be pursued? The reason is that skill in the meaning
and use of algebra enables further generalizations to
be made, and transformations of mathematical
relationships to be used and studied. The work
required to understand the functional relationship is
necessary to operate at a higher level than merely
using algebra to symbolize what you do, as with
term-to-term formulae. It is algebra that provides the
means to building concepts upon concepts, a key
aspect of secondary mathematics, by providing
expression of abstract relationships in ways that can
be manipulated. In algebra, the products are not
answers, but structures, relationships, and information
about relationships and special instances of them.
These tasks provide contexts for that kind of shift,
but do not guarantee that it will take place.

Assumptions, such as that which appears to be made
in Redden’s study, that understanding term-to-term
relationships is a route to under standing functional
relations contradict the experience of
mathematicians that algebra expresses the structure
of relations, and this can be adduced from single
cases which are generic enough to illustrate the
relationship through diagrams or other spatial
representations. Numerical data has to be backed up
with further information about relationships. For
example, consider this data set:

x y
| |
2 4
3 9

While it is possible for these values to be examples
of the function y = x2 it is also possible that they
exemplify y = x2 + (x = N(x = 2)(x = 3). Without
further information, such as x being the side of a
square and y being its area, we cannot deduce a
functional formula, and inductive reasoning is
misapplied. There is much that is mathematically
interesting in the connection between term-to-term
and functional formulae, such as application of the
method of differences, and students have to learn
how to conjecture about algebraic relationships, but
to only approach generalisation from a sequence
perspective is misleading and, as we have seen from
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these studies, very hard without the support of
specially-designed tasks comparing and transforming
equivalent structural generalisations.

Summary

* Learners naturally make generalisations based on
what is most obviously related; this depends on the
visual impact of symbols and diagrams.

Seeing functional, abstract, relationships is hard and
has to be supported by teaching.

Deconstruction of diagrams, relationships, situations
is more helpful in identifying functional relationships
than pattern-generation.

Development of heuristics to support seeing
structural relationships is helpful.

There is a further shift from seeing to expressing
functional relationships.

Learners who can express relationships correctly
and algebraically can also exemplify relationships
with number pairs, and express the relationships
within the pairs; but not all those who can express
relationships within number pairs can express the
relationship algebraically.

Learners who have combined pattern-
generalisation with function machines and other
ways to see relationships can become more fluent
in expressing generalities in unfamiliar situations.

Conflicting research results suggest that the nature

of tasks and pedagogy make a difference to success.

Functional relationships cannot be deduced from
sequences without further information about
structure.

Using an equation-centred approach
to teaching algebra

There are new kinds of problem that arise in an
equation-centred approach to teaching algebra in
addition to those described earlier: the solution of
equations to find unknown values, and the construction
of equations from situations. The second of these new
problems is considered in Paper 7. Here we look at
difficulties that students had in teaching studies designed
to focus on typical problems in finding unknowns.

Students in one class of Booth's (1984) intervention
study (which took place with four classes in lower
secondary school) had a teacher who emphasised
throughout that letters had numerical value. These
students were less likely than others to treat a letter
as merely an object. In her study, discussion about
the meaning of statements before formal activity
seemed to be beneficial, and those students who
were taught a formal method seemed to under stand
it better some time after the lesson, maybe after
repeated experiences. However, some students did
not understand it at all. As with all intervention
studies, the teaching makes a difference. Linchevski
and Herscovics (1996) taught six students to collect
like terms and then decompose additive terms in
order to focus on ‘sides’ or equations as expressions
which needed to be equated. While this led to them
being better able to deal with equations, there were
lingering problems with retaining the sign preceding
the letter rather than attaching the succeeding sign.

Several other intervention studies (e.g. van Ameron,
2003; Falle, 2005) confirm that the type of equation
and the nature of its coefficients often make non-
formal methods available to learners, even if they
have had significant recent teaching in formal
methods. These studies further demonstrate that
students will use ad hoc methods if they seem more
appropriate, given that they understand the meaning
of an equation; where they did not understand they
often misapplied formal methods. Falle’s study
included more evidence that the structure a/x = b
caused particular problems as learners interpreted
‘division’ as if it were commutative. As with other
approaches to teaching algebra, using equations as
the central focus is not trouble-free.

Summary

* As with all algebraic expressions, learners may react
to the visual appearance without thinking about the
meaning.

* Learners need to know what the equation is telling
them.

* Learners need to know why an algebraic method is
necessary; this is usually demonstrated when the
unknown is negative, or fractional, and/or when the
unknown is on both sides. They are likely to choose
ad hoc arithmetic methods such as guess- and-
check, use of known number facts, compensation or
trial-and-adjustment if these are more convenient.
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* Learners’ informal methods of making the sides
equal in value may not match formal methods.

‘Undoing’ methods depend on using inverse
operations with understanding.

Fluent technique may be unconnected to explaining
the steps of their procedures.

Learners can confuse the metaphors offered to
‘model’ solving equations, e.g.‘changing sides’ with
‘balance’.

Metaphors in common use do not extend to
negative coefficients or ‘unknowns' or non-linear
equations.

Non-commutative and associative structures are
not easily used with inverse reasoning.

* As in many other contexts, division and rational
structures are problematic.

Spreadsheets

Learners have to know how to recognise structures
(based on understanding arithmetical operations
and what they do), express structures in symbols,
and calculate particular cases (to stimulate inductive
understanding of concepts) in order to use algebra
effectively in other subjects and in higher
mathematics. Several researchers have used
spreadsheets as a medium in which to explore
what students might be able to learn

(e.g. Schwartz and Yerushalmy, 1992; Sutherland and
Rojano, 1993; Friedlander and Tabach, 2001). The
advantages of using spreadsheets are as follows.

* In order to use spreadsheets you have to know the
difference between parameters (letters and numbers
that structure the relationship) and variables, and the
spreadsheet environment is low-risk since mistakes
are private and can easily be corrected.

* The physical act of pointing the cursor provides an
enactive aspect to building abstract structures.

* Graphical, tabular and symbolic representations are
just a click away from each other and are updated
together.

 Correspondences that are not easy to see in other
media can be aligned and compared on a

spreadsheet, e.g. sequences can be laid side by side,
input and output values for different functions can
be compared, and graphs can be related directly to
numerical data.

* Large data sets can be used so that questions
about patterns and generalities become more
meaningful.

In Sutherland and Rojano's work, two small groups
of students 10- to | [-years-old with no formal
algebraic background were given some algebraic
spreadsheet tasks based on area. It was found that
they were less likely to use arithmetical approaches
when stuck than students reported in non-
spreadsheet research, possibly because these
arithmetical approaches are not easily available in a
spreadsheet environment. Sutherland and Rojano
used three foci known to be difficult for students: the
relation between functions and inverse functions, the
development of equivalent expressions and word
problems. The arithmetic methods used included
whole/part approaches and trying to work from
known to unknown. Most of the problems, however,
required working from the unknown to the known
to build up relationships. In a similar follow-up study
| 5-year-old students progressively modified the
values of the unknowns until the given totals were
reached (Sutherland and Rojano, 1993). There was
some improvement in post-tests over pre-tests for
the younger students, but most still found the tasks
difficult. One of the four intervention sessions
involved students constructing equivalent
spreadsheet expressions. Some students started by
constructing expressions that generated equality in
specific cases, rather than overall equivalence.
Students who had started out by using particular
arithmetical approaches spontaneously derived
algebraic expressions in the pencil-and-paper tasks
of the post-test. This appears to confound evidence
from other studies that an arithmetical approach
leads to obstacles to algebraic generalization. The
generation of numbers, which can be compared to
the desired outputs, and adjusted through adapting
the spreadsheet formula, may have made the need
for a formula more obvious. The researchers
concluded that comparing expressions which
referred only to numbers, to those which referred
to variables, appeared to have enabled students to
make this critical shift.

A recent area of research is in the use of computer
algebra systems (CAS) to develop algebraic
reasoning. Kieran and Saldanha (2005) have had
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some success with getting students to deal with
equations as whole meaningful objects within CAS.

Summary

Use of spreadsheets to build formulae:

* allows large data sets to be used

* provides physical enactment of formula
construction

* allows learners to distinguish between variables and
parameters

* gives instant feedback

* does not always lock learners into arithmetical and
empirical viewpoints.

Functional approach

Authors vary in their use of the word ‘function’.
Technically, a function is a relationship of
dependency between variables, the independent
variables (input) which vary by some external
means, and the dependent variables (output) which
vary in accordance with the relationship. It is the
relationship that is the function, not a particular
representation of it, however in practice authors
and teachers refer to ‘'the function’ when indicating
a graph or equation. An equivalence such as
temperature conversion is not a function, because
these are just different ways to express the same
thing, e.g. t = 9/5 C + 32 where t is temperature in
degrees Fahrenheit and C temperature in degrees
Celsius (Janvier 1996). Thus a teaching approach
which focuses on comparing different expressions of
the same generality is concerned with structure and
would afford manipulation, while an approach which
focuses on functions, such as using function
machines or multiple representations, is concerned
with relationships and change and would afford
thinking about pairs of values, critical inputs and
outputs, and rates of change.

Function machines

Some researchers report that students find it hard
to use inverses in the right order when solving
equations. However, in Booth's work (1984) with
function machines she found that lower secondary
students were capable of instructing the ‘machine’ by
writing operations in order, using proper algebraic
syntax where necessary, and could make the shift to
understanding the whole expression. They could
then reverse the flow diagram, maintaining order,

to ‘'undo’ the function.

We have discussed the use of function machines to
solve equations above.

Multiple representations

A widespread attempt to overcome the obstacles of

learning algebra has been to offer learners multiple

representations of functions because:

« different representations express different aspects
more clearly

» different representations constrain interpretations —
these have to be checked out against each other

* relating representations involves identifying and
understanding isomorphic structures (Goldin 2002).

By and large these methods offer graphs, equations,
and tabular data and maybe a physical situation or
diagram from which the data has been generated.
The fundamental idea is that when the main f ocus is
on meaningful functions, rather than mechanical
manipulations, learners make sensible use of
representations (Booth, 1984;Yerushalmy, 1997; Ainley,
Nardi and Pratt, 1999; Hollar and Norwood, 1999).

A central issue is that in most contexts for a letter
to represent anything, the student must understand
what is being represented, vet it is often only by the
use of a letter that what is being represented can be
understood. This is an essential shift of abstraction. It
may be that seeing the use of letter s alongside other
representations can help develop meaning, especially
through isomorphisms.

This line of thought leads to a substantial body of
work using multiple representations to develop
understandings of functions, equations, graphs and
tabular data. All these studies are teaching
experiments with a range of students from upper
primary to first year undergraduates. What we learn
from them is a range of possibilities for learning and
new problems to be overcome. Powell and Maher
(2003) have suggested that students can themselves
discover isomorphisms. Others have found that
learners can recognise similar structures (English and
Sharry, 1996) but need experience or prompts in
order to go beyond surface features. This is because
surface features contribute to the first impact of any
situation, whether they are visual, aural, the way the
situation is first ‘read’, or the first recognition of
similarity.

Hitt (1998) claims that ‘A central goal of
mathematics teaching is taken to be that the
students be able to pass from one representation
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type to another without falling into contradictions!
(p. 134). In experiments with teachers on a course
he asked them to match pictures of vessels with
graphs to represent the relationship between the
volume and height of liquid being poured into them.
The most common errors in the choice of functions
were due to misinterpretation of the graphical
representation, and misidentification of the
independent variable in the situation. Understanding
the representation, in addition to understanding the
situation, was essential. The choice of representation,
in addition to understanding, is also influential in
success. Arzarello, Bazzini and Chiappini, (1994) gave
| 37 advanced mathematics students this prob lem:
‘Show that if you add a 4-digit number to the 4-digit
number you get if you reverse the digits, the answer
is a multiple of eleven’. There were three strategies
used by successful students, and the most-used was
to devise a way to express a 4-digit number as the
sum of multiples of powers of ten. This strategy leads
immediately to seeing that the terms in the sum
combine to show multiples of eleven. The
relationship between the representation and its
meaning in terms of ‘eleven’ was very close. ‘Talk’
can structure a choice of representations that most
closely resemble the mathematical meaning

(see also Siegler and Stern, 1998).

Even (1998) points to the ability to select, use, move
between and compare representations as a cr ucial
mathematical skill. She studied 162 early students

in 8 universities (the findings are informative for
secondary teaching) and found a difference between
those who could only use individual data points and
those who could adopt a global, functional approach.
Nemirovsky (1996) demonstrates that the Cartesian
relationship between graphs and values is much
easier to understand pointwise, from points to line
perhaps via a table of values, than holistically, every
point on a line representing a par ticular relationship.

Some studies such as Computer-Intensive Algebra
(e.g. Heid, 1996) and CARAPACE (Kieran, Boileau
and Garancon,1996) go some way towards
understanding how learners might see the duality of
graphs and values. In a study of 14 students aged
about |3, the CARAPACE environment (of graphs,
data, situations and functions) seemed to support
the understanding of equality and equivalence of
two functions. This led to findings of a significant
improvement in dealing with ‘unknown on both
sides’ equations over groups taught more
conventionally. The multiple-representation ICT
environment led to better performance in word

problems and applications of functions, but students
needed additional teaching to become as fluent in
algebra as ‘conventional’ students. But teaching to
fluency took only six weeks compared to one year
for others. This result seems to confirm that if
algebra is seen to have purpose and meaning then
the technical aspects are easier to learn, either
because there is motivation, or because the learner
has already developed meanings for algebraic
expressions, or because they have begun to develop
appropriate schema for symbol use. When students
first had to express functions, and only then had to
answer questions about particular values, they had
fewer problems using symbols.

There were further benefits in the CARAPACE
study: they found that their students could switch
from variable to unknown correctly more easily than
has been found in other studies:; the students saw a
single-value as special case of a function, but their
justifications tended to relate to tabular data and
were often numerical, not relating to the overall
function or the context. The students had to
consciously reach for algebraic methods, even to use
their own algorithms, when the situations became
harder. Even in a multi-representational environment,
using functions algebraically has to be taught; this is
not spontaneous as long as numerical or graphical
data is available. Students preferred to move
between numerical and graphical data, not symbolic
representations (Brenner, Mayer, Moseley, Brar, Duran,
Reed and Webb, 1997).This finding must depend on
task and pedagogy, because by contrast Lehrer,
Strom and Confrey,(2002) give examples where
coordinating quantitative and spatial representations
appears to develop algebraic reasoning through
representational competence. Even (1998) argues
that the flexibility and ease

with which we hope students will move from
representation to representation depends on what
general strategy students bring to mathematical
situations, contextual factors and previous
experience and knowledge. We will look further

at this in the next paper.

Further doubts about a multiple representation
approach are raised by Amit and Fried (2005) in
lessons on linear equations with 13 — 14 y ear-olds:
‘students in this class did not seem to get the idea
that representations are to be selected, applied, and
translated’. The detail of this is elaborated through
the failed attempts of one student, who did make
this link, to persuade her peers about it. Hirschhorn
(1993) reports on a longitudinal comparative study
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at three sites in which those taught using m ultiple
representations and meaningful contexts did
significantly better in tests than others taught more
conventionally, but that there was no difference in
attitude to mathematics. All we really learn from this
is that the confluence of oppor tunity, task and
explanation are not sufficient for learning. Overall
the research suggests that there are some gains in
understanding functions as meaningful expressions of
variation, but that symbolic representation is still hard
and the least preferred choice.

The effects of multiple representational
environments on students’ problem-solving and

modeling capabilities are described in the next paper.

Summary

* Learners can compare representations of a
relationship in graphical, numerical, symbolic and
data form.

* Conflicting research results suggest that the nature

of tasks and pedagogy make a difference to success.

* The hardest of these representations for learners is
the symbolic form.

Previous experience of comparing multiple
representations, and the situation being modelled,
helps students understand symbolic forms.

Learners who see ‘unknowns’ as special cases of
equality of two expressions are able to distinguish
between unknowns and variables.

* Teachers can scaffold the shifts between
representations, and perceptions beyond surface
features, through language.

Some researchers claim that learners have to
understand the nature of the representations in
order to use them to understand functions, while
others claim that if learners understand the
situations, then they will understand the
representations and how to use them.

What students could do if taught, but
are not usually taught

Most research on algebra in secondary school is
of an innovative kind, in which particular tasks or
teaching approaches reveal that learners of a

particular age are, in these circumstances, able to
display algebraic behaviour of particular kinds. Usually
these experiments contradict curriculum
expectations of age, or order, or nature, of learning.
For example, in a teaching experiment over several
weeks with 8-year-old students, Carraher, Brizuela
and Schliemann (2000) report that young learners
are able to engage with problems of an algebraic
nature, such as expressing and finding the unknown
heights in problems such as: Tom is 4 inches taller
than Maria, Maria is 6 inches shorter than Leslie;
draw their heights. They found that young learners
could learn to express unknown heights with letters
in expressions, but were sometimes puzzled by the
need to use a letter for ‘any number’ when they had
been given a particular instance. This is a real source
for confusion, since Maria can only have one height.
Students can naturally generalise about operations
and methods using words, diagrams and actions
when given suitable support (Bastable and Schifter,
2008). They can also see operators as objects
(Resnick, Lesgold and Bill, 1990). These and other
studies appear to indicate that algebraic thinking can
develop in primary school.

In secondary school, students can work with a wider
range of examples and a greater degree of complexity
using ICT and graphical approaches than when
confined to paper and pencil. For example, Kieran and
Sfard (1999) used graphs successfully to help 12- and

| 3-yearold students to appreciate the equivalence of
expressions. In another example, Noss, Healy and
Hoyles (1997) constructed a matchsticks microworld
which requires students to build up LOGO
procedures for drawing matchstick sequences. They
report on how the software supported some |2- to

| 3-year-old students in finding alternative ways to
express patterns and structures of Kieran's second
and third kinds. Microworlds provide support for
students’ shifts from particular cases to what has to be
true, and hence support moves towards using algebra
as a reasoning tool.

