FSMQ Level 2 Data handling scheme of work
Note: AQA have decided to discontinue this FSMQ. The last exam will be in the June 2018 series.
Before starting this Higher (Level 2) FSMQ students should be able to:
 calculate with large numbers, fractions, decimals and percentages, including expressing one quantity as a fraction orpercentage of another
 round values to the nearest whole number, 10, 100, (0.1), (0.01) etc.
 substitute into formulae expressed in words or symbols.
A suggested work scheme showing topic areas and methods to be covered is given below. This recommends a total of 60 guided learning hours that could be used in a variety of ways, such as 2 hours per week for 30 weeks, 4 hours per week for 15 weeks, or 5 hours per week for 12 weeks. Although the topic areas are listed separately below, it would be beneficial at times to use a variety of skills within a piece of work.
The following techniques should be introduced as soon as possible and used throughout the course:
 using tables to record results
 using a calculator effectively and efficiently, recording the working as well as the results and rounding values appropriately
 using spreadsheets to sort data into increasing or decreasing order, carry out calculations and display results in tables and statistical charts and graphs
 checking calculations using estimates, inverse operations and alternative methods (by hand and mentally).
Although the topics are listed separately, it would be beneficial to follow a number of statistical investigations through from the initial collection and organisation of data to an analysis of the situation making use of statistical charts and measures. Where possible these investigations should reflect the students’ other areas of work and interests.
Note that although the AMP resources in the list below were not written especially for this FSMQ, they include worksheets and notes you may find very useful.
Note that the assessment of this AQA FSMQ is by examination only and you should disregard any references to Coursework Portfolio requirements in the assignments which have not been updated. These are included for possible use as classroom activities but will not form part of the assessment of this FSMQ.
Topic area 
Content 
Nuffield resources 
Define hypotheses, collect and organise data 
Define a hypothesis, and decide what data needs to be collected or measured in order to test it. Differentiate between discrete and continuous data. Select a suitable sample considering in general terms what would be its appropriate characteristics. Identify appropriate values to measure. Design a questionnaire (ensuring that questions are not biased, leading, complex or offensive) and other data collection forms for data from observation and measurement. Transfer data from data collection forms to tables produced by hand and into a spreadsheet. Include use of tally charts and frequency tables and grouping data using equal and unequal intervals. 
Sports questionnaire responses [1] 
Cemetery mathematics (AMP) [2] 
Topic area 
Content 
Nuffield resources 
Statistical charts 
Draw by hand and interpret: Use a spreadsheet to draw bar charts, pie charts and line graphs. Interpret what the diagrams tell you about the situation. Discuss the use of scales, area (etc) to exaggerate findings. 
Solar eclipse [3] 
Draw histograms in Excel [4] [5] 

Draw pie charts in Excel [6] 

Pie charts [7] [8] 

Draw line graphs in Excel [9] 

Interpreting curves [10] 

Safety on the roads [11] 

Statistical measures  
Find the sum, mean, mode (or modal group), median and range (raw data and grouped data). This includes finding the mean using a formula in words: or or symbols: or where . Use a calculator to find the standard deviation. Use a spreadsheet to sort data and find the sum, mean, median, mode and range. Print out spreadsheet formulae. Choose appropriate measures of location and spread to represent and compare different sets of data (raw or grouped data). 
Election results [12] 
Average limits (AMP) [13] 

Reaction times [14](AMP) 
Topic area 
Content 
Nuffield resources 
Cumulative frequency graphs 
Draw cumulative frequency graphs, indicating the range, median, quartiles, interquartile range and percentiles. Could be drawn on a spreadsheet as well as by hand. Use cumulative frequency graphs to estimate values. 
Pay rates for men and women [15] 
Box and whisker diagrams 
Draw and interpret box and whisker diagrams. Use box and whisker diagrams to compare two data sets. 
Box and whisker plots [16] 
Scatter diagrams 
Understand ideas of positive correlation, negative correlation, strength of correlation and no correlation. Draw a line of best fit by eye through the mean point. Use the line of best fit to estimate missing values. 

Probability

Express probabilities as fractions, decimals and percentages. Understand that probabilities lie between 0 and 1 and understand the numerical values associated with events having low, equally likely and high probabilities. Use P(not A) = 1 – P(A) Estimate probabilities from real data, understanding the idea of, and limitations of, probability as relative frequency for simple situations. Draw probability diagrams to illustrate results. Use probabilities from small data sets to project to larger populations, understanding the limitations resulting from factors such as sample profile, when the data was collected, and so on. 
A risky business [17] 
Sports injuries [18] 

Crime in the regions [19] (assignment) 

Probability [20] 

Three dice (AMP) [21] 



Interpret and compare data sets

Use measures of location and spread and probability, together with statistical and probability diagrams, to come to conclusions about data and compare similar data sets. 
Music Festival [22] 
House prices [23] 

Football figures [24] 

Heart rate [25] 

HE applications [26] 

Five a day [27] 

Larks and owls [28] A very open investigation in which students may set their own statistical tasks based on sleep requirements. 
Topic area 
Content 
Nuffield resources 
Critical analysis

Critically examine statistical work done by other people. · Consider the use of diagrammatic representations of data in order to bias findings (such as by manipulation of axes or use of area to exaggerate findings). · Question if the data used has been selected to strengthen a case (such as a subset of data may have been used or certain data discarded). · Consider whether alternative measures and diagrams would have been more or less useful in highlighting findings. · Identify what it is not possible to conclude from the data and consider what extra information or data is needed. 
Global warming [29] (assignment) 
Revision 
Revise topics and try past papers. Discuss data sheet – make up and try questions based on it. 
