A collection of experiments that demonstrate chemical concepts and processes.
In partnership with

Addition polymerisation

Demonstration or Class practical

Alkenes (organic compounds containing carbon-carbon double bonds) undergo addition reactions. In this experiment monomer molecules of phenylethene (styrene) add on to each other to form a polymer, poly(phenylethene), commonly known as polystyrene. This process is started by adding a substance called a free-radical initiator.
 

Lesson organisation


Because examples of addition polymerisation are difficult to demonstrate, or for students to experience themselves, this experiment is important either as a teacher demonstration or as a class experiment. The latter is only suitable for particularly able and reliable students, given the hazards of the substances involved, and the careful handling required.

The experiment takes up to 60 minutes, and should not be left unattended. However, it should be possible to make use of some of the ‘watch and wait’ time for theoretical work, for example on addition polymerisation and addition polymers.

Chemicals

Phenylethene (styrene) (HARMFUL, FLAMMABLE), 5 cm3, (Note 2)

Di(dodecanoyl)peroxide (lauroyl peroxide) (OXIDISING), 0.1 g

Ethanol (IDA – Industrial Denatured Alcohol) (HIGHLY FLAMMABLE, HARMFUL), 50 cm3 (Note 3)

Refer to Health & Safety and Technical notes section below for additional information. 

Apparaus

The teacher of working group will require:

Eye protection

Disposable nitrile gloves

Access to a fume cupboard

Boiling tube, 150 x 25 mm 

Bung, one-holed, fitted with a 20 cm length of glass tubing (see diagram below)

Beaker (100 cm3, 250 cm3), 1 of each

Glass stirring rod

Stand and clamp

Either: Electric hotplate with thermostatic control (Note 1)

or

Bunsen burner, tripod, gauze and heat resistant mat 

Health & Safety and Technical notes


Read our standard health & safety guidance

Wear eye protection, gloves, and work in a fume cupboard or ensure good ventilation. 

Phenylethene (styrene), C8H8(l), (HARMFUL, FLAMMABLE) - see CLEAPSS Hazcard

Di(dodecanoyl)peroxide (lauroyl peroxide), (CH3(CH2)10CO)2O2(s), (OXIDISING) - see CLEAPSS Hazcard

Ethanol (IDA – Industrial Denatured Alcohol), C2H5OH(l), (HIGHLY FLAMMABLE, HARMFUL) - see CLEAPSS Hazcard

1 The boiling waterbath required can be set up more quickly using boiling water from an electric kettle, and kept boiling on a thermostatically-controlled electric hotplate. This is a safer alternative to the use of a Bunsen burner in this experiment.

2 Check that the stock of phenylethene is in good condition. In spite of the presence of an inhibitor, phenylethene in store will gradually polymerise and eventually turn solid in the bottle.

Phenylethene vapour is narcotic in high concentrations, so good ventilation is essential, preferably a fume cupboard. Eye protection and disposable nitrile gloves should be worn during the pre-treatment of phenylethene.

Pre-treatment of phenylethene (CAUTION: wear goggles and and chemical resistant gloves for this procedure): most phenylethene samples contain 4-(dimethylethyl)- benzene-1,2-diol, (4-tert-butyl catechol) (HARMFUL) as an inhibitor. This needs to be removed by washing with 1 M sodium hydroxide solution, NaOH(aq), (CORROSIVE), then with water, in a separating funnel. The phenylethene then needs to be dried over anhydrous sodium sulfate, Na2SO4(s), for 10 minutes. Wash all the apparatus used in propanone, CH3COCH3(l), (HIGHLY FLAMMABLE, IRRITANT) as soon as possible. 

4 Provide a chemical waste collection container so that the ethanol washings can be collected and disposed of safely after the lesson. The polystyrene samples can be disposed of as normal waste.

Procedure


a Prepare a 250 cm3 beaker of boiling water to act as a waterbath. If using a Bunsen burner, keep all other chemicals well away from the flame.

b Add 0.1 g of di(dodecanoyl) peroxide to 5 cm3 of phenylethene in a boiling tube.

Apparatus set-up

c Fit a bung carrying a 20 cm length of glass tubing in the top of the boiling tube. This minimises the escape of phenylethene vapour. Clamp the tube vertically in the boiling waterbath so that the liquid in it is below the level of the hot water – see diagram.

d Heat for about 30 min until the liquid turns quite viscous, remove from the waterbath and leave to cool.

e Extinguish all flames. Pour the contents of the tube into 50 cm3 of ethanol in a beaker.

f Use a glass rod to push the poly(phenylethene) into a lump and pour off the ethanol.

g Dry the solid polymer on a filter paper.

 

Teaching notes


HEALTH & SAFETY: With the use of a powerful oxidising agent, and also flammable and harmful substances, there is need for eye protection, disposable gloves and a fume cupboard.

Students will need some theoretical background to addition reactions of unsaturated compounds and to polymerisation before this experiment. The reaction in this experiment is:

Poly structure

Poly(phenylethene) is of course better known as polystyrene. However, many students will relate the name ‘polystyrene’ to the foamed material, expanded polystyrene, and be less familiar with the glassy solid. Teachers may wish to have samples of objects made of solid polystyrene to show students. Possibilities include yoghurt pots, margarine tubs, clear egg boxes, food packaging trays, plastic cutlery and cups, clear plastic glasses, ball-point pen cases, CD cases and plastic coat-hangers.

Look for the recycling code: PS06  on such objects. Note that many of these also contain fillers, plasticisers, pigments and other components.

The brittle, glassy nature of pure polystyrene (cf. a CD case) is due to the bulky benzene rings projecting from the side of the carbon chain, which limit the flexibility of the chain. However, it is also a remarkably strong material, leading to a very wide variety of applications.

The initiator, di(dodecanoyl)peroxide, has a peroxy group, -O–O-, in the middle of the molecule, between two large dodecanoyl, CH3(CH2)10CO-, groups. This molecule splits readily at the O–O bond, leaving unpaired electrons on each of the oxygen atoms, resulting in the formation of two free radicals, CH3(CH2)10COO.. It is these free radicals that attack and open the double bond in phenylethene, propagating a sequence of unpaired electrons at the end of the growing carbon chains. This is why only a tiny amount of initiator is needed to set off the reaction.

Radicals attack and open the double bond in phenylethene

Health & Safety checked August 2008

 

Weblinks


Wikipedia - there is an enormous number of references to polystyrene on the web, but few to the chemistry behind it!

 

Page last updated on 01 January 2012