In a teaching study with | | year-old students, Noble,
Nemirovsky, Wright and Tierney, (2001) suggest that
students can recognise core mathematical structures
by connecting all representations to personally-
constructed environments of their own, relevant for
the task at hand. They asked pairs of students to
proceed along a linear measure, using steps of
different sizes, but the same number of steps each,
and record where they got to after each step . They
used this data to predict where one w ould be after
the other had taken so many steps. The aim was to
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compare rates of change. Two further tasks, one a
number table and the other a software-suppor ted
race, were given and it was noticed from the ways in
which the students talked that they were bringing to
each new task the language, metaphors and
competitive sense which had been generated in the
previous tasks. This enabled them to progress from
the measuring task to comparing rates in multiple
contexts and representations. This still supports the
fact that students recognize similarities and look for
analogical prototypes within a task, but questions
whether this is related to what the teacher expects in
any obvious way. In a three-year study with 16 lower
secondary students, Lamon (1998) found that a year’s
teaching which focused on modelling sequential
situations was so effective in helping students
understand how to express relationships that they
could distinguish between unknowns, variables and
parameters and could also choose to use algebra
when appropriate — normally these aspects were not
expected at this stage, but two years further on.

Lee (1996) describes a long series of teaching
experiments: 50 out of 200 first year university
students committed themselves to an extra study
group to develop their algebraic awareness. This
study has implications for secondary students, as
their algebraic knowledge was until then rule-based
and procedural. She forced them, from the start, to
treat letters as variables, rather than as hidden
numbers. By many measures this group succeeded
in comparative tests, and there was also evidence of
success beyond testing, improvements in attitude
and enjoyment. However, the impact of
commitment to extra study and ‘belonging’ to

a special group might also have played a part.
Whatever the causal factors, this study shows that
the notion of variable can be taught to those who
have previously failed to understand, and can form
a basis for meaningful algebra.

Summary
With teaching:

* Young children can engage with missing number
problems, use of letters to represent unknown
numbers, and use of letters to represent
generalities that they have already understood.

* Young children can appreciate operations as
objects, and their inverses.

* Students can shift towards looking at relationships if
encouraged and scaffolded to make the shift,
through language or microworlds, for example.

* Students can shift from seeing letters as unknowns
to using them as variables.

* Students will develop similarities and prototypes to
make sense of their experience and support future
action.

* Students can shift from seeing cases as particular to
seeing algebraic representations as statement about
what has to be true.

» Comparison of cases and representations can
support learning about functions and learning how
to use algebra to support reasoning.
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Part 3: Conclusions
and recommendations

Conclusions

Error research about elementary algebra and
pre-algebra is uncontentious and the findings are
summarised above. However; it is possible for young
learners to do more than is nor mally expected in
the curriculum, e.g. they will accept the use of letter s
to express generalities and relationships which they
already understand. Research about secondary
algebra is less coherent and more patchy, but broadly
can be summarised as follows.

Teaching algebra by offering situations in which
symbolic expressions make mathematical sense,

and what learners have to find is mathematically
meaningful (e.g. through multiple representations,
expressing generality, and equating functions) is more
effective in leading to algebraic thinking and skill use
than the teaching of technical manipulation and
solution methods as isolated skills. However, these
methods need to be combined through complex
pedagogy and do not in themselves bring about all
the necessary learning. Technology can play a big part
in this. There is a difference between using ICT in
the learner’s control and using ICT in the teacher’s
control. In the learner’s control the physical actions
of moving around the screen and choosing between
representations can be easily connected to the
effects of such moves, and feedback is personalised
and instant.

There is a tenuous relationship between what it
means to understand and use the affordances of
algebra, as described in the previous paragraph, and
understanding and using the symbolic forms of
algebra. Fluency in understanding symbolic
expressions seems to develop through use, and
also contributes to effective use — this is a tw o-way
process. However, this statement ignores the
messages from research which is purely about
procedural fluency, and which supports repetitive
practice of procedures in carefully constructed
varying forms. Procedural research focuses on
obstacles such as dealing with negative signs and
fractions, multiple operations, task complexity and
cognitive load but not on meaning, use, relationships,
and dealing with unfamiliar situations.

Recommendations

For teaching

These recommendations require a change from a
fragmented, test-driven, system that encourages an
emphasis on fluent procedure followed by
application.

* Algebra is the mathematical tool for working
with generalities, and hence should permeate
lessons so that it is used wherever mathematical
meaning is expressed. Its use should be
commonplace in lessons.

Teachers and writers must know about the
research about learning algebra and take it into
account, particularly research about common
errors in understanding algebraic symbolisation and
how they arise.

Teachers should avoid using published and web-
based materials which exacerbate the difficulties by
over-simplifying the transition from arithmetic to
algebraic expression, mechanising algebraic
transformation, and focusing on algebra as
‘arithmetic with letters’.

The curriculum, advisory schemes of work, and
teaching need to take into account how shifts from
arithmetical to algebraic understanding take time,
multiple experiences, and clarity of purpose.

Students at key stage 3 need support in shifting
to representations of generality, understanding
relationships, and expressing these in
conventional forms.

Students have to change focus from calculation,
quantities, and answers to structures of operations
and relations between quantities as variables. This
shift takes time and multiple experiences.

Students should have multiple experiences of
constructing algebraic expressions for structural
relations, so that algebra has the purpose of
expressing generality.

The role of ‘guess-the-sequence-rule’ tasks in the
algebra curriculum should be reviewed: it is
mathematically incorrect to state that a finite
number of numerical terms indicates a unique
underlying generator.
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* Students need multiple experiences over time to
understand: the role of negative numbers and the
negative sign; the role of division as inverse of
multiplication and as the fundamental operation
associated with rational numbers; and the meaning
of equating algebraic expressions.

Teachers of key stage 3 need to understand how
hard it is for students to give up their arithmetical
approaches and adopt algebraic conventions.

Substitution should be used purposefully for
exemplifying the meaning of expressions and
equations, not as an exercise in itself. Matching
terms to structures, rather than using them to
practice substitution, might be more useful.

The affordances of ICT should be exploited fully, in
the learner's control, in the teacher's control, and in
shared control, to support the shifts of
understanding that have to be made including
constructing objects in order to understand
structure.

Teachers should encourage the use of symbolic
manipulation, using ICT, as a set of tools to support
transforming expressions for mathematical
understanding.

For policy

* The requirements listed above signal a training
need on a national scale, focusing solely on algebra
as a key component in the drive to increase
mathematical competence and power.

* There are resource implications about the use of
ICT.The focus on providing interactive whiteboards
may have drawn attention away from the need for
students to be in control of switching between
representations and comparisons of symbolic
expression in order to understand the syntax and
the concept of functions. The United Kingdom may
be lagging behind the developed world in exploring
the use of CAS, spreadsheets and other software
to support new kinds of algebraic thinking.

In several other countries, researchers have been
able to develop differently-sequenced curricula in
which students have been able to use algebra as a
way of expressing general and abstract notions as
these arise. Manipulation, solution of equations,
and other technical matters to do with symbols
develop as well as with formal teaching, but are

better understood and applied. Similar
development in the United Kingdom has not been
possible due to an over-prescriptive curriculum
and frequent testing which forces a focus on
technical manipulation.

Textbooks which promulgate an ‘arithmetic with
letters’ approach should be avoided; this approach
leads inevitably to the standard, obvious errors and
hence turns students off algebra and mathematics
in favour of short-term gains.

Symbolic manipulators, graph plotters and other
algebraic software are widely available and used to
allow people to focus on meaning, application and
implications. Students should know how to use
these and how to incorporate them into
mathematical explorations and extended tasks.

We need to be free to draw on research and
explore its implications in the United Kingdom, and
this may include radical re-thinking of the algebra
curriculum and how it is tested. This may happen as
part of the functional maths' agenda but its
foundations need to be established when students
are introduced to algebra.

For research
* Little is known about school learning of algebra in
the following areas.

* The experiences that an average learner needs, in
educational environments conducive to change, to
shift from arithmetical to algebraic thinking.

* The relationship between understanding the nature
of the representations in order to use them to
understand functions, and understanding the
situations as an aid to understanding the
representations and how to use them.

* Whether teaching experiments using functional,
multi-representational, equation or generalisation
approaches have an impact on students’ typical
notation-related difficulties. In other words, we do
not know if and how semantic-focused approaches
to algebra have any impact on persistent and well-
known syntactic problems.

* How learners’ synthesise their knowledge to
understand quadratic and other polynomials, their
factorisation and roots, simultaneous equations,
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inequalities and other algebraic objects beyond
elementary expressions and equations.

* Whether and how the use of symbolic
manipulators to transform syntax supports
algebraic understanding in school algebra.

* Using algebra to justify and prove generalities,
rather than generate and express them.

* How students make sense of different metaphors
for solving equations (balance, doing-undoing,
graphical, formal manipulation).

Endnotes

| The importance of inverses was discussed in the paper on
natural numbers

2 In the paper on rational numbers we talk more about the
relationship between fractions and rational numbers, and we
often use these words interchangeably.

3 The advantage of this is that spotting lik e terms might be easier,
but this can also mask some other characteristics such as
physical meaning (e.g. E = mc2) and symmetry e.g. x2y + y2x.

4 This should be contrasted with the problems young learners
have with expressing relations using number, described in our
paper on functional relations. Knowing that relations are
themselves number-like objects does not necessarily mean we
have to calculate them.

5 This is discussed in detail in our paper s on whole numbers and
rational numbers and outlined here.

6 A very common mnemonic to remind people to do: brackets,
‘of, division, multiplication, addition and subtraction in that
order. It does not always work.

7 If n people all shake hands with each other, how many
handshakes will there be?
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Summary of paper 7:
Modelling, problem-
solving and 1integrating

concepts

Headlines

We have assumed a general educational context
which encourages thinking and problem-solving
across subjects. A key difference about mathematics
is that empirical approaches may solve individual
problems, and offer directions for reasoning, but do
not themselves lead to new mathematical knowledge
or mathematical reasoning, or to the power that
comes from applying an abstract idea to a situation.

In secondary mathematics, the major issue is not
how children learn elementary concepts, but what
experiences they have had and how these enable or
limit what else can be learnt. That is why we have
combined several aspects of secondary mathematics
which could be exemplified by particular topics.

* Students have to be fluent in understanding methods
and confident about using them to know why and
when to apply them, but such application does not
automatically follow learning procedures. Students
have to understand the situation as well as being able
to call on a familiar repertoire of ideas and methods.

Students have to know some elementary concepts
well enough to apply them and combine them to
form new concepts in secondary mathematics, but
little is known from research about what concepts
are essential in this way. Knowledge of a range of
functions is necessary for modelling situations.

Students have to learn when and how to use
informal, experiential reasoning and when to use
formal, conventional, mathematical reasoning.
Without special attention to meanings many
students tend to apply visual reasoning, or be
triggered by verbal cues, rather than to analyse
situations mathematically.

* In many mathematical situations in secondary
mathematics, students have to look for relations
between numbers and variables and relations
between relations and properties of objects, and
know how to represent them.

How secondary learners tackle
new situations

In new situations students first respond to familiarity
in appearance, or language, or context. They bring
earlier understandings to bear on new situations,
sometimes erroneously. They naturally generalise from
what they are offered, and they often over-generalise
and apply inappropriate ideas to new situations. They
can learn new mathematical concepts either as
extensions or integrations of earlier concepts, and/or
as inductive generalisations from examples, and/or as
abstractions from solutions to problems.

Routine or context?

One question is whether mathematics is lear nt
better from routines, or from complex contextual
situations. Analysis of research which compares how
children learn mathematics through being taught
routines efficiently (such as with computerised and
other learning packages designed to minimise
cognitive load) to learning through problem-solving
in complex situations (such as through Realistic
Mathematics Education) shows that the significant
difference is not about the speed and retention of
learning but what is being learnt. In each approach
the main question for progression is whether the
student learns new concepts well enough to use
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and adapt them in future learning and outside
mathematics. Both approaches have inherent
weaknesses in this respect. These weaknesses will
become clear in what follows. However, there are
several studies which show that those who develop
mathematical methods of enquiry over time can
then learn procedures easily and do as well, or
better, in general tests.

Problem-solving
and modelling

To learn mathematics one has to learn to solve

mathematical problems or model situations

mathematically. Studies of students’ problem solving

mainly focus in the successful solution of

contextually-worded problems using mathematical

methods, rather than using problem solving as a

context for learning new concepts and developing

mathematical thinking. To solve unfamiliar problems

in mathematics, a meta-analysis of 487 studies

concluded that for students to be maximally

successful:

* problems need to be fully stated with supportive
diagrams

* students need to have previous extensive
experience in using the representations used

* they have to have relevant basic mathematical skills
to use

* teachers have to understand problem-solving
methods.

This implies that fluency with representations and
skills is important, but also depends on how clearly
the problem is stated. In some studies the difficulty is
also to do with the under lying concept, for example,
in APU tests area problems were difficult with or
without diagrams.

To be able to solve problems whose wording does
not indicate what to do, students have to be able
to read the problem in two ways: firstly, their
technical reading skills and understanding of
notation have to be good enough; secondly, they
have to be able to interpret it to understand the
contextual and mathematical meanings. They have
to decide whether and how to bring informal
knowledge to bear on the situation, or, if they
approach it formally, what are the variables and
how do they relate. If they are approaching it
formally, they then have to represent the
relationships in some way and decide how to
operate on them.

International research into the use of ICT to pro vide
new ways to represent situations and to see
relationships, such as by comparing spreadsheets,
graph plotters and dynamic images appear to speed
up the process of relating representations through
isomorphic reasoning about covariation, and hence
the development of understanding about
mathematical structures and relations.

Application of earlier learning

Knowing methods

Students who have only routine knowledge may not
recognize that it is relevant to the situation. Or they
can react to verbal or visual cues without reference
to context, such as ‘how much? triggering
multiplication rather than division, and ‘how many?’
always triggering addition. A further problem is that
they may not understand the underlying relationships
they are using and how these relate to each other.
For example, a routine approach to 2 x /3 x 3/2
may neither exploit the meaning of fractions nor the
multiplicative relation.

Students who have only experience of applying
generic problem-solving skills in a range of
situations sometimes do not recognize underlying
mathematical structures to which they can apply
methods used in the past. Indeed, given the well-
documented tendency for people to use ad hoc
arithmetical trial-and-adjustment methods wherever
these will lead to reasonable results, it is possible
that problem-solving experience may not result in
learning new mathematical concepts or working
with mathematical structures, or in becoming fluent
with efficient methods.

Knowing concepts

Students who have been helped to learn concepts,
and can define, recognise and exemplify elementary
ideas are better able to use and combine these
ideas in new situations and while learning new
concepts. However, many difficulties appear to be
due to having too limited a range of understanding.
Their understanding may be based on examples
which have irrelevant features in common, such as
the parallel sides of parallelograms always being
parallel to the edges of a page . Understanding is
also limited by examples being similar to a
prototype, rather than extreme cases. Another
problem is that students may recognize examples of
a concept by focusing too much on visual or verbal
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aspects, rather than their properties, such as
believing that it is possible to construct an
equilateral triangle on a nine-pin geoboard
because it ‘looks like one'.

Robust connections between and within earlier
ideas can make it easier to engage with new ideas,
but can also hinder if the ear lier ideas are limited and
inflexible. For example, learning trigonometry involves
understanding: the definition of triangle; right-angles;
recognizing them in different orientations; what angle
means and how it is measured; typical units for
measuring lines; what ratio means; similarity of
triangles; how ratio is written as a fraction; how to
manipulate a multiplicative relationship; what ‘sin’
(etc.) means as a symbolic representation of a
function and so on. Thus knowing about ratios

can support learning trigonometry, but if the
understanding of ‘ratio’is limited to mixing cake
recipes it won't help much.To be successful students
have to have had enough experience to be fluent,
and enough knowledge to use methods wisely.

They become better at problem-solving and
modelling when they can:

* draw on knowledge of the contextual situation to
identify variables and relationships and/or, through
imagery, construct mathematical representations
which can be manipulated further

draw on a repertoire of representations, functions,
and methods of operation on these

have a purpose for the modelling process, so that
the relationship between manipulations in the
model and changes in the situation can be
meaningfully understood and checked for
reasonableness.

Knowing how to approach
mathematical tasks

To be able to decide when and how to use informal
or formal approaches, and how to use prior
knowledge, students need to be able to think
mathematically about all situations in mathematics
lessons. This develops best as an all-encompassing
perspective in mathematics lessons, rather than
through isolated experiences.

Students have to:

* learn to avoid instant reactions based in superficial
visual or verbal similarity

* practice using typical methods of mathematical
enquiry explicitly over time

* have experience of mulling problems over time in
order to gain insight.

With suitable environments, tools, images and
encouragement, learners can and do use their
general perceptual, comparative and reasoning
powers in mathematics lessons to:

* generalise from what is offered and experienced

* look for analogies

* identify variables

* choose the most efficient variables, those with
most connections

see simultaneous variations

understand change

reason verbally before symbolising

* develop mental models and other imagery

* use past experience of successful and unsuccessful
attempts

accumulate knowledge of operations and situations
to do all the above successfully

Of course, all the tendencies just described can also
go in unhelpful directions and in par ticular people
tend to:

e persist in using past methods and applying
procedures without meaning, if that has been their
previous mathematical experience

* get locked into the specific situation and do not, by
themselves, know what new mathematical ideas
can be abstracted from these experiences

* be unable to interpret symbols, text, and other
representations in ways the teacher expects

* use additive methods; assume that if one variable
increases so will another; assume that all change is
linear; confuse quantities.
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RECOMMENDATIONS

Research about mathematical
learning

Recommendations for teaching

Learning routine methods and learning
through complex exploration lead to
different kinds of knowledge and cannot
be directly compared; neither method
necessarily enables learning new concepts
or application of powerful mathematics
ideas. However, those who have the habit
of complex exploration are often able to
learn procedures quickly.

Developers of the curriculum, advisory schemes of work and
teaching methods need to be aware of the importance of
understanding new concepts, and avoid teaching solely to pass
test questions, or using solely problem-solving mathematical
activities which do not lead to new abstr act understandings.

Students should be helped to balance the need f or fluency
with the need to work with meaning.

Students naturally respond to familiar
aspects of mathematics; try to apply prior
knowledge and methods, and generalize
from their experience.

Teaching should take into account students’ natural ways of
dealing with new perceptual and verbal information, and the
likely misapplications. Schemes of work and assessment should
allow enough time for students to adapt to new meanings and
move on from earlier methods and conceptualizations.

Students are more successful if they
have a fluent repertoire of conceptual
knowledge and methods, including
representations, on which to draw.

Developers of the curriculum, advisory schemes of work and
teaching methods should give time for new experiences and
mathematical ways of working to become familiar in several

representations and contexts before moving on.

Students need time and multiple experiences to develop a
repertoire of appropriate functions, operations,
representations and mathematical methods in order to solve
problems and model situations.

Teaching should ensure conceptual understanding as well as
‘knowing about’, ‘knowing how to', and ‘knowing how to use’.

Multiple experiences over time enable
students to develop new ways to work on
mathematical tasks, and to develop the
ability to choose what and how to apply
earlier learning.

Schemes of work should allow for students to have multiple
experiences, with multiple representations over time to
develop mathematically appropriate ‘habits of mind'.

Students who work in computer-
supported multiple representational
contexts over time can understand and
use graphs, variables, functions and the
modelling process. Students who can
choose to use available technology are
better at problem solving, and have
complex understanding of relations, and
have more positive views of mathematics.

There are resource implications about the use of ICT. Students
need to be in control of switching betw een representations and
comparisons of symbolic expression in order to under stand the
syntax and the concept of functions. The United Kingdom may
be lagging behind the developed world in exploring the use of
spreadsheets, graphing tools, and other software to support
application and authentic use of mathematics.
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Recommendations for research

Application of research findings about problem-
solving, modelling and conceptual learning to current
curriculum developments in the United Kingdom
suggests that there may be different outcomes in
terms of students’ ability to solve quantitative and
spatial problems in realistic contexts. However, there
is no evidence to convince us that the new National
Curriculum in England will lead to better conceptual
understanding of mathematics, either at the
elementary levels, which are necessary to learn
higher mathematics, or at higher levels which provide
the confidence and foundation for further
mathematical study. Where contextual and
exploratory mathematics, integrated through the
curriculum, do lead to further conceptual learning it
is related to conceptual learning being a rigorous
focus for curriculum and textbook design, and in
teacher preparation, such as in China, Japan,
Singapore, and the Netherlands, or in specifically
designed projects based around such aims.

In the main body of Paper 7: Modelling, solving
problems and learning new concepts in secondary
mathematics there are several questions for future
research, including the following.

* What are the key conceptual understandings for
success in secondary mathematics, from the point
of view of learning?

* How do students learn new ideas in mathematics
at secondary level that depend on combinations of
earlier concepts?

* What evidence is there of the characteristics of
mathematics teaching at higher secondary level
which contribute both to successful conceptual
learning and application of mathematics?
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Modelling, problem-
solving and integrating

concepts

Introduction

By the time students enter secondary school, they
possess not only intuitive knowledge from outside
mathematics and outside school, but also a range of
quasi-intuitive understandings within mathematics,
derived from earlier teaching and from their
memory of generalisations, metaphors, images,
metonymic associations and strategies that have
served them well in the past. Many of these typical
understandings are described in the previous
chapters. Tall and Vinner (1981) called these
understandings ‘concept images’, which are a ragbag
of personal conceptual, quasi-conceptual, perceptual
and other associations that relate to the language of
the concept and are loosely connected by the
language and observable artefacts associated with
the concept. Faced with new situations, students will
apply whatever familiar methods and associations
come to mind relatively quickly — perhaps not
realising that this can be a risky strategy. If ‘doing
what | think | know how to do’ leads so easily to
incorrect mathematics it is hardly surprising that
many students end up seeing school mathematics
as the acquisition and application of methods, and a
site of failure, rather than as the development of a
repertoire of adaptable intellectual tools.

At secondary level, new mathematical situations are
usually ideas which arise through mathematics and
can then be applied to other areas of activity; it is
less likely that mathematics involves the formalisation
of ideas which have arisen from outside experience
as is common in the primary phase. Because of this
difference, learning mathematics at secondary level
cannot be understood only in terms of overall
cognitive development. For this review, we
developed a perspective which encompasses both

the ‘pure’ and ‘applied’ aspects of learning at
secondary level, and use research from both
traditions to devise some common implications
and overall recommendations for practice.

Characteristics of learning
secondary mathematics

We justify the broad scope of this chapter by
indicating similarities between the learning of the new
concepts of secondary mathematics and learning how
to apply mathematics to analyse, express and solve
problems in mathematical and non-mathematical
contexts. Both of these aspects of lear ning
mathematics depend on interpreting new situations
and bringing to mind a repertoire of mathematical
concepts that are understood and fluent to some
extent. In this review we will show that learning
secondary mathematics presents core common
difficulties, whatever the curriculum approach being
taken, which need to be addressed through pedagogy.

In all teaching methods, when presented with a new
stimulus such as a symbolic expression on the board,
a physical situation, or a statement of a complex ill-
defined 'real life’ problem, the response of an
engaged learner is to wonder:

What is this? This entails ‘reading’ situations,
usually reading mathematical representations or
words, and interpreting these in conventional
mathematical ways. It involves perception, attention,
understanding representations and being able to
decipher symbol systems.
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What is going on here? This entails identifying
salient features including non-visual aspects,
identifying variables, relating parts to each other,
exploring what changes can be made and the eff ects
of change, representing situations in mathematical
ways, anticipating what might be the pur pose of a
mathematical object. It involves attention, visualisation,
modelling, static and dynamic representations,
understanding functional, statistical and geometrical
relationships, focusing on what is mathematically
salient and imagining the situation or a
representation of it.

What do | know about this? This entails recognising
similarities, seeking for recognisable structures
beyond visual impact, identifying variables, proposing
suitable functions, drawing on repertoire of past
experiences and choosing what is likely to be useful.
Research about memory, problem-solving, concept
images, modelling, functions, analysis and analogical
reasoning is likely to be helpful.

What can | do? This entails using past experience to
try different approaches, heuristics, logic, controlling
variables, switching between representations,
transforming objects, applying manipulations and
other techniques. It involves analogical reasoning,
problem-solving, tool-use, reasoning, generalisation and
abstraction, and so on.

Thus, students being presented with the task of
understanding new ideas draw on past experience, if
they engage with the task at all, just as they would if
offered an unfamiliar situation and asked to express
it mathematically. They may only get as far as the first
step of ‘reading’ the stimulus. The alternative is to
wait to be told what to do and treat ev erything as
declarative, verbatim, knowledge. A full review of
relevant research in all these areas is bey ond the
scope of this paper, and much of it is generic rather
than concerned with mathematics.

We organise this Paper into three parts: Part |

looks at what learners have to be able to do

to be successful in these aspects of secondary
mathematics; Part 2 considers what learners actually
do when faced with new complex mathematical
situations; and Part 3 reviews what happens with
pedagogic intervention designed to address typical
difficulties. We end with recommendations for future
research, curriculum development and practice.

Part 1: What learners have to
be able to do in secondary
mathematics

In this chapter we describe what learners have to
be able to do in order to learn new concepts, solve
problems, model mathematical situations, and engage
in mathematical thinking.

Learning ‘new’ concepts

Extension of meaning

Throughout school, students meet familiar ideas used
in new contexts which include b ut extend their old
use, often through integrating simpler concepts into
more complex ideas. Sfard (1991) describes this
process of development of meaning as consisting of
‘interiorization’ through acting on a new idea with
some processes so that it becomes familiar and
meaningful; understanding and expressing these
processes and their effects as manageable units
(condensation), and then this new structure
becomes a thing in itself (reified) that can be

acted on as a unit in future.

In this way, in algebra, letters standing for numbers
become incorporated into terms and expressions
which are numberlike in some uses and yet cannot
be calculated. Operations are combined to describe
structures, and expressions of structures become
objects which can be equated to each other.Variables
can be related to each other in ways that represent
relationships as functions, rules for mapping one
variable domain to another (see the ear lier chapters
on functional relations and algebraic thinking).

Further, number develops from counting, whole
numbers, and measures to include negatives,
rationals, numbers of the form a + b \/n where a
and b are rationals, irrationals and transcendentals,
expressions, polynomials and functions which are
number-like when used in expressions, and the uses
of estimation which contradict earlier shifts towards
accuracy. Eventually, two-dimensional complex
numbers may also have to be understood. Possible
discontinuities of meaning can arise between discrete
and continuous quantities, monomials and
polynomials, measuring and two-dimensionality, and
different representations (digits, letters, expressions
and functions).

Graphs are used first to compare values of various
discrete categories, then are used to express two-
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dimensional discrete and continuous data as in
scatter-graphs, or algebraic relationships between
continuous variables, and later such relationships,
especially linear ones, might be fitted to statistical
representations.

Shapes which were familiar in primary school have
to be defined and classified in new ways, and new
properties explored, new geometric configurations
become important and descriptive reasoning based
on characteristics has to give way to logical
deductive reasoning based on relational properties.
Finally, all this has to be applied in the three-
dimensional contexts of everyday life.

The processes of learning are sometimes said to
follow historical development, but a better analogy
would be to compare learning trajectories with the
conceptual connections, inclusions and distinctions of
mathematics itself.

Integration of concepts

As well as this kind of extension, there are new ‘topics’
that draw together a range of earlier mathematics.
Typical examples of secondary topics are quadratic
functions and trigonometry. Understanding each of
these depends to some extent on understanding a
range of concepts met earlier.

Quadratic functions: Learning about quadratic

functions includes understanding:

* the meaning of letters and algebraic syntax;

* when letters are variables and when they can be
treated as unknown numbers;

* algebraic terms and expressions;

* squaring and square rooting;

* the conventions of coordinates and graphing
functions;

* the meaning of graphs as representing sets of
points that follow an algebraic rule;

* the meaning of ‘=,

* translation of curves and the ways in which they
can change shape;

* that for a product to equal zero at least one of its
terms must equal zero and so on.

Trigonometry: Learning this includes knowing:

* the definition of triangle;

* about right-angles including recognizing them in
different orientations;

* what angle means and how it is measured;

* typical units for measuring lines;

* what ratio means;

* similarity of triangles;

* how ratio is written as a fraction;

* how to manipulate a multiplicative relationship;

* what 'sin’ (etc.) means as a symbolic representation
of a function and so on.

New concepts therefore develop both through
extension of meaning and combination of concepts.
In each of these the knowledge learners bring to
the new topic has to be adaptable and usable, not
so strongly attached to previous contexts in which

it has been used that it cannot be adapted. A
hierarchical ‘top down’ view of learning mathematics
would lead to thinking that all contributory concepts
need to be fully understood before tackling new
topics (this is the view taken in the NMAP review
(2008) but is unsupported by research as far as we
can tell from their document). By contrast, if we take
learners’ developing cognition into account we see
that ‘full understanding’ is too vague an aim; it is the
processes of applying and extending prior knowledge
in the context of working on new ideas that
contribute to understanding.

Whichever view is taken, learners have to bring
existing understanding to bear on new mathematical
contexts. There are conflicting research conclusions
about the process of bringing existing ideas to bear
on new stimuli: Halford (e.g. 1999) talks of conceptual
chunking to describe how earlier ideas can be drawn
on as packages, reducing to simpler objects ideas
which are initially formed from more complex ideas,
to develop further concepts and argues for such
chunking to be robust before moving on. He focuses
particularly on class inclusion (see Paper 5,
Understanding space and its representation in
mathematics) and transitivity, structures of relations
between more than two objects, as ideas which are
hard to deal with because they involve several levels
of complexity. Examples of this difficulty were
mentioned in Paper 4, Understanding relations and
their graphical representation, showing how relations
between relations cause problems. Chunking includes
loss of access to lower level meanings, which may be
useful in avoiding unnecessary detail of specific
examples, but can obstruct meaningful use.
Freudenthal (1991, p.469) points out that automatic
connections and actions can mask sources of insight,
flexibility and creativity which arise from meanings. He
observed that when students are in the flow of
calculation they are not necessarily aware of what
they are doing, and do

not monitor their work. It is also the case that m uch
of the chunking that has taken place in earlier
mathematics is limited and hinders and obstructs
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future learning, leading to confusion with
contradictory experiences. For example, the
expectation that multiplication will make ‘things’ bigger
can hinder learning that it only means this sometimes
— multiplication scales quantities in a variety of ways.
The difficulties faced by students whose understanding
of the simpler concepts learnt in primary school is
later needed for secondary mathematical ideas, are
theorised by, among others, Trzcieniecka-Schneider
(1993) who points out that entrenched and limited
conceptual ideas (including what Fischbein calls
‘intuitions’ (1987) and what Tall calls ‘metbefores’
(2004)) can hinder a student's approach to unfamiliar
examples and questions and create resistance, rather
than a willingness to engage with new ideas which
depend on adapting or giving up strongly-held notions.
This leads not only to problems understanding new
concepts which depend on earlier concepts, but also
makes it hard for learners to see how to apply
mathematics in unfamiliar situations. On the other
hand, it is important that some knowledge is fluent
and easily accessible, such as number bonds,
recognition of multiples, equivalent algebraic forms,
the shape of graphs of common functions and so

on. Learners have to know when to apply ‘old’
understandings to be extended, and when to give
them up for new and different understandings.

Inductive generalisation

Learners can also approach new ideas by inductive
generalisation from several examples. English and
Halford (1995 p. 50) see this inductive process' as
the development of a mental model which fits the
available data (the range of examples and instances
learners have experienced) and from which
procedures and conjectures can be generated. For
example, learners’ understanding about what a linear
graph can look like is at first a generalisation of the
linear graphs they have seen that have been named
as such. Similarly, learners’ conjectures about the
relationship between the height and volume of water
in a bottle, given as a data set, depends on reasoning
both from the data and from general knowledge of
such changes. Leading mathematicians often remark
that mathematical generalisation also commonly
arises from abductive reasoning on one generic
example, such as conjectures about relationships
based on static geometrical diagrams. For both these
processes, the examples available as data, instances,
and illustrations from teachers, textbooks and other
sources play a crucial role in the process. Learners
have to know what features are salient and generalise
from them. Often such reasoning depends on
metonymic association (Holyoak and Thagard, 1995),

so that choices are based on visual, linguistic and cues
which might be misleading (see also earlier chapter
on number) rather than mathematical meaning. As
examples: the prototypical parallelogram has its
parallel edges horizontal to the page; and x? and 2x
are confused because it is so common to use x = 2'
as an example to demonstrate algebraic meaning.

Abstraction of relationships
A further way to meet new concepts is through a
process of ‘vertical mathematisation’ (Treffers, 1987)
in which experience of solving complex problems
can be followed by extracting general mathematical
relationships. It is unlikely that this happens naturally
for any but a few students, yet school mathematics
often entails this kind of abstraction. The Freudenthal
Institute has developed this approach through
teaching experiments and national roll-out over a
considerable time, and its Realistic Mathematics
Education (e.g. Gravemeijer and Doorman, 1999)
sees mathematical development as
* seeing what has to be done to solve the kinds
of problems that involve mathematics
* from the solutions extracting new mathematical
ideas and methods to add to the repertoire
* these methods now become available for future
use in similar and new situations (as with Piaget's
notion of reflective abstraction and Polya's
looking back’).

Gravemeijer and Doorman show that this approach,
which was developed for primary mathematics, is
also applicable to higher mathematics, in this case
calculus. They refer to ‘the role models can play in a
shift from a model of situated activity to a model f or
mathematical reasoning. In light of this model-
of/model-for shift, it is argued that discrete functions
and their graphs play a key role as an intermediary
between the context problems that have to be
solved and the formal calculus that is developed!

Gravemeijer and Doorman’s observation explains
why, in this paper, we are treating the learning of
new abstract concepts as related to the use of
problem-solving and modelling as forms of
mathematical activity. In all of these examples of new
learning, the fundamental shift learners are expected
to make, through instruction, is from informal,
experiential, engagement using their existing
knowledge to formal, conventional, mathematical
understanding. This shift appears to have three
components: construction of meaning; recognition in
new contexts; playing with new ideas to build further
ideas (Hershkowitz, Schwartz and Dreyfus, 2001).
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It would be wrong to claim, however, that learning
can only take place through this route, because
there is considerable evidence that learners can
acquire routine skills through programmes of
carefully constructed, graded, tasks designed to deal
educatively with both right answers and common
errors of reasoning, giving immediate feedback
(Anderson , Corbett, Koedinger and Pelletier; 1995).
The acquisition of routine skills without explicit
work on their meaning is not the focus of this
paper, but the automatisation of routines so that
learners can focus on structure and meaning by
reflection later on has been a successful route for
some in mathematics.

There is recent evidence from controlled trials
that learning routines from abstract presentations
is a more efficient way to learn about underlying
mathematical structure than from contextual,
concrete and story-based learning tasks (Kaminski,
Sloutsky and Heckler, 2008). There are several
problems with their findings, for example in one
study the sample consisted of undergraduates for
whom the underlying arithmetical concept being
taught would not have been new, even if it had
never been explicitly formalised for them before.
In a similar study with | |-year-olds, addition
modulo 3 was being taught. For one group a
model of filling jugs with three equal doses was
used; for the other group abstract symbols were
used. The test task consisted of spurious
combinatorics involving three unrelated objects’.
Those who had been taught using abstract
unrelated symbols did better, those who had been
taught using jug-filling did not so well. While these
studies suggest that abstract knowledge about
structures is not less applicable than experience
and ad hoc knowledge, they also illuminate the
interpretation difficulties that students have in
learning how to model phenomena
mathematically, and how familiar meanings

(e.g. about jug-filling) dominate over abstract
engagement. What Kaminski's results say to
educationists is not ‘abstract rules are better’ but
‘be clear about the learning outcomes you are
hoping to achieve and do not expect easy
transfer between abstract procedures and
meaningful contexts’.

Summary

* Learners have to understand new concepts as
extensions or integrations of earlier concepts, as
inductive generalisations from examples, and as
abstractions from solutions to problems.

Robust chunking of earlier ideas can make it easier
to engage with new ideas, but can also hinder if the
earlier ideas are limited and inflexible.

Routine skills can be adopted through practise
to fluency, but this does not lead to conceptual
understanding, or ability to adapt to unfamiliar
situations, for many students.

Learners have to know when and how to bring
earlier understandings to bear on new situations.

Learners have to know how and when to shift
between informal, experiential activity to formal,
conventional, mathematical activity.

There is no ‘best way' to teach mathematical
structure: it depends whether the aim is to become
fluent and apply methods in new contexts, or to
learn how to express structures of given situations.

Problem-solving

The phrase ‘problem-solving’ has many meanings

and the research literature often fails to make
distinctions. In much research solving word problems
is seen as an end in itself and it is not clear whether
the problem introduces a mathematical idea,
formalises an informal idea, or is about translation of
words into mathematical instructions. There are
several interpretations and the ways students learn,
and can learn, differ accordingly. The following are the
main uses of the phrase in the literature.

I Word problems with arithmetical steps used to
introduce elementary concepts by harnessing
informal knowledge, or as situations in which
learners have to apply their knowledge of
operations and order (see Paper 4, Understanding
relations and their graphical representation).

These situations may be modelled with concrete
materials, diagrams or mental images, or might draw
on experiences outside school. The purpose may
be either to learn concepts through familiar
situations, or to learn to apply formal or informal
mathematical methods. For example, upper primary
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students studied by Squire, Davies and Bryant
(2004) were found to handle commutativity much
better than distributivity, which they could only do
if there were contextual cues to help them. For
teaching purposes this indicates that distributive
situations are harder to recognise and handle, and a
mathematical analysis of distributivity supports this
because it entails encapsulation of one operation
before applying the second and recognition of the
importance of order of operations.

2 Worded contexts which require the learner to decide to
use standard techniques, such as calculating area, time,
and so on. Diagrams, standard equations and graphs
might offer a bridge towards deciding what to do.
For instance, consider this word problem: The area
of a triangular lawn is 20 square metres, and one
side is 5 metres long. If | walk in a straight line from
the vertex opposite this side, towards this side, to
meet it at right angles, how far have | walked? The
student has to think of how area is calculated,
recognise that she has been given a ‘base’ length and
asked about ‘height’, and a diagram or mental image
would help her to ‘see’ this. If a diagram is given
some of these decisions do not have to be made,
but recognition of the ‘base’ and ‘height’ (not
necessarily named as such) and knowledge of area
are still crucial.

In these first two types of problem,Vergnaud's
classification of three types of multiplicative problems
(see Paper 4, Understanding relations and their
graphical representation) can be of some help if they
are straightforwardly multiplicative. But the second
type often calls for application of a standard formula
which requires factual knowledge about the situation,
and understanding the derivation of formulae so that
their components can be recognised.

3 Worded contexts in which there is no standard
relationship to apply, or algorithm to use, but an
answer is expected. Typically these require setting
up an equation or formula which can then be
applied and calculated. This depends on
understanding the variables and relationships; these
might be found using knowledge of the situation,
knowledge of the meaning of operations, mental
or graphical imagery. For example, consider the
question, ‘One side of a rectangle is reduced in
length by 20%, the other side in increased by 20%;
what change takes place in the area? The student
is not told exactly what to do, and has to develop
a spatial, algebraic or numerical model of the
situation in order to proceed. She might decide

that this is about representing the changed lengths
in terms of the old lengths, and that these lengths
have to be multiplied to understand what happens
1o the area. She might ascribe some arbitrary
numbers to help her do this, or some letters, or
she might realise that these are not really relevant
— but this realisation is quite sophisticated.
Alternatively she might decide that this is an
empirical problem and generate several numerical
examples, then using inductive reasoning to give a
general answer.

4 Exploratory situations in which there is an ill-defined
problem, and the learner has to mathematise by
identifying variables and conjecturing relationships,
choosing likely representations and techniques.
Knowledge of a range of possible functions may
be helpful, as is mental or graphical imagery.

In these situations the problem might have been
posed as either quasi-abstract or situated. There may
be no solution, for example: ‘Describe the advantages
and disadvantages of raising the price of cheese rolls
at the school tuck shop by 5p, given that cheese
prices have gone down by 5% but rolls have gone
up by 6p each’. Students may even have posed the
entire situation themselves. They have to treat this as
a real situation, a real problem for them, and might
use statistical, algebraic, logical or ad hoc methods.

5 Mathematical problems in which a situation is
presented and a question posed for which there is
no obvious method. This is what a mathematician
means by ‘problem’ and the expected line of attack
is to use the forms of enquiry and mathematical
thinking specific to mathematics. For example:
‘What happens to the relationship between the
sum of squares of the tw o shorter sides of
triangles and the square on the longer side if w e
allow the angle between them to vary? We leave
these kinds of question for the later section on
mathematical thinking.

Learning about students’ solution methods for
elementary word problems has been a major focus
in research on learning mathematics. This research
focuses on two stages: translation into mathematical
relations, and solution methods®. A synthesis can be
found in Paper 4, Understanding relations and their
graphical representation. It is not always clear in the
research whether the aim is to solv e the original
problem, to become better at mathematising
situations, or to demonstrate that the student can use
algebra fluently or knows how to apply arithmetic.
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Students have to understand that there will be several
layers to working with worded problems and cannot
expect to merely read and know immediately what
to do. Problems in which linguistic structure matches
mathematical structure are easier because they only
require fluent replacement of words and numbers by
algebra. For example, analysis according to cognitive
load theory informs us that problems with fewer
words, requiring fewer operations, and where the
linguistic structure matches the mathematical structure
closely, are easier for learners to solve algebraically
(Kintsch, 1986), but this is tautologous as such
problems are necessarily easier since they avoid the
need for interpretation and translation. Such
interpretation may or may not be related to
mathematical understanding. This research does,
however, alert us to the need for students to learn
how to tackle problems which do not translate easily
— simply knowing what to do with the algebraic
representation is not enough. In Paper 4,
Understanding relations and their graphical
representation, evidence is given that rephrasing the
words to make meaning more clear might hinder
learning to transform the mathematical
relationships in problems.

Students might start by looking at the numbers
involved, thinking about what the variables are and
how they relate, or by thinking of the situation and
what they expect to happen in it. Whether the
choice of approach is appropriate depends on
curriculum aims, and this observation will crop up
again and again in this chapter. It is illustrated in the
assumptions behind the work of Bassler, Beers and
Richardson (1975). They compared two approaches
to teaching |5-year-olds how to solve verbal
problems, one more conducive to constructing
equations and the other more conducive to grasping
the nature of the problem. Of course, different
emphases in teaching led to different outcomes in the
ways students approached word problems. If the aim
is for students to construct symbolic equations, then
strategies which involve identification of variables and
relationships and understanding how to express them
are the most appropriate. If the aim is for learners to
solve the problem by whatever method then a more
suitable approach might be for them to imagine the
situation and choose from a range of representations
(graphical, numerical, algebraic, diagrammatic) possibly
shifting between them, which can be manipulated to
achieve a solution.

Clements (1980) and others have found that with
elementary students reading and comprehension

account for about a quarter of the errors of lower
achieving students. The initial access to such problems
is therefore a separate issue before students have to
anticipate and represent (as Boero (2001) describes
the setting-up stage) the mathematics they are going
to use. Ballew and Cunningham (1982) with a sample
of 217 | I-year-olds found that reading and
computational weaknesses were to blame for
difficulties alongside interpretation — but they may
have underestimated the range of problems lurking
within ‘interpretation’ because they did not probe
any further than these two variables and the links
between reading, understanding the relations, and
deciding what to compute were not analysed.
Verschaffel, De Corte and Vierstraete (1999)
researched the problem-solving methods and
difficulties experienced by 199 upper primary
students with nine word problems which combined
ordinal and cardinal numbers. Questions were
carefully varied to require different kinds of
interpretation. They found, among other
characteristics, that students tended to choose
operations according to the relative size of the
numbers in the question and that choice of f ormal
strategies tended to be erroneous while informal
strategies were more likely to be correct.
Interpretation therefore depends on understanding
operations sufficiently to realize where to apply them,
recognizing how variables are related, as well as
reading and computational accuracy. Success also
involves visualising, imagining, identifying relationships
between variables. All these have to be employed
before decisions about calculations can be made.
(This process is described in detail in Paper 2 for the
case of distinguishing between additive and
multiplicative relations.) Then learners have to know
which variable to choose as the independent variable,
recognise how to express other variables in relation
to it, have a repertoire of knowledge of operations
and functions to draw on, and think to draw on
them. Obviously elementary arithmetical skills are
crucial, but automatisation of procedures only aids
solution if the structural class is properly identified in
the first place. Automatisation of techniques can
hinder solution of problems that are slightly different
to prior experience because it can lead to over-
generalisation and misapplication, and attention to
language and layout cues rather than the structural
meaning of the stated problem. For example, if
learners have decided that ‘how many...? questions
always indicate a need to use multiplication (as in ‘If
five children have seven sweets each, how many do
they have in total?’) they may find it hard to answer
the question ‘If |13 players drink 10 litres of cola, how
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many should | buy for 22 players? because the
answer is not a straightforward application of
multiplication. The ‘automatic’ association of ‘how
many' with a multiplication algorithm, whether it is
taught or whether learners have somehow devised it
for themselves, would lead to misapplication.

Learners may not know how and when to bring
other knowledge into play; they may not have had
enough experience of producing representations to
think to use them; the problem may offer a
representation (e.g. diagram) that does not for them
have meaning which can match to the situation. If
they cannot see what to do, they may decide to try
possible numbers and see what happens. A difficulty
with successive approximation is that young learners
often limit themselves to natural numbers, and do
not develop facility with fractions which appear as a
result of division, nor with decimals which are
necessary to deal with ‘a little bit more than” and ‘a
little bit less than’. An area which is well-known to
teachers but is under-researched is how learners
shift from thinking about only about natural numbers
in trial-and-adjustment situations.

Caldwell and Goldin (1987) extended what was
already well-known for primary students into the
secondary phase, and found that abstract problems
were, as for primary, significantly harder than
concrete ones for secondary students in general, but
that the differences in difficulty became smaller for
older students. 'Concrete problems’ were those
couched in terms of material objects and realistic
situations, ‘abstract’ problems were those which
contained only abstract objects and/or symbols. They
analysed the scripts of over 1000 students who took
a test consisting of 20 problems designed along the
concrete-abstract dimension in addition to some
other variables. Lower secondary students
succeeded on 55% of the concrete prob lems and
439% abstract, whereas higher secondary students
succeeded on 69% of concrete and 66% of abstr act.
Whether the narrowing of the gap is due to
teaching (as Vygotsky might suggest) or natural
maturation (as some interpretations of Piaget might
suggest) we do not know. They also found that
problems which required factual knowledge are
easier than those requiring hypotheses for secondary
students, whereas for primary students the reverse
appeared to be true. This shift might be due to
adolescents being less inclined to enter imaginary
situations, or to adolescents knowing more facts, or it
may be educative due to the emphasis teachers put
on factual rather than imaginative mathematical

activity. However, it is too simplistic to say ‘applying
facts is easy’. In this study, further analysis suggests
that the guestions posed may not have been
comparable on a structural measure of difficulty,
number of variables and operations for example,
although comparing ‘level of difficulty’ in different
question-types is not robust.

In a well-replicated result, the APU sample of

| 5-year-olds found area and perimeter problems
equally hard both in abstract and diagrammatic
presentations (Foxman et al. 1985). A contextual
question scored 10% lower than abstract versions.
The only presentation that was easier for area was
find the number of squares in..." which virtually tells
students to count squares and parts of squares. In a
teaching context, this indication of method is not
necessarily an over-simplification. Dickson's study of
students’ interpretation of area (in four schools)
showed that, given the square as a measuring unit,
students worked out how to evaluate area and in
then went on to formalise their methods and even
devise the rectangle area formula themselves (1989).

The research findings are therefore inconclusive about
shifts between concrete and abstract approaches
which can develop in the normal conditions of school
mathematics, but the role of pedagogy indicates that
more might be done to support abstract reasoning
and hypothesising as important mathematical practices
in secondary school.

Hembree's meta-analysis (1992) of 487 studies of

problem-solving gives no surprises — the factors that

contribute to success are:

* that problems are fully stated with supportive
diagrams

* that students have previous extensive experience in
using the representations used

* that they have relevant basic mathematical skills to
use

* that teachers who understand problem-solving
methods are better at teaching them

* that heuristics might help in lower secondary.

Hembree’s analysis seems to say that learners get to
the answer easiest if there is an ob vious route to
solution. While Hembree did a great service in
producing this meta-analysis, it fails to help with the
questions: How can students learn to create their
own representations and choose between them?
How can students learn to devise new methods to
solve new problems? How can students learn to act
mathematically in situations that are not fully defined?



16 Paper 7: Modelling, problem-solving and integrating concepts

How do students get the experience that makes
them better at problem-solving? An alternative
approach is to view problem-solving as far from
clear-cut and instead to see each problem as a
situation requiring modelling (see next section).

Summary

To solve problems posed for pedagogic purposes,

secondary mathematics learners have to:

* be able to read and understand the problem

* know when they are expected to use formal

methods

know which methods to apply and in what order

and how to carry them out

* identify variables and relationships, choosing which
variable to treat as independent

* apply appropriate knowledge of situations and

operations

use mental, graphical and diagrammatic imagery

choose representations and techniques and know

how to operate with them

know a range of useful facts, operations and

functions

decide whether to use statistical, algebraic, logical

or ad hoc methods.

Modelling

In contrast to ‘problem-solving' situations in which the
aim and purpose is often ambiguous, modelling refers
10 the process of expressing situations in con ventional
mathematical representations which afford
manipulation and exploration. Typically, learners are
expected to construct an equation, function or

diagram which represents the variables in the situation
and then, perhaps, solve an equation or answer some
other related question based on their model*. Thus
modelling presents many of the opportunities and
obstacles described under ‘problem-solving’ above but
the emphasis of this section is to focus on the
identification of variables and relationships and the
translation of these into representations. Carpenter,
Ansell, Franke, Fennema and Weisbeck (1993) show
that even very young children can do far more
sophisticated quantitative reasoning when modelling
situations for themselves than is expected if we think
of it solely as application of known operations,
because they bring their knowledge of acting in similar
situations to bear on their reasoning.

A typical modelling cycle involves representing a
realistic situation in mathematical symbols and then
using isomorphism between the model and the
situation, manipulate variables either in the model or
the situation and observe how such transformations
re-translate between the model and the situation. This
duality is encapsulated in the ideas of model-of and
model-for. The situation is an instantiation of an abstr act
model. The abstract model becomes a model-for being
used to provide new insights and possibilities for the
original situation. This isomorphic duality is a more
general version of Vergnaud's model described in
Paper 4, Understanding relations and their graphical
representation. For learners, the situation can provide
insight into possibilities in the mathematics, or the
mathematics can provide insights into the situation. For
example, a graphical model of temperature changes
can afford prediction of future temperatures, while
actual temperature changes can afford understanding
of continuous change as expressed by graphs.

Representation I Situation I
minidel :
State of Stae
1 I
moidel
State far State
2 2

Figure 7.1:Typical modelling cycle with two-way relationship between situation and representations.
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Research literature in this area gives primacy to
different features. We are limited to looking at
teaching experiments which are necessarily influenced
by particular curriculum aims. Either the research
looks at the learning of functions (that is extending
the learners’ repertoire of standard functions and
their understanding of their features and properties)
and sees modelling, interpreting and reifying functions
as components of that learning (e.g. O'Callaghan,
1998), or the research sees skill in the modelling
process as the goal of learning and sees knowledge
of functions (their types and behaviour) as an
essential component of that. In either approach there
are similar difficulties. O'Callaghan, (1998) using a
computer-intensive approach, found that while
students did achieve a better understanding of
functions through modelling than comparable
students pursuing a traditional ‘pure’ course, and were
more motivated and engaged in mathematics, they
were no better at reifying what they had lear nt than
the traditional students. In pre- and post-tests
students were asked to: model a situation using a
function; interpret a function in a realistic situation;
translate between representations; and use and
transform algebraic functions which represent a
financial situation. Students’ answers improved in all
but the last task which required them to understand
the role of variables in the functions and the relation
between the functions. In other words, they were
good at modelling but not at knowing more about
functions as objects in their own right.

MacGregor and Stacey (1993) (281 lower-secondary
students in free response format and 1048 similar
students who completed a multiple-choice item)
show that the relationship between words, situations
and making equations is not solely one of translating
into symbols and correct algebra, rather it involves
translating what is read into some kind of model
developed from an existing schema and then
representing the model — so there are tw o stages at
which inappropriate relationships can be introduced,
the mental model and the expressions of that
model. The construction of mental models is
dependent on:
* what learners know of the situation and how they
imagine it
* how this influences their identification of variables,
and
* their knowledge of possible ways in which variables
can vary together.

What is it that students can see? Car Ison and
colleagues (2002) investigated students’ perceptions

and images of covariation, working mainly with
undergraduates. The task is to work out how one
variable varies in relation to another variable. Their
findings have implications for younger students,
because they find that their students can construct
and manipulate images of how a dependent variable
relates to the independent variable in dynamic
events, such as when variation is positional, or visually
identifiable, or can be seen to increase or decrease
relative to the dependent variable, but the rate at
which it changes change is harder to imagine . For
our purposes, it is important to know that
adolescents can construct images of relationships, but
O’Callaghan’s work shows that more is required for
this facility to be used to develop knowledge of
functions. When distinguishing between linear and
quadratic functions, for example, rate of change is a
useful indicator instead of some par ticular values, the
turning point or symmetrical points, which may not
be available in the data.

Looking at situations with a mathematical
perspective is not something that can be directly
taught as a topic, nor does it arise naturally out of
school mathematical learning. Tanner and Jones
(1994) worked with eight schools introducing
modelling to their students. Their aim was not to
provide a vehicle to learning about functions but to
develop modelling skills as a form of mathematical
enquiry. They found that modelling had to be
developed over time so that learners developed a
repertoire of experience of what kinds of things to
focus on. Trelinski (1983) showed that of 223
graduate maths students only 9 could construct
suitable mathematical models of non-mathematical
situations — it was not that they did not know the
relevant mathematics, but that they had never been
expected to use it in modelling tasks before. It does
not naturally follow that someone who is good at
mathematics and knows a lot about functions
automatically knows how to develop models.

So far we have only talked about what happens when
learners are asked to produce models of situations.
Having a use for the models, such as a problem to
solve, might influence the modelling process. Campbell
, Collis and Watson (1995) extended the findings of
Kouba’s research (1989) (reported in Paper 4) and
analysed the visual images produced and used by four
groups of | 6-year-olds as aids to solving problems. The
groups were selected to include students who had
high and low scores on a test of vividness of visual
imagery, and high and low scores on a test of
reasoning about mathematical operations. They were
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then given three problems to solve: one involving
drink-driving, one about cutting a painted cube into
smaller cubes and one about three people consuming
a large bag of apples by successively eating |/3 of what
was left in it. The images they developed differed in
their levels of generality and abstraction, and success
related more to students’ ability to operate logically
rather than to produce images, but even so there was
a connection between the level of abstraction afforded
by the images, logical operational facility and the use of
visually based strategies. For example, graphical
visualisation was a successful method in the drink-
driving problem, whereas images of three men with
beards sleeping in a hut and eating the apples w ere
vivid but unhelpful. The creation of useful mathematical
images needs to be learnt. In Campbell’'s study,
questions were asked for which a model was needed,
so this purpose, other than producing the model itself,
may have influenced the modelling process. Models
were both ‘models of ' and ‘models for', the former
being a representation to express structures and the
latter being related to a fur ther purpose (e.g. van den
Heuvel-Panhuizen, 2003). Other writers have also
pointed to the positive effects of purpose: Ainley, Pratt
and Nardi (2001) and Friel, Curcio and Bright(2001) all
found that having a purpose contributes to students’
sense-making of graphs.

Summary

* Modelling can be seen as a subclass of problem-
solving methods in which situations are
represented in formal mathematical ways.

Learners have to draw on knowledge of the
situation to identify variables and relationships and,
through imagery, construct mathematical
representations which can be manipulated further.

There is some evidence that learners are better at
producing models for which they have a further
purpose.

To do this, they have to have a repertoire of
mathematical representations, functions, and
methods of operation on these.

A modelling perspective develops over time and
through multiple situational experiences, and can
then be applied to given problems — the processes
are similar to those learners do when faced with
new mathematical concepts to understand.

Modelling tasks do not necessarily lead to
improved understanding of functions without the

development of repertoire and deliberate
pedagogy.

Functions

For learners to engage with secondary mathematics
successfully they have to be able to decipher and
interpret the stimuli they are offered, and this
includes being orientated towards looking for
relations between quantities, noticing structures,
identifying change and generalising patterns of
behaviour. Kieran (1992) lists these as good
approaches to early algebra. They also have to
know the difference between statistical and algebraic
representations, such as the difference between a
bar chart and an algebraic graph.

Understanding what a function is, a mapping that
relates values from one space into values in another
space, is not a straightforward matter for learners. In
Paper 4, Understanding relations and their graphical
representation, evidence that the experience of
transforming between values in the same space is
different from transforming between spaces is
described, and for this paper we shall move on and
assume that the purpose of simple additive, scalar
and multiplicative functions is understood, and the
task is now to understand their nature, a range of
kinds of function, their uses, and the ways in which
they arise and are expressed.

Whereas in early algebra learners need to shift
from seeing expressions as things to be calculated
to seeing them as expressing structures, they then
have to shift further to seeing functions as relations
between expressions, so that functions become
mathematical objects in themselves and numerical
‘answers' are likely to be pairs of related values
(Yerushalmy and Schwartz, 1993). Similarly equations
are no longer situations which hide an unknown
number, but expressions of relationships between
two (or more) variables. They have also to
understand the difference between a point-wise
view of functional relationships (as expressed by
tables of values) and a holistic view (reinf orced
especially by graphs).

Yerushalmy and Gilead, in a teaching experiment
with lower-secondary students over a few years
(1999) found that knowledge of a range of functions
and the nature of functions was a good basis f or
solving algebraic problems, particularly those that
involved rate because a graph of a function allows
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rates to be observed and compared. Thus functions
and their graphs support the focus on rate that
Carlson’s students found difficult in situations and
diagrams. Functions appeared to provide a bridge
that turned intractable word problems into
modelling tasks by conjecturing which functions
might ‘fit’ the situation. However; their students could
misapply a functional approach. This seems to be an
example of the well-known phenomenon of over-
generalizing an approach beyond its appropriate
domain of application, and arises from students
paying too much attention to what has recently been
taught and too little to the situation.

Students not only have to learn to think about
functional relationships (and consider non-linear
relationships as possibilities), which have an input to
which a function is applied generating some specific
output, but they also need to think about relations
between relations in which there is no immediate
output, rather a structure which may involve several
variables. Halford's analysis (e.g.1999) closely follows
Inhelder and Piaget’s (1959) theories about the
development of scientific reasoning in adolescence.
He calls these ‘quaternary’ relationships because they

often relate four components appearing as two pairs.

Thus distributivity is quaternary, as it involves two
binary operations; proportion is quaternary as it
involves two ratios. So are rates of change, in which
two variables are compared as they both vary in
relation to something else (their functional relation,
or time, for example). This complexity might
contribute to explaining why Carlson and colleagues
found that students could talk about co variation
relationships from graphs of situations but not rates
of change. Another reason could be the opacity of
the way rate of change has to be read from gr aphs:
distances in two directions have to be selected and
compared to each other, a judgement or calculation
made of their ratio, and then the same process has
to be repeated around other points on the gr aphs
and the ratios compared. White and Mitchelmore
(1996) found that even after explicit instruction
students could only identify rates of change in simple
cases, and in complex cases tried to use algebraic
algorithms (such as a given formula for gradient)
rather than relate quantities directly.

One area for research might be to find out whether
and how students connect the ‘method of
differences’, in which rates of change are calculated
from tables of values, to graphical gradients. One of
the problems with understanding functions is that
each representation brings certain features to the

fore (Goldin, 2002). Graphical representations
emphasise linearity, roots, symmetry, continuity,
gradient; domain; ordered dataset representations
emphasise discrete covariation and may distract
students from starting conditions; algebraic
representations emphasise the structure of relations
between variables, and the family of functions to
which a particular one might be related. To
understand a function fully these have to be
connected and, further, students have to think about
features which are not so easy to visualiz e but have
to be inferred from, or read into, the representation
by knowing its properties, such as growth rate
(Confrey and Smith, 1994; Slavit, 1997). Confrey
and Smith used data sets to invite unit-by-unit
comparison to focus on rate-of-change, and deduced
that rate is different from ratio in the ways that it is
learnt and understood (1994). Rate depends on
understanding the covariation of variables, and being
able to conceptualise the action of change , whereas
ratio is the comparison of quantities.

Summary

To understand the use of functions to describe
situations secondary mathematics learners have to:
* distinguish between statistical and algebraic
representations

extend knowledge of relations to understanding
relations between relations

extend knowledge of expressions as structures to
expressions as objects

extend knowledge of equations as defining
unknown numbers to equations as expressing
relationships between variables

relate pointwise and holistic understandings and
representations of functions

see functions as a new kind of mathematical object
emphasize mathematical meaning to avoid over-
generalising

* have ways of understanding rate as covariation.

Mathematical thinking

In this section we mention mathematical problems —
those that arise in the exploration of mathematics
rather than problems presented to learners for them
to exercise methods or develop ‘problem-solving’
skills. In mathematical problems, learners have to use
mathematical methods of enquiry, some of which are
also used in word problems and modelling situations,
orin learning about new concepts. To learn
mathematics in this context means tw o things:



20 Paper 7: Modelling, problem-solving and integrating concepts

to learn to use methods of mathematical enquiry
and to learn mathematical ideas which arise in
such enquiry.

Descriptions of what is entailed in mathematical
thinking are based mainly on Polya's work (1957),
in which mathematical thinking is described as a
holistic habit of enquiry in which one might draw
on any of about 70 tactics to make progress with

a mathematical question. For example, the tactics
include make an analogy, check a result, look for
contradictions, change the problem, simplify,
specialise, use symmetry, work backwards, and so
on. Although some items in Polya’s list appear in
descriptions of problem-solving and modelling
tactics, others are more likely to be helpful in purely
mathematical contexts in which facts, logic, and
known properties are more important than merely
dealing with current data. Cuoco, Goldenberg and
Mark (1997) have devised a typography of aspects
of mathematical habits of mind. For example,
mathematicians look at change, look at stability,
enjoy symbolisation, invent, tinker, conjecture,
experiment, relate small things to big things, and so
on.The typography encompasses the perspectives
which experts bring to bear on mathematics — that
is they bring ideas and relationships to bear on
situations rather than merely use current data and
specific cases. Both of these lists contain dozens of
different ‘things to do’ when faced with mathematics.
Mason, Burton and Stacey (1982) condensed these
into ‘'specialise-generalise; conjecture-convince’ which
focuses on the shifts between specific cases and
general relationships and properties, and the
reasoning shift between demonstrating and proving.
All of these reflect the processes of mathematical
enquiry undertaken by experienced mathematicians.
Whereas in modelling there are clear stages of
work to be done, ‘mathematical thinking' is not an
ordered list of procedures, rather it is a way of
describing a cast of mind that views any stimulus as
an object of mathematical interest, encapsulating
relationships between relationships, relationships
between properties, and the potential for more
such relationships by varying variables, parameters
and conditions.

Krutetskii (1976) conducted clinical inter views with
I 30 Soviet school children who had been identified
as strong mathematicians. He tested them
qualitatively and quantitatively on a wide range of
mathematical tasks, looked for common factors in
the way they tackled them, and found that those
who are better at mathematics in general were

faster at grasping the essence of a mathematical
situation and seeing the structure through the
particular surface features. They generalised more
easily, omitted intermediate steps of reasoning,
switched between solution methods quickly, tried to
get elegant solutions, and were able to reverse trains
of thought. They remembered relationships and
principles of a problem and its solution rather than
the details and tended to explain their actions r ather
than describe them. Krutetskii's methods were clinical
and grounded and dependent on case studies within
his sample, nevertheless his work over many years
led him to form the view that such ‘abilities’ were
educable as well as innate and drew strongly on
natural propensities to reason spatially, perceptually,
computationally, to make verbal analogies, mental
associations with remembered experiences, and
reasoning. Krutetskii, along with mathematicians
reporting their own experiences, observed the need
to mull, that is to leave unsolved questions alone for
a while after effortful attempts, to sleep, or do other
things, as this often leads to fur ther insights when
returning to them. This commonly observed
phenomenon is studied in neuroscience which is
beyond the scope of this paper, but does have
implications for pedagogy.

Summary

* Successful mathematics learners engage in
mathematical thinking in all aspects of classroom
work. This means, for example, that they see what is
varying and what is invariant, look for relationships,
curtail or reverse chains of reasoning, switch
between representations and solution methods,
switch between examples and generalities, and
strive for elegance.

Mathematical ‘habits of mind’ draw on abilities or
perception, reasoning, analogy, and mental
association when the objects of study are
mathematical, i.e. spatial, computational, relational,
variable, invariant, structural, symbolic.

Learners can get better at using typical methods of
mathematical enquiry when these are explicitly
developed over time in classrooms.

It is a commonplace among mathematicians that
mulling over time aids problem-solving and
conceptualisation.
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Part 2: What learners do when
faced with complex situations
in mathematics

In this section we collect research findings that
indicate what school students typically do when
faced with situations to model, solve, or make
mathematical sense of.

Bringing outside knowledge to
bear on mathematical problems

Real-life problems appear to invite solutions which are
within a ‘human sense’ framework rather than a
mathematical frame (Booth 1981). ‘Wrong'
approaches can therefore be seen not as errors, but
as expressing a need for enculturation into what does
and does not count in mathematical problem-solving.
Cooper and Dunne (2000) show that in tests the
appropriate use of outside knowledge and ways of
reasoning, and when and when not to bring it into
play, is easier for socially more advantaged students to
understand than less advantaged students who may
use their outside knowledge inappropriately. This is
also true for students working in languages other
than their first, who may only have access to formal
approaches presented in standard ways. Cooper and
Harries (2002) worked on this problem further and
showed how typical test questions for | |- to |2-year
olds could be rewritten in ways which encourage
more of them to reason about the mathematics,
rather than dive into using handy but inappropriate
procedures.Vicente, Orrantia and Verschaffel (2007)
studied over 200 primary school students’ responses
to word problems and found that elaborated
information about the situation was much less
effective in improving success than elaborating the
conceptual information. Wording of questions, as well
as the test environment, is therefore significant in
determining whether students can or can not solve
unfamiliar word problems in appropriate ways.
Contrary to a common assumption that giving
mathematical problems in some context helps
learners understand the mathematics, analysis of
learners’ responses in these research studies shows
that ‘real-life’ contexts can:
* lead to linguistic confusion
* create artificial problems that do not fit with their
experience
* be hard to visualise because of unfamiliarity, social
or emotional obstacles
* structure mathematical reasoning in ways which are
different from abstract mathematics

* obscure the intended mathematical generalisation

* invite ad hoc rather than formal solution methods

* confuse students who are not skilled in deciding
what ‘outside’ knowledge they can bring to the
situation.

Clearly students (and their teachers) need to be

clear about how to distinguish between situations in

which everyday knowledge is, or is not, preferable to

formal knowledge and how these relate. In Boaler's

comparative study of two schools (1997) some

students at the school, in which mathematics was

taught in exploratory ways, were able to recognise

these differences and decisions. However, it is also

true that students’ outside knowledge used

appropriately might:

* enable them to visualise a situation and thus
identify variables and relationships

* enable them to exemplify abstract relationships
as they are manifested in reality

* enable them to see similar structures in different
situations, and different structures in similar
situations

* be engaged to generate practical, rather than
formal, solutions

* be consciously put aside in order to perform as
mathematically expected.

Information processing

In this section we will look at issues about cognitive
load, attention, and mental representations. At the
start of the paper we posed questions about what a
learner has to do at first when faced with a new
situation of any kind. Information processing theories
and research are helpful but there is little research in
this area within mathematics teaching except in
terms of cognitive load, and as we have said before
it is not helpful for cognitive load to be minimized if
the aim is to learn how to work with complex
situations. For example, Sweller and Leung-Martin
(1997) used four experiments to find out what
combinations of equations and words were more
effective for students to deal successfully with
equivalent information. Of course, in mathematics
learning students have to be able to do both and all
kinds of combinations, but the researchers did find
that students who had achieved fluency with
algebraic manipulations were slowed down by
having to read text. If the aim is merely to do
algebraic manipulations, then text is an extra load.
Automaticity, such as fluency in algebraic
manipulation, is achievable efficiently if differences
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between practice examples are minimized.
Automaticity also frees up working memory for
other tasks, but as Freudenthal and others have
pointed out, automaticity is not always a suitable goal
because it can lead to thoughtless application of
methods. We would expect a learner to read text
carefully if they are to choose methods meaningfull y
in the context. The information-processing tutors
developed in the work of Anderson and his
colleagues (e.g. 1995) focused mainly on
mathematical techniques and processes, but included
understanding the effects of such processes. We are
not arguing for adopting his methods, but we do
suggest that information processing has something
to offer in the achievement of fluency, and the
generation of multiple examples on which the
learner can then reflect to under stand the patterns
generated by mathematical phenomena.

Most of the research on attention in mathematics
education takes an affective and motivational view,
which is beyond the scope of this paper (see NMAP,
2008). However, there is much that can be done
about attention from a mathematical perspective.
The deliberate use of variation in examples offered
to students can guide their focus towards particular
variables and differences. Learners have to know
when to discern parts or wholes of what is off ered
and which parts are most critical; manipulation of
variables and layouts can help direct attention. What
is available to be learnt differs if different relations
are emphasised by different variations. For example,
students learning about gradients of straight line
functions might be offered exercises as follows:

Gradient exercise |:find the gradients between each
of the following pairs of points.

(4,3)and (8, 12)
(7,4) and (-4, 8)
(6,-4) and (6, 7)
(-5,2) and (-3, -9)

(-2,-1yand (-10, 1)
(8,-7yand (I'1,-1)
(-5,2) and (10, 6)
(-6,-9) and (-6, -8)

Gradient exercise 2:

(4,3) and (8, 12)
(4,3) and (7, 12)
(4,3) and (6, 12)
(4,3) and (5, 12)

(4.3) and (4, 12)
(4.3) and (3, 12)
(4,3) and (2, 12)
(4,3) and (1, 12)

In the first type, learners will typically focus on the
methods of calculation and dealing with negative
numbers; in the second type, learners typically
gesture to indicate the changes in gradient. Research

in this area shows how learners can be directed
towards different aspects by manipulating variables
(Runesson and Mok, 2004; Chik and Lo, 2003).

Theories of mental representations claim that
declarative knowledge, procedural knowledge and
conceptual knowledge are stored in different ways in
the brain and also draw distinctions between
verbatim memory and gist memory (e.g. Brainerd
and Reyna, 1993). Such theories are not much help
with mathematics teaching and learning, because
most mathematical knowledge is a combination of all
three kinds, and in a typical mathematical situation
both verbatim and gist memory would be employed.
At best, this knowledge reminds us that providing
‘knowledge' only in verbatim and declarative form

is unlikely to help learners become adaptable
mathematical problem-solvers. Learners have to
handle different kinds of representation and know
which different representations represent different
ideas, different aspects of the same ideas, and afford
different interpretations.

Summary
* Learners’ attention to what is offered depends
on variation in examples and experiences.

e Learners’ attention can be focused on critical
aspects by deliberate variation.

* Automaticity can be helpful, but can also hinder
thought.

e If information is only presented as declarative
knowledge then learners are unlikely to develop
conceptual understanding, or adaptive reasoning.

* The form of representation is a critical influence
on interpretation.

What learners do naturally that
obstructs mathematical
understanding

Most of the research in secondary mathematics is
about student errors. These are persistent over time,
those being found by Ryan and Williams (2007)
being similar to those found by APU in the late
1970s. Errors do not autocorrect because of
maturation, experience or assessment. Rather they
are inherent in the ways learners engage with
mathematics through its formal representations.
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Persistence of ‘child-methods’ pervades mathematics

at secondary level (Booth, 1981). Whether ‘child-
methods’ are seen as intuitive, quasi-intuitive,
educated, or as over-generalisations beyond the
domain of applicability, the implication for teaching is
that students have to experience, repeatedly, that
new-to-them formal methods are more widely
applicable and offer more possibilities, and that earlier
ideas have to be extended and, perhaps, abandoned.
If students have to adopt new methods without
understanding why they need to abandon earlier
ones, they are likely to become confused and even
disaffected, but it is possible to demonstrate this need
by offering particular examples that do not yield to
child-methods. To change naive conceptualisations is
harder as the next four ‘persistences’ show.

Persistence of additive methods

This ‘child method' is worthy of separate treatment
because it is so pervasive. The negative effects of
the persistence of additive methods show up again
and again in research. Bednarz and Janvier (1996)
conducted a teaching experiment with 135 12- to

| 3-year-olds before they had any algebra teaching to
see what they would make of word problems which
required several operations: those with multiplicative
composition of relationships turned out to be much
harder than those which involved composing mainly
additive operations. The tendency to use additive
reasoning is also found in reasoning about ratios and
proportion (Hart, 1981), and in students’
expectations about relationships between variables
and sequential predictions. That it occurs naturally
even when students know about a variety of other
relationships is an example of how intuitive
understandings persist even when more formal
alternatives are available (Fischbein, 1987)

Persistence of more-more, same-same intuitions
Research on the interference from intuitive rules gives
varied resufts. Tirosh and Stavy (1999) found that their
identification of the intuitive rules ‘more-more’ and
‘same-same’ had a strong predictive power for
students’ errors and their deduction accords with the
general finding that rules which generally work at
primary level persist. For example, students assume
that shapes with larger perimeters must have larger
areas; decimals with more digits must be larger than
decimals with fewer digits, and so on. Van Dooren, De
Bok, Weyers and Verschaffel (2004), with a sample of
|72 students from upper secondary found that,
contrary to the findings of Tirosh and Stavy, students’
errors were not in general due to consistent
application of an intuitive rule of ‘more-more’‘same-

same’. Indeed the more errors a student made the less
systematic their errors were. This was in a multiple-
choice context, and we may question the assumption
that students who make a large number of errors in
such contexts are engaging in any mathematical
reasoning. However, they also sampled written
calculations and justifications and found that errors
which looked as if they might be due to ‘more-more’
and ‘same-same’ intuitions were often due to other
errors and misconceptions. Zazkis, however (1999),
showed that this intuition persisted when thinking
about how many factors a number might have, large
numbers being assumed to have more factors.

Persistence of confusions between different kinds
of quantity, counting and measuring

As well as the persistence of additive approaches
to multiplication, being taught ideas and being
subsequently able to use them are not immediatel y
connected. Vergnaud (1983) explains that the
conceptual field of intensive quantities, those
expressed as ratio or in terms of other units

(see Paper 3, Understanding rational numbers and
intensive quantities), and multiplicative relationship
development continues into adulthood. Nesher and
Sukenik (1991) found that only 10% of students
used a model based on under standing ratio after
being taught to do so formally, and then only for
harder examples.

Persistence of the linearity assumption
Throughout upper primary and secondary students
act as if relationships are always linear, such as believing
that if length is multiplied by m then so is area, or if the
|0th term in a sequence is 32, then the 100th must

be 320 (De BockVerschaffel and Janssens|998;Van
Dooren, De Bock, Janssens and Verschaffel, 2004,
2007). Results of a teaching experiment with 93 upper-
primary students in the Netherlands showed that,
while linearity is persistent, a non-linear realistic context
did not yield this error. Their conclusion was that the
linguistic structure of word problems might invite
linearity as a first, flawed response. They also found that
a single experience is not enough to change this habit.
A related assumption is that functions increase as the
independent variable increases (Kieran, Boileau

and Garancon 1996).Students’ habitual ways of
attacking mathematical questions and problems

also cause problems.

Persistence with informal and language-based
approaches

Macgregor and Stacey (1993) tested over 1300
upper-secondary students in total (in a range of
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studies) to see how they mathematised situations.
They found that students tend first of all to try to
express directly from the natural language of a
situation, focusing on in equalities between quantities.
Engaging with the underlying mathematical meaning
is not a natural response. Students wanted the
algebraic expression to be some kind of linguistic
code, rather than a relational expression. Many
researchers claim this is to do with translating word
order inappropriately into symbols (such as ‘there
are six students to each professor, so 6s = p’) but
Macgregor and Stacey suggest that the cause is more
to with inadequate models of multiplicative
relationships and ratio. However, it is easy to see that
this is compounded by an unfortunate choice of
letters as shorthand for objects rather than as
variables. For example, Wollman (1983) and Clement
(1982) demonstrate that students make this classic
‘professor-student’ error because of haste, failure to
check that the meaning of the equation matches the
meaning of the sentence, over-reliance on linguistic
structure, use of non-algebraic symbols (such as p
for professor instead of p for number of professors)
and other reasons. At least one of these is a
processing error which could be resolved with a
‘read out loud'’ strategy for algebra.

Persistence of qualitative judgements in modelling
Lesh and Doerr (2003) reported on the modelling
methods employed by students who had not had
specific direction in what to do. In the absence of
specific instructions, students repeat patterns of
learning that have enabled them to succeed in other
situations over time. They tend to start on each
problem with qualitative judgements based on the
particular context, then shift to additive reasoning, then
form relationships by pattern recognition or repeated
addition, and then shift to propor tional and relational
thinking. At each stage their students resorted to
checking their arithmetic if answers conflicted rather
than adapting their reasoning by seeing if answers
made sense or not. This repetition of naive strategies
until they break down is inefficient and not what the
most successful mathematics students do.

In modelling and problem-solving students confuse
formal methods with contextual methods; they cling
strongly to limited prototypes; they over-generalise;
they read left-to-right instead of interpreting the
meaning of symbolic expressions. In word problems
they misread; miscomprehend; make errors in
transformation into operations; errors in processes;
and misinterpret the solution in the problem context
(see also Ryan and Williams 2007).

Persistent application of procedures.

Students can progress from a manipulative approach
to algebra to understanding it as a tool for problem-
solving over time, but still tend over-rely on
automatic procedures (Knuth, 2000). Knuth's sample
of 178 first-year undergraduates’ knowledge of the
relationship between algebraic and graphical
representations was superficial, and that they reached
for algebra to do automatised manipulations rather
than use graphical representations, even when the
latter were more appropriate.

Summary

Learners can create obstacles for themselves by
responding to stimuli in particular ways:

* persistence of past methods, child methods, and
application of procedures without meaning

not being able to interpret symbols and other
representations

having limited views of mathematics from their past
experience

confusion between formal and contextual aspects
inadequate past experience of a range of examples
and meanings

over-reliance on visual or linguistic cues, and on
application of procedures

persistent assumptions about addition, more-
more/same-same, linearity, confusions about
quantities

preferring arithmetical approaches to those based
on meaning.

What learners do naturally
that is useful

Students can be guided to explore situations in a
systematic way, learning how to use a typically
mathematical mode of enquiry, atthough it is hard to
understand phenomena and change in dynamic
situations. Carlson, Jacobs, Coe, Larson and Hsu.
(2002) and Yerushalmy (e.g. 1997) have presented
consistent bodies of work about modelling and
covariation activities and their work, with that of Kaput
(e.g. 1991), has found that this is not an inherently
maturation problem, but that with suitable tools and
representations such as those available in SimCalc
children can learn not only to understand change by
working with dynamic images and models, but also to
create tools to analyse change. Carlson and her
colleagues in teaching experiments have developed a
framework for describing how students learn about
this kind of co-variation. First they learn how to
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identify variables; then they form an image of how the
variables simultaneously vary. Next, one variable has to
be held still while the change in another is observed.
This last move is at the core of mathematics and
physics, and is essential in constructing mathematical
models of multivariate situations, as Inhelder and
Piaget also argued more generally.

In these supported situations, students appear to
reason verbally before they can operate symbolically
(Nathan and Koedinger, 2000). The usual ‘order’ of
teaching suggested in most curricula (arithmetic,
algebra, problem-solving) does not match students’
development of competence in which verbal modes
take precedence’. This fits well with Swafford and
Langrall's study of ten | |-year-olds (2000) in which

it was clear that even without formal teaching about
algebra, students could identify variables and articulate
the features of situations as equations where they
were familiar with the under lying operations. Students
were asked to work on six tasks in inter views. The
tasks were realistic problems that could be
represented by direct proportion, linear relations in

a numerical context, linear relations in a geometric
context, arithmetic sequences, exponential relations
and inverse proportion. Each task consisted of
subtasks which progressed from structured
exploration of the situation, verbal description of
how to find some unknown value, write an equation
to express this given certain letters to represent
variables, and use the equation to find out something
else. The ability to express their verbal descriptions

as equations was demonstrated across the tasks;
everyone was able to do at least one of these
successfully and most did more than one.The only
situation for which no one produced an equation was
the exponential one.The study also showed that, given
suitably-structured tasks, students can avoid the usual
assumptions of linearity. This shows some intuitive
algebraic thinking, and that formal symbolisation can
therefore be introduced as a tool to express
relationships which are already understood from
situations. Of course, as with all teaching experiments,
this finding is specific to the teaching and task and
would not automatically translate to other contexts,
but as well as supporting the teaching of algebra as
the way to express generality (see Paper 6 Algebraic
reasoning) it contributes to the substantial practical
knowledge of the value of star ting with what students
see and getting them to articulate this as a foundation
for learning,

It is by looking at the capabilities of successful
students that we learn more about what it takes to

learn mathematics. In Krutetskii's study of such
students, to which we referred earlier; (1976) he
found that they exhibited what he called a
‘mathematical cast of mind’ which had analytical,
geometric, and harmonic (a combination of the tw o)
aspects. Successful students focused on structure
and relationships rather than particular numbers of a
situation. A key result is that memory about past
successful mathematical work, and its associated
structures, is a stronger indicator of mathematical
success than memory about facts and techniques.
He did not find any common aspects in their
computational ability.

Silver (1981) reconstructed Krutetskii's claim that 67
lower-secondary high-achieving mathematics students
remembered structural information about
mathematics rather than contextual information. He
asked students to sort |6 problems into groups that
were mathematically-related. They were then given
two problems to work on and asked to write down
afterwards what they recalled about the prob lems.
The ‘writing down' task was repeated the next day,
and again about four weeks later. There was a
correlation between success in solving problems and
a tendency to focus on underlying mathematical
structure in the sorting task. In addition, students
who recalled the structure of the problems were the
more successful ones, but others who had
performed near average on the problems could talk
about them structurally immediately after discussion.
The latter effect did not last in the four-week recall
task however. Silver showed, by these and other
similar tasks, that structural memory aided transfer of
methods and solutions to new, mathematically similar,
situations. A question arises, whether this is teachable
or not, given the results of the four-week recall.
Given that we know that mathematical strategies can
be taught in general (Vos, 1976; Schoenfeld, 1979;
1982, and others) it seems likely that structural
awareness might be teachable, however this may
have to be sustained over time and students also
need knowledge of a repertoire of structures to
look for.

We also know something about how students
identify relationships between variables. VWhile many
will choose a variable which has the most
connections within the problem as the independent
one, and tended also to start by dealing with the
largest values, thus showing that they can anticipate
efficiency, there are some who prefer the least value
as the starting point. Nesher, Hershkovitz and
Novotna, (2003) found these tendencies in the
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modelling strategies of |67 teachers and 132 |5-
year-old students in twelve situations which all had
three variables and a comparative multiplication
relationship with an additive constraint. This is a
relatively large sample with a high number of slightly-
varied situations for such studies and could provide a
model for further research, rather than small studies
with a few highly varied tasks.

Whatever the disposition towards identifying
structures, variables and relationships, it is widely
agreed that the more you know, the better equipped
you are to tackle such tasks. Alexander and others
(1997) worked with very young children (26 three-
to five-year-olds) and found that they could reason
analogically so long as they had the necessar y
conceptual knowledge of objects and situations to
recognise possible patterns. Analogical reasoning
appears to be a natural everyday power even for
very young children (Holyoak and Thagard, 1995)
and it is a valuable source of hypotheses, techniques,
and possible translations and transformations.
Construction of analogies appears to help with
transfer, since seeking or constructing an analogy
requires engagement with structure, and it is
structure which is then sought in new situations

thus enabling methods to be ‘carried’ into new

uses. English and Sharry (1996) provide a good
description of the processes of analogical reasoning:
first seeing or working out what relations are
entailed in the examples or instances being offered
(abductively or inductively), this relational structure
is extracted and represented as a model, mental,
algebraic, graphical i.e. constructing an analogy in
some familiar; relationally similar form. They observed,
in a small sample, that some students act ‘pseudo
structurally’ i.e. emphasising syntax hindered them
seeking and recognising relational mappings. A critical
shift is from focusing on visual or contextual
similarity to structural similarity, and this has to be
supported. Without this, the use of analogies can
become two things to learn instead of one.

Past experience is also valuable in the interpretation
of symbols and symbolic expressions, as well as what
attracts their attention and the inter-relation
between the two (Sfard and Linchevski, 1994). In
addition to past experience and the effects of layout
and familiarity, there is also a difference in readings
made possible by whether the student perceives

a statement to be operational (what has to be
calculated), relational (what can be expressed
algebraically) or structural (what can be generalized).
Generalisation will depend on what students see and

how they see it, what they look for and what they
notice. Scheme-theory suggests that what they look
for and notice is related to the ways they have
already constructed connections between past
mathematical experiences and the concept images
and example spaces they have also constructed and
which come to mind in the current situation. Thus
generalisations intended by the teacher are not
necessarily what will be noticed and constr ucted by
students (Steele and Johanning, 2004).

Summary
There is evidence to show that, with suitable
environments, tools, images and encouragement,
learners can and do:
* generalise from what is offered and experienced
* look for analogies
* identify variables
* choose the most efficient variables, those with most
connections
see simultaneous variations
* observe and analyse change
reason verbally before symbolising
* develop mental models and other imagery
use past experience
need knowledge of operations and situations to do
all the above successfully
* particularly gifted mathematics students also:
* quickly grasp the essence of a problem
* see structure through surface features
* switch between solution methods
* reverse trains of thought
* remembered the relationships and
principles of a problem
* do not necessarily display computational
expertise.
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Part 3: What happens with
pedagogic intervention
designed to address typical
difficulties?

We have described what successful and unsuccessful
learners do when faced with new and complex
situations in mathematics. For this section we show
how particular kinds of teaching aim to tackle the
typical problems of teaching at this level. This depends
on reports of teaching experiments and, as with the
different approaches taken to algebra in the earlier
paper, they show what it is possible for secondary
students to learn in particular pedagogic contexts.

It is worth looking at the successes and new
difficulties introduced by researchers and developers
who have explored ways to influence learning
without exacerbating the difficulties described
above. We found broadly five approaches, though
there are overlaps between them: focusing on
development of mathematical thinking; task design;
metacognitive strategies; the teaching of heuristics;
and the use of ICT.

Focusing on mathematical thinking

Experts and novices see problems differently; and
see different similarities and differences between
problems, because experts have a wider repertoire
of things to look for; and more experience about
what is, and is not, worthwhile mathematically.
Pedagogic intervention is needed to enable all
learners to look for underlying structure or
relationships, or to devise subgoals and reflect on the
outcomes of pursuing these as successful students
do. In a three-year course for |2- to |5-year-olds,
Lamon educated learners to understand quantitative
relationships and to mathematise experience by
developing the habits of identifying quantities, making
assumptions, describing relationships, representing
relationships and classifying situations (1998). It is
worth emphasising that this development of habits
took place over three years, not over a few lessons
or a few tasks.

* Students can develop habits of identifying quantities
and relationships in situations, given extended
experience.

Research which addresses development of
mathematical thinking in school mathematics

includes: descriptive longitudinal studies of cohorts
of students who have been taught in ways which
encourage mathematical enquiry and proof and
comparative studies between classes taught in
through enquiry methods and traditional methods.
Most of these studies focus on the development of
classroom practices and discourse, and how social
aspects of the classroom influence the nature of
mathematical knowledge. Other studies are of
students being encouraged to use specific
mathematical thinking skills, such as exemplification,
conjecturing, and proof of the effects of a focus on
mathematical thinking over time. These focused
studies all suffer to some extent from the typical
‘teaching experiment’ problem of being designed to
encourage X and students then are obser ved to do
X.Research over time would be needed to
demonstrate the effects of a focus on mathematical
thinking on the nature of long-term learning.
Longitudinal studies emphasise development of
mathematical practices, but the value of these is
assumed so they are outside the scope of this paper.
However it is worth mentioning that the CAME
initiative appeared to influence the development of
analytical and complex thinking both within
mathematics and also in other subjects, evidenced in
national test scores rather than only in study-specific
tests (Johnson, Adhami and Shayer; 1988; Shayer,
Johnson and Adhami, 1999). In this initiative teachers
were trained to use materials which had been
designed to encourage cycles of investigation:
problem familiarity, investigating the problem,
synthesising outcomes of investigation, abstracting
the outcomes, applying this new abstraction to a
further problem, and so on.

* Students can get better at thinking about and
analysing mathematical situations, given suitable
teaching.

Task design

Many studies of the complexity of tasks and the
effect of this on solving appear to us to be the
wrong way round when they state that prob lems
are easier to solve if the tasks are stated more
simply. For a mathematics curriculum the purpose
of problem-solving is usually to learn how to
mathematise, how to choose methods and
representations, and how to contact big
mathematical ideas — this cannot be achieved by
simplifying problems so that it is obvious what to
do to solve them.
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Students who have spent time on complex
mathematical activity, such as modelling and prob lem-
solving, are not disadvantaged when they are tested
on procedural questions against students who have
had more preparation for these. This well-known
result arises from several studies, such as that of
Thompson and Senk (2001) in connection with the
University of Chicago School Mathematics Project:
those given a curriculum based on problems and a
variety of exploratory activities did better on open-
ended and complex, multistage tasks, than
comparable groups taught in more conventional
ways, and also did just as well on traditional
questions. Senk and Thompson (2003) went on to
collect similar results from eight mathematics teaching
projects in the United States in which they looked
specifically for students’ development of ‘basic skills’
alongside problem-solving capabilities. The skills they
looked for at secondary level included traditional
areas of difficulty such as fractions computations and
algebraic competence. Each project evaluated its
findings differently, but overall the result was that
students did as well or better than comparative
students in basic mathematical skills at the
appropriate level, and were better at applying their
knowledge in complex situations. Additionally, several
projects reported improved attainment for students
of previously low attainment or who were ‘at risk’ in
some sense. In one case, algebraic manipulation was
not as advanced as a comparison group taught from
a traditional textbook but teachers were able to
make adjustments and restore this in subsequent
cohorts without returning to a more limited
approach. New research applying one of these
curriculum projects in the United Kingdom is showing
similar findings (Eade and Dickenson, 2006 a; Eade
and Dickenson, Hough and Gough, 2006 b). A UK.
research project comparing two similar schools, in
which the GCSE results of matched samples w ere
compared, also showed that those who were taught
through complex mathematical activity, solving
problems and enquiring into mathematics, did better
than students who were taught more procedurally
and from a textbook. The GCSE scripts showed that
the former group was more willing to tackle
unfamiliar mathematics questions as problems to be
solved, where the latter group tended to not attempt
anything they had not been taught explicitly (Boaler,
1997). Other research also supports these results
(Hembree, 1992; Watson and De Geest, 2005).

* Students who spend most of their time on
complex problems can also work out how to
do ‘ordinary’ maths questions.

Recent work by Swan (2006) shows how task
design, based on introducing information which
might conflict with students’ current schema and
which also includes pedagogic design to enable these
conflicts to be explored collaboratively, can make a
significant difference to learning. Students who had
previously been failing in mathematics were able to
resolve conflict through discussion with others in
matching, sorting, relating and generating tasks. This
led directly to improvements in conceptual
understanding in a variety of traditionally problematic
domains.

* Students can sort out conceptual confusions with
others if the tasks encourage them to confront
their confusion through contradiction.

Metacognitive strategies

Success in complex mathematical tasks is associated
with a range of metacognitive orientation and
execution decisions, but mostly with deliberate
evaluating the effects of certain actions (Stillman and
Galbraith, 1998). Reflecting on the effects of activity
(to use Piaget’s articulation) makes sense in the
mathematics context, because often the ultimate
goal is to understand relationships between
independent and dependent variables. It makes
sense, therefore, to wonder if teaching these
strategies explicitly makes a difference to learning.
Kramarski, Mevarech and Arami (2002) showed that
explicitness about metacognitive strategies is
important in success not only in complex authentic
tasks but also in quite ordinary mathematical tasks.
Kramarski (2004) went on to show that explicit
metacognitive instruction to small groups provided
them with ways to question their approach to
graphing tasks. They were taught to discuss
interpretations of the problem, predict the outcomes
of using various strategies, and decide if their
answers were reasonable. The groups who had been
taught metacognitive methods engaged in discussions
that were more mathematically focused, and did
better on post-tests of graph interpretation and
construction, than control groups. Discussion
appeared to be a factor in their success. The value
of metacognitive prompts also appears to be
stronger if students are asked to write about their
responses; students in a randomized trial tried more
strategies if they were asked to write about them
than those who were asked to engage in think-aloud
strategies (Pugalee, 2004). In both these studies, the
requirement and opportunity to express
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metacognitive observations turned out to be
important. Kapa (2001) studied 44| students in four
computer-instruction environments which offered
different kinds of metacognitive prompting while
they were working on mathematical questions:
during the solution process, during and after the
process, after the process, none at all. Those with
prompts during the process were more successful,
and the prompts made more difference to those
with lower previous knowledge than to others.
While this was an artificial environment with special
problems to solve, the finding appears to support
the view that teaching (in the form of metacognitive
reminders and support) is important and that
students with low prior knowledge can do better if
encouraged to reflect on and monitor the eff ects of
their activity. An alternative to explicit teaching and
requests to apply metacognitive strategies is to
incorporate them implicitly into the ways
mathematics is done in classrooms. While there is
research about this, it tends to be in studies
enquiring into whether such habits are adopted by
learners or not, rather than whether they lead to
better learning of mathematics.

* Students can sometimes do better if they are
helped to use metacognitive strategies.

» Use of metacognitive strategies may be enhanced:
in small group discussion; if students are asked to
write about them; and/or if they are prompted
throughout the work.

Teaching problem-solving heuristics

The main way in which educators and researchers
have explored the question of how students can
get better at problem solving is by constructing
descriptions of problem-solving heuristics, teaching
these explicitly, and comparing the test performance
of students who have and have not received this
explicit teaching. In general, they have found that
students do learn to apply such heuristics, and
become better at problem-solving than those who
have not had such teaching (e .g. Lucas, 1974). This
should not surprise us.

A collection of clinical projects in the 1980s (e.g.
Kantowski, 1977; Lee, 1982) which appear to show
that students who are taught problem-solving
heuristics get better at using them, and those who
use problem-solving heuristics get better at problem
solving. These results are not entirely tautologous if

we question whether heuristics are useful for solving
problems. The evidence suggests that they are (e.g.
Webb, 1979 found that |13% of variance among 40
students was due to heuristic use), yet we do not
know enough about how these help or hinder
approaches to unfamiliar problems. For example, a
heuristic which involves planning is no use if the
situation is so unfamiliar that the students cannot
plan. For this situation, a heuristic which involves
collecting possible useful knowledge together (e .g.
‘What do | know? What do | want? Mason, Burton
and Stacey , 1982) may be more useful but requires
some initiative and effort and imagination to apply.
The ultimate heuristic approach was probably
Schoenfeld’s (1982) study of seven students in which
he elaborated heuristics in a multi-layered way, thus
showing the things one can do while doing
mathematical problem-solving to be fractal in nature,
impossible to learn as a list, so that true
mathematical problem-solving is a creative task
involving a mathematical cast of mind (Kr utetskii,
1976) and range of mathematical habits of mind
(Cuoco, Goldenberg and Mark, 1997) rather than a
list of processes.

Schoenfeld (1979; 1982) and Vos (1976) found that
learners taught explicit problem-solving strategies are
likely to use them in new situations compared to
similar students who are expected to abstract
processes for themselves in practice examples. There
is a clear tension here betw een explicit teaching and
the development of general mathematical awareness.
Heuristics are little use without knowledge of when,
why and how to use them. What is certainly true is
that if learners perform learnt procedures, then we
do not know if they are acting meaningfully or not.
Vinner (1997) calls this ‘the cognitive approach fallacy’
— assuming that one can analyse learnt behavioural
procedures as if they are meaningful, when perhaps
they are only imitative or gap-filling processes.

Application of learnt heuristics can be seen as
merely procedural if the heuristics do not require
any interpretation that draws on mathematical
repertoire, example spaces, concept images and so
on. This means that too close a procedural approach
to conceptualization and analysis of mathematical
contexts is merely what Vinner calls ‘pseudo’. There is
no ‘problem’ if what is presented can be processed
by heuristics which are so specific they can be
applied like algorithmically. For example, finding
formulae for typical spatial-numeric sequences (a
common feature of the U.K curriculum) is often
taught using the heuristic ‘generate a sequence of
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specific examples and look for patterns’. No initial
analysis of the situation, its variables, and relevant
choice of strategy is involved.

On the other hand, how are students to learn how
to tackle problems if not given ideas about tactics
and strategies! And if they are taught, then it is likely
that some will misapply them as they do any learnt
algorithm. This issue is unresolved, but working with
unfamiliar situations and being helped to reflect on
the effects of particular choices seem to be useful
ways forwards.

There is little research evidence that students taught
a new topic using problems with the explicit use of
taught heuristics learn better; but Lucas (1974) did
this with 30 students learning early calculus and they
did do significantly better that a ‘normal’ group when
tested. Learning core curriculum concepts through
problems is under-researched. A recent finding
reported by Kaminski, Sloutsky and Heckler (2006;
2008) is that learning procedurally can give faster
access to underlying structure than working through
problems. Our reading of their study suggests that
this is not a robust result, since the way they
categorise contextual problems and formal
approaches differs from those used by the research
they seek to refute.

* Students can apply taught problem-solving
heuristics, but this is not always helpful in unfamiliar
situations if their learning has been procedural.

One puzzle which arose in the U.S. Task Panel's
review of comparative studies of students taught in
different ways (NMAP, 2008) is that those who have
pursued what is often called a ‘problem-solving
curriculum’ turn out to be better at tackling
unfamiliar situations using problem-solving strategies,
but not better at dealing with ‘simple’ given word
problems. How students can be better at
mathematising real world problems and resolving
them, but not better at solving given word problems!?
This comment conceals three important issues: firstly,
‘word problems’, as we have shown, can be of a
variety of kinds, and the ‘simple’ kinds call on different
skills than complex realistic situations; secondly, that
according to the studies reported in Senk and
Thompson (2003) performance on ‘other aspects’ of
mathematics such as solving word problems may not
have improved, but neither did it decline; thirdly, that
interpretation of these findings as good or bad
depends on curriculum aims®. Furthermore, the panel
confined its enquiries to the U.S. context and did not

take into account the Netherlands research in which
the outcomes of ‘realistic’ activity are scaffolded
towards formality. The familiar phrase ‘use of real
world problems'is vague and can include a range
of practices.

The importance of the difference in curriculum aims
is illustrated by Huntley, Rasmussen, Villarubi, Sangtog
and Fey (2000) who show, along with other studies,
that students following a curriculum focusing on
algebraic problem solving are better at problem
solving, especially with support of graphical
calculators, but comparable students who have
followed a traditional course did better in a test for
which there were no graphical calculators available
and were also more fluent at manipulating
expressions and working algebraically without a
context. In the Boaler (1997) study, one school
educated students to take a problem-solving view
of all mathematical tasks so that what students
‘transferred’ from one task to another was not
knowledge of facts and methods b ut a general
approach to mathematics. Ve described earlier how
this helped them in examinations.

* There is no unique answer to the questions of why
and when students can or cannot solve problems —
it depends on the type of problem, the curriculum
aim, the tools and resources, the experience, and
what the teacher emphasises.

How can students become more systematic at
identifying variables and applying operations and
inverses to solve problems? One aspect is to be
clear about whether the aim is for a formal method
of solution or not. Another is experience so that
heuristics can be used flexibly because of exposure
to a range of situations in which this has to be done
— not just being given equations to be solved; not
just constructing general expressions from
sequences; etc. The value of repeated experience
might be what is behind a finding from Blume and
Schoen (1988) in which 27 14-year-old students
who had learnt to programme in Basic were tested
against 27 others in their ability to solve typical
mathematical word problems in a pen and paper
environment. Their ability to write equations was

no different but their ability to solve problems
systematically and with frequent review was
significantly stronger for the Basic group. Presumably
the frequent review was an attempt to replicate the
quick feedback they would get from the computer
activity. However, another Basic study which had
broader aims (Hatfield and Kieren, 1972) implied
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that strengths in problem-solving while using Basic
as a tool were not universal across all kinds of
mathematics or suitable for all kinds of learning goal.

A subset of common problem-solving heuristics are
those that relate specifically to modelling, and
modelling can be used as a prob lem-solving strategy.
Verschaffel and De Corte (1997) working with | 1-
year-olds show that rather than seeing modelling-of
and modelling-for as two separate kinds of activity, a
combination of the two, getting learners to frame
real problems as word problems through modelling,
enables learners to do as well as other groups in
both ‘realistic’ mathematical problem-solving and with
word problems when compared to other groups.
Their students developed a disposition towards
modelling in all situational problems.

* Students may understand the modelling process
better if they have to construct models of
situations which then are used as models for
new situations.

* Students may solve word problems more easily
if they have experience of expressing realistic
problems as word problems themselves.

Using ICT

Students who are educated to use available
handheld technology appear to be better problem
solvers. The availability of such technology removes
the need to do calculations, gives immediate
feedback, makes reverse checking less tedious, allows
different possibilities to be explored, and gives more
support for risk taking. If the purpose of complex
tasks is to show assessors that students can ‘do’
calculations than this result is negative; if the purpose
is to educate students to deal with non-routine
mathematical situations, then this result is positive.

Evidence of the positive effects of access to and use
of calculators is provided by Hembree and Dessart
(1986) whose meta-analysis of 79 research studies
showed conclusively that students who had sustained
access to calculators had better pencil-and-paper
and problem-solving skills and more positive
attitudes to mathematics than those without. The
only years in which this result was not found was
grade 4 in the United States, and we assume that
this is because calculator use may make students
reluctant to learn some algorithmic approaches
when this is the main focus of the curriculum. In the

United Kingdom, these positive results were also
found in the 1980s in the C AN project, with the
added finding that students who could choose which
method to use, paper, calculator or mental, had
better mental skills than others.

We need to look more closely at why this is, what
normal obstacles to learning are overcome by using
technology and what other forms of learning are
afforded? Doerr and Zangor (2000) recognized that
handheld calculators offered speed and facility in
computation, transformation of tasks, data collection
and analysis, visualisation, switching representations,
checking at an individual level but hindered
communication between students. Graham and
Thomas (2000) achieved significant success using
graphical calculators in helping students understand
the idea of variable. The number of situations,
observation of variation, facility for experimentation,
visual display, instant feedback, dynamic
representation and so on contributed to this.

* Students who can use available handheld
technology are better at problem solving and have
more positive views of mathematics.

We do not know if it is only in interactive computer
environments that school students can develop a
deep, flexible and applicable knowledge of functions,
but we do know that the affordances of such ICT
environments allow all students access to a wide
variety of examples of functions, and gives them

the exploratory power to see what these mean in
relation to other representations and to see the
effects on one of changing the other.These
possibilities are simply not available within the
normal school time and place constraints without
hands-on ICT. For example, Godwin and
Beswetherick (2002) used graphical software to
enhance learners' understanding of quadratic
functions and point out that the ICT enab les the
learning environment to be structured in ways that
draw learners’ attention to key characteristics and
variation. Schwarz and Hershkowitz (1999) find that
students who have consistent access to such tools
and tasks develop a strong repertoire of prototypical
functions, but rather than being limited by these can
use these as levers to develop other functions, apply
their knowledge in other contexts and learn about
the attributes of functions as objects in themselves.

Software that allows learners to model dynamic
experiences was developed by Kaput (1999) and the
integration of a range of physical situations,



32 Paper 7: Modelling, problem-solving and integrating concepts

represented through ICT, with mental modelling
encouraged very young students to use algebra to
pose questions, model and solve questions. Entering
algebraic formulae gave them immediate feedback
both from graphs and from the representations of
situations. In extended teaching experiments with
upper primary students, Yerushalmy encouraged them
to think in terms of the events and processes inherent
in situations. The software she used emphasised
change over small intervals as well as overall shape.
This approach helped them to understand
representations of quantities, relationships among
quantities, and relationships among the
representations of quantities in single variable
functions (Yerushalmy, 1997). Yerushalmy claims that
the shifts between pointwise and holistic views of
functions are more easily made in technological
environments because, perhaps, of the easy availability
of several examples and feedback showing translation
between graphs, equations and data sets. She then
gave them situations which had more than one input
variable, for example the cost of car rental which is
made up of a daily rate and a mileage rate. This kind
of situation is much harder to analyse and represent
than those which have one independent and one
dependent variable. To describe the effects of the first
variable the second variable has to be invariant, and
vice versa. In discussion, a small sample of students
tried out relations between various pairs of variables
and decided, for themselves, that two of the variables
were independent and the final cost depended on
both of them. They then tried to draw separate
graphs in which one of the variables was controlled.
We are not claiming that all students can do this by
themselves, but that these students could do it is
remarkable. This study suggests that students for
whom the ideas of variables, functions, graphs and
situations are seen as connected have the skills to
analyse unfamiliar and more complex situations
mathematically. Nemirovsky (1996) suggests another
reason is that students can relate different
representations to understand the story the graph is
representing. He undertook a multiple representation
teaching experiment with 15- and |6-year-olds in
which graphs were generated using a toy car and a
motion detector. Having seen the connection between
one kind of movement and the graph, students were
then asked to predict graphs for other movements,
showing how their telling of the story of the
movement related to the graphs they were drawing.
Students could analyse continuous movement that
varied in speed and direction by seeing it to be a
sequence of segments, then relate segments of
movement to time, and then integrate the segments

to construct a continuous graph. Additionally,
comparing the real movement, their descriptions of it,
and graphs also enabled them to correct and adjust
their descriptions. Nemirovsky found that switching
between these representations helped them to see
that graphs told a continuous story about situations.
Rather than expressing instances of distance at
particular times, the students were talking about
speed, an interpretation of rate from the graph rather
than a pointwise use of it. Using a similar approach
with nine- and ten-year-olds Nemirovsky found that
these students were more likely to ‘read’ symbolic
expressions as relationships between variables rather
than merely reading them from left to right as children
taught traditionally often do.

Students at all levels can achieve deep understanding
of concepts and also learn relevant graphing and
function skills themselves, given the power to see the
effects of changes in multiple representations, taking
much less time than students taught only skills and
procedures through pencil-and-paper methods
(Heid, 1988; Ainley and her colleagues, e.g. 1994).

» Computer-supported multiple representational
contexts can help students understand and use
graphs, variables, functions and the modelling
process.
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Recommendations
For curriculum and practice

The following recommendations for secondary
mathematics teaching draw on the conclusions
summarized above.

Learning new concepts

* Teaching should take into account students’ natural
ways of dealing with new perceptual and verbal
information (see summaries above), including those
ways that are helpful for new mathematical ideas
and those that obstruct their learning.

* Schemes of work and assessment should allow
enough time for students to adapt to new
meanings and move on from earlier methods and
conceptualisations; they should give time for new
experiences and mathematical ways of working to
become familiar in several representations and
contexts before moving on.

Choice of tasks and examples should be
purposeful, and they should be constructed to
help students shift towards understanding new
variations, relations and properties. Such guidance
includes thinking about learners’initial perceptions
of the mathematics and the examples offered.
Students can be guided to focus on critical aspects
by the use of controlled variation, sorting and
matching tasks, and multiple representations.

* Students should be helped to balance the need for
fluency with the need to work with meaning.

Applications, problem-solving, modelling,

mathematical thinking

* As above, teaching should take into account
students’ natural ways of dealing with new
perceptual and verbal information (see summaries
above), including those ways that are helpful for
new mathematical ideas and those that obstruct
their learning.

Schemes of work should allow for students to have
multiple experiences, with multiple representations,
over time to develop mathematically appropriate
‘habits of mind’.

The learning aims and purpose of tasks should be
clear: whether they are to develop a broader
mathematical repertoire; to learn modelling and

problem-solving skills; to understand the issues
within the context better etc.

Students need help and experience to know when
to apply formal, informal or situated methods.

Students need a repertoire of appropriate
functions, operations, representations and
mathematical methods in order to become good
applied mathematicians. This can be gained through
multiple experiences over time.

Student-controlled ICT supports the development
of knowledge about mathematics and its
applications; student-controlled ICT also provides
authentic working methods.

For policy

* These recommendations indicate a training
requirement based on international research about
learning, rather than merely on implementation of a
new curricula.

* There are resource implications about the use of
ICT. Students need to be in control of switching
between representations and comparisons of
symbolic expression in order to understand the
syntax and the concept of functions. The United
Kingdom may be lagging behind the developed
world in exploring the use of spreadsheets,
graphing tools, and other software to support
application and authentic use of mathematics.

The United Kingdom is in the forefront of new
school mathematics curricula which aim to prepare
learners better for using mathematics in their
economic, intellectual and social lives. Uninformed
teaching which focuses only on methods and test-
training is unlikely to achieve these goals.

Symbolic manipulators, graph plotters and other
algebraic software are widely available and used to
allow people to focus on meaning, application and
implications. Students should know how to use
these and how to incorporate them into
mathematical explorations and extended tasks.

A strong message emerging about learning
mathematics at this level is that students need
multiple experiences over time for new-to-them
ways of thinking and working to become habitual.
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For research

* There are few studies focusing on the introduction
of specific new ideas, based on students’ existing
knowledge and experience, at the higher secondary
level. This would be a valuable research area.This
relates particularly to topics which combine concepts
met earlier in new ways, such as: trigonometry,
quadratics and polynomials, and solving simultaneous
equations. (There is substantial research about
calculus beyond the scope of this paper)

There are many studies on the development of
modelling and problem-solving skills, but a valuable
area for research, particularly in the new UK.
context at 14—19, would be the relationship
between these and mathematical conceptual
development which, as we have shown above,
involves similar — not separate — learning processes
if it is to be more than trial-and-error.

There is little research which focuses on the
technicalities of good mathematics teaching, and

it would be valuable to know more about: use of
imagery, the role of visual and verbal presentations,
development of mathematical thinking,
development of geometrical reasoning, how
representations commonly used in secondary
mathematics influence learning, and how and why
some students manage to avoid over-generalising
about facts, methods, and approaches.

There is very little research on statistical reasoning,
non-algebraic modelling, and learning mathematics
with and without symbolic manipulators.

Endnotes

| ‘Induction’ here is the process of devising plausib le
generalisations from several examples, not mathematical
inductive reasoning.

2 They claimed that the post-test was contextual because objects
were used, but the relations between the objects were
spurious so the objects functioned as symbols r ather than as
contextual tools.

3 There a little research on inter preting problems in statistical
terms, but this is beyond the scope of this paper.

4 Modelling has other meanings as well in mathematics
education, such as the provision or creation of visual and tactile
models of mathematical ideas, but here we are sticking to what
mathematicians mean by modelling.

5 Also, as is recognised in the Realistic Mathematics Education
and some other projects, students are able to engage in ad hoc
problem solving from a young age.

6 Meta-analysis of the studies they used is bey ond the scope of
this review.
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About this review

In 2007, the Nuffield Foundation commissioned a

team from the University of Oxford to review the
available research literature on how children learn
mathematics. The resulting review is presented in a
series of eight papers:

Paper |: Overview

Paper 2: Understanding extensive quantities and
whole numbers

Paper 3: Understanding rational numbers and
intensive quantities

Paper 4: Understanding relations and their graphical
representation

Paper 5: Understanding space and its representation
in mathematics

Paper 6: Algebraic reasoning

Paper 7: Modelling, problem-solving and integrating
concepts

Paper 8: Methodological appendix

Papers 2 to 5 focus mainly on mathematics relevant
to primary schools (pupils to age | | years), while
papers 6 and 7 consider aspects of mathematics

in secondary schools.

Paper | includes a summary of the review, which
has been published separately as Introduction and
summary of findings.

Summaries of papers |-7 have been published
together as Summary papers.

All publications are available to download from
our website, www.nuffieldfoundation.org
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Appendix to Papers | to 7
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Appendix to
papers 1to 1

This review was conceived as standing between a
research synthesis and a theoretical review. ‘Research
syntheses focus on empirical studies and seek to
summarize past research by drawing overall
conclusions from many separate investigations that
address related or identical hypotheses. The research
synthesis hopes to present the state of kno wledge
concerning the relation(s) of interest and to highlight
important issues that research has left unresolved'
(Cooper, 1998, p. 3). In a theoretical review, the aim
is to present theories offered to explain a particular
phenomenon and to compare them in breadth,
internal consistency, and the empirical support that
they find in empirical studies. ‘Theoretical reviews will
typically contain descriptions of critical experiments
already conducted or suggested, assessments of
which theory is most powerful and consistent with
known relations, and sometimes reformulations or
interactions or both of abstract notions from
different theories! (Cooper, 1998, p. 4).

It was quite clear to us that a review that aims

to answer the question ‘how children learn
mathematics, ages 5 to 16’ could not be treated as
a straightforward research synthesis. The aim of a

research synthesis is usually more restricted than this.

For example, a research synthesis in education might
try to examine the effect of one variable on another
(e.g. the effect of reading aloud on children’s literacy
learning; Blok,1999; Bus, van ljzendoorn, and
Pellegrini, 1995) or the conditions under which a
particular educational practice can be said to work
(e.g. the effect of phonological or morphological
instruction on literacy learning; Bus, and van
ljzendoorn, (1999); Ehri, Nunes, Stahl, and Willows,
2001; Reed, 2008). Such searches start from
previously defined variables, the incorporation of
which in a study can easily be identified in a search
through the literature. A review of the literature that

starts with a much broader question cannot use the
same conception of how the literature search will
be carried out. The variables to be analysed are not
conceived from the start and one of the aims of
addressing such a broad question is in fact to clarify
how mathematics learning could be conceptualised.

Theoretical syntheses have broader aims, which are

in some ways similar to the aims adopted in this
synthesis, but the current conception of theoretical
syntheses can only be partially adopted in this review.
Although there are occasionally alternative views of
how a particular aspect of children’s mathematics
learning can be explained, the notion of critical
experiments to assess which theory is more powerful
cannot easily be met when we try to understand
how children learn mathematics. The very conception
of what it is that one is tr ying to explain varies even
when the same words are used to describe the focus
of the research. In the second paper in this review,
we try to show exactly this. There are two alternative
theories about children’s understanding of number in
developmental psychology but the phenomenon that
they are trying to explain is not the same: Piaget's
theory focuses on children’s understanding of
relations between quantities and Gelman'’s theory

on children’s counting skills. For older children, the
problem becomes even more complex because
there are alternative views of the nature and content
of mathematical learning, and the role of pedagogy
makes the notion of critical experiment either
impossible or inapplicable. This is true of all research
into secondary mathematics and reflects a change
from seeing mathematics as the formalisation and
extension of children’s quantitative and spatial
development to seeing learning mathematics as
coming to understand abstract tools which can
provide new formal and analytical perspectives on
the world.
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We did not approach this synthesis as a systematic
review but as an attempt to summarise and develop
some of the main ideas that are par t of research
and theory about how children learn mathematics.
Within this perspective, we defined some inclusion
and exclusion criteria from the outset.

Inclusion criteria

| Theoretical explanations regarding how children
learn mathematics which have been supported
by research. There are theoretical explanations
in the domain of mathematics learning which
were proposed without their authors providing
systematic empirical evidence. We did not consider
these latter theories in the review except as
frameworks to structure the approach in the
absence of other explanations.

2 Research about children’s mathematics learning in
the age range 5 to | | was considered when it
focused on the four domains defined as the focus
of this research: children’s understanding of natural
and rational numbers, relations between quantities
and functions, and space and its representation.
These were considered the cornerstones for
further mathematics learning in the domains
of algebra, modelling and applications to higher
mathematical concepts; the focus of these two
papers was on students aged |2 to |6. For algebra
the available research on learning focuses on
identifying typical errors, hence showing critical
aspects of successful learning but not how that
learning might take place. Further than this we
looked at teaching experiments showing how
students respond to different pedagogical
approaches designed to overcome these typical
difficulties. For modelling we intended to follow
a similar approach but little was available except
small-scale teaching experiments.

3 Research published in books and book chapters,
journals and refereed conference proceedings
which aim at understanding how children learn
mathematics. Considering the constraints of
time, the search in journals was limited to those
available electronically and otherwise in the
University of Oxford. A list of journals and their
aims and scope is appended. The refereed
conference proceedings of the International Group
for the Study of the Psychology of Mathematics
Education will be the only proceedings included in
the review.

Exclusion criteria

| There are domains of research, such as history of
mathematics, mathematics teacher development,
neuropsychological studies of adults with brain
damage who have developed mathematics
difficulties, and studies of mathematical abilities in
animals and infants, which have not been so far
connected to a theory of how children learn
mathematics between 5 and 16 years. These
domains of research are excluded.

2 Research that focused on learning how to use
specific technologies rather than on how
technologies are used by students to learn
mathematics. There is a relatively large number
of publications on how students learn to use
particular tools that are relevant to mathematics
(e.g. calculators, number line, spreadsheets, LOGO
and Cabri). Considering our aim of under standing
how children learn mathematics, we will only refer
1o research that uses these tools when the focus is
on mathematics learning (e.g. using spreadsheets to
help students understand the concept of variable).

We did not use methodological criteria in the choice
of papers. Descriptive as well as experimental
research, qualitative or quantitative studies were
considered when we went through the search. In
view of the brevity of the period dedicated to this
synthesis, we did exclude materials that could neither
be obtained by electronic means or in the libr aries
of the University of Oxford. There is, therefore, a bias
towards papers published in English language
journals, even though we could have read
publications in three other languages.

The search process was systematic. We used the
British Educational Index as a star ting point for the
search of papers in the four chapters about children
in the age range 5 to | |. Three searches were
carried out, one for natural and rational numbers,
one for geometry and one for understanding
relations and functions. We included in these
searches three sets of key-words, the first defining
the domain of research (mathematics education and
other key words from the thesaurus), the second
defining the topic area (e .g. natural number, rational
number and other options from the thesaur us), and
the third defining the age parameters (through
schooling levels). Theses and one-page abstracts
were excluded from the output list of ref erences

at this point. The references were then checked

for availability and to see whether they repor ted
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research results and excluded if they were not
available or did not report any research results. We
repeated this search process using Psych-info, a data
base which includes psychological research, which
had been poorly represented in the previous data
base. Finally, this initial search was complemented by
a journal by journal search of the titles listed at the
end of this note. This search seemed to yield mostly
repeated references so we considered this the end
of the process of search. We also consulted books
and book chapters of works that are recognised in
the literature and previous syntheses presented in
the Handbook of Research on Mathematics Teaching
and Learning. Two the Task Group Reports of the
National Mathematics Advisory Panel, USA, were
also consulted: the reports on learning processes
and on conceptual knowledge. These were used

as sources of references rather than for their
conclusions. In the end, approximately 200 papers
were downloaded and read by the authors.
However, not all of these papers are cited in the
chapters. The references used are those which did
contribute to the development of the concepts and
empirical results used in the synthesis.

For algebra, we conducted a systematic search in
electronic journals in English for refereed research
articles using algebra as the keyword. Journals are
listed below. We did not define an age range since
we were interested in how algebraic understanding
develops throughout school, although this happens
mainly in secondary education. We also used
refereed innovation studies, which show what it is
possible for learners to do, given particular kinds of
teaching or technology; this tells us about
possibilities. We restricted our use of these to studies
for which the learning aims clearly relate to a broad
view of algebra given above. For example, we did
not include self-referential studies in which, for
example, it is assumed that pattern-spotting is an
important aspect of algebra, so teaching and learning
pattern-spotting is researched, but we would for
example include a study of teaching patter n-spotting
where students’ ability to use pattern-spotting for a
higher level algebraic purpose was discussed as an
outcome. We also used refereed studies of students’
typical errors and methods (see below). These tell us
what needs to be learnt and hence describe the
development of algebraic understanding, but not
how successful students learn it. Ve also drew on
significant overviews and compilations of research on
algebra. These reviews were used as gateways to
other research literature. We excluded studies which
focus only on short-term fluent performance of

algebraic procedures in familiar situations unless
this was linked specifically to the development of
algebraic reasoning. Most of the studies we used
base their claims to success on the complementar y
needs both to act fluently with symbolic expressions
and to understand them. We accessed |74 papers
plus 78 references in books in addition to the
reviews and studies mentioned above. Of these,
about 95 were read but not all are included as
reference. Some of these overlapped in their
conclusions, or added nothing or only a little to the
main references.

For Paper 7, Modelling, problem-solving and
integrating concepts, an initial search using U.S. and
UK spellings gave very few relevant results. We
therefore broadened the search to include:
modelling, problem-solving, realistic, real-life, variable
and word problems. This process was iterative as
the search for explanations for what could be
inferred about students’ learning led us into other
related areas. Later we did further searches on
some other terms which emerged as important:
linearity, linear assumption, equation. Finally, we
searched for papers which addressed how students
learned combinations of concepts which build on
elementary concepts, such as trigonometry. In all
we located over 3200 references using British
Education Index, ERIC and other sources.
Fortunately many of these were not research-
based, or used the terms in irrelevant ways, or
addressed the focus in limited ways related to
young children. The final relevant list consisted of
|25 papers and a journal special issue. We used
these papers to point to other sources. Most of
these papers were reports of teaching experiments.
Teaching experiments usually have a particular
commitment to the nature of an aspect of
mathematics and how it is best learnt. The
experiment is constructed to see if students will

be able to do X in certain circumstances, and X

is measured as an outcome b ut in this process
knowledge of how X is learnt, and what can go
wrong, can be found. In reading this literature we
found an overall coherence about students’ learning
of higher mathematics and the final version of the
paper was constructed to show these similarities.
A list of journals accessed is included in this
appendix. There were only four reviews of research
used, two meta-analyses by Hembree, (1986; 1992)
used as summaries of literature and the U.S. Task
Panel (NMAP 2008) was used as a gateway to
other sources.
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List of journals consulted for
Papers2to 5

British Journal of Developmental Psychology

British Journal of Educational Psychology

Child Development

Cognition and Instruction

Educational Studies in Mathematics

Eurasia Journal of Mathematics, Science and

Technology Education

International Electronic Journal of Mathematics
Education

International Journal for Mathematics and Learning

International Journal of Science and Mathematics
Education

Journal for Research in Mathematics Education

Journal for Research in Mathematics Education

Monograph

Journal of Educational Psychology

Learning and Instruction

List of journals consulted for
Papers 6 and 7

British Journal of Developmental Psychology

British Journal of Educational Psychology

Child Development

Cognition and Instruction

Educational Studies in Mathematics

International Journal of Mathematical Education in
Science and Technology

Journal for Research in Mathematics Education

Learning and Instruction

Mathematical Thinking and Learning

Proceedings of International Group for the
Psychology of Mathematics Education

Reviews and collections
used for algebra

Bednarz, N, Kieran C., Lee, L. (eds.) Approaches to
algebra: perspectives for research on teaching.
Kluwer, Dordrecht

Chick, H., Stacey, K, Vincent, . and Vincent, J. (eds.)
Proceedings of the 1 2t 1emi study conference: The
future of the teaching and learning of algebra.
University of Melbourne, Australia, Dec 9-14, 2001,

Greenes, C. and Rubenstein, R (eds.) Algebra and
Algebraic Thinking in School Mathematics. 70th
Yearbook. Reston,VA: NCTM.

Kaput, J., Carraher, D. and Blanton, M. (eds.) Algebra
in the early grades. New York: Erlbaum

Mason, J. and Sutherland, R. (2002), Key Aspects of
Teaching Algebra in Schools, QCA, London

Nickson, M. (2000) Teaching and learning
mathematics: a teacher’s guide to recent research
and its applications. London: Cassell

NMAP National Mathematics Advisory Panel (2008)
downloaded April 2008 from:
http://mww.ed.gov/about/bdscomm/list/mathpanel
/index.html

ZDMThe International Journal of Mathematics
Education volume 40 (2008)

Large-scale studies used
for Papers 6 and 7

Concepts in Secondary Mathematics and Science
Project (CSMS) (see Hart et al, 1981)

Diagnostic tests derived from clinical interviews
with 30 children age | | to 16. In these interviews
the test items were trialled and revised, and students’
own methods and typical errors were observed.
Common errors and methods were found across
schools which were not teacher-taught but had
arisen through students’ own reasoning. The sample
for testing was from urban, rural and city areas
across England. It was selected from volunteer
schools according to 1Q distributions in order to
represent the country as a whole. About 3000
students took the Algebra test.

Strategies and Errors in Secondary Mathematics
Project (SESM) focused on a small number of errors
arising in the CSMS study. There used a large number
of individual interviews and some teaching
experiments involving several classes of students.

Ryan and Williams

Ryan and Williams randomly-sampled |3 000 English
school children from ages 4 to |5 using diagnostic
tests designed to reveal typical errors and child-
methods, as CSMS, but with the express purpose

of identifying progress made by students in
mathematics. They found little progress made
between ages | | to 14, and that many errors were
similar to those found by Hart et al. 20 years earlier:
See Ryan, J. and Williams, J. (2007) Children’s
Mathematics 4-15: learning from errors and
misconceptions, Maidenhead: Open University

Press. More details of the tests can be found in
Mathematics Assessment for Learning and Teaching,
(2005) London: Hodder and Stoughton.
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Mollie MacGregor and Kaye Stacey

A series of pencil and paper tests were administered
to 2000 students from a representative sample of
volunteer schools in Years 7—10 (ages | | —15) in 24
Australian secondary schools.

Assessment of Performance Unit (APU) test results
of 1979 (Foxman et al,, |981). These tests involved a
cohort of 12 500 students age Il to 15 and w ere
designed to track development of mathematical
understanding by sampling across schools and regions.

Children’s Mathematical Frameworks study (CMF)
(Johnson, 1989), 25 classes in 21 schools in the
United Kingdom were tested to find out why and
how students between 8 and |3 cling to guess-and-
check and number-fact methods rather than new
formal methods offered by teachers.
